
Frankenstein:
Stitching Malware from Benign Binaries

Vishwath Mohan and Kevin W. Hamlen
School of Electrical and Computer Science

University of Texas at Dallas

Abstract—This paper proposes a new self-camouflaging mal-
ware propagation system, Frankenstein, that overcomes short-
comings in the current generation of metamorphic malware.
Specifically, although mutants produced by current state-of-the-
art metamorphic engines are diverse, they still contain many
characteristic binary features that reliably distinguish them from
benign software.

Frankenstein forgoes the concept of a metamorphic engine
and instead creates mutants by stitching together instructions
from non-malicious programs that have been classified as benign
by local defenses. This makes it more difficult for feature-
based malware detectors to reliably use those byte sequences
as a signature to detect the malware. The instruction sequence
harvesting process leverages recent advances in gadget discovery
for return-oriented programming. Preliminary tests show that
mining just a few local programs is sufficient to provide enough
gadgets to implement arbitrary functionality.

I. INTRODUCTION

The underground economy associated with malware has
grown rapidly in the last few years. Recent studies demonstrate
that malware authors no longer need concern themselves with
the distribution of their creations to end user systems; they
can leave that task to specialized pay-per-install services [1].
In such an environment, the primary concern of malware is
evading detection on infected machines as it carries out its
malicious task.

End-user machines are protected by real-time detection
systems that rely heavily on static analysis. Static analysis
is favored because it is faster and consumes fewer resources
relative to dynamic methods [2]–[6]. Resilience against static
analyses is therefore a high priority for malware obfuscation
technologies.

Oligormorphism, polymorphism, virtualization-based obfus-
cation, and metamorphism are the main techniques used to
evade static analyses. Oligomorphism uses simple invertible
operations, such as XOR, to transform the malicious code
and hide distinguishing features. The code is then recovered
by inverting the operation to deploy the obfuscated payload.
Polymorphism is an advancement of the same concept that
encrypts most of the malicious code before propagation,
leaving only a decryption routine, which unpacks the malicious
code before execution.

Both oligomorphism and polymorphism are statically de-
tectable with high probability using statistical or semantic
techniques. Encrypting or otherwise transforming the code
significantly changes statistical characteristics of the program,
such as byte frequency [7], [8] and entropy [9], prompting

defenses to classify them as suspicious. Subsequent, more
computationally expensive analyses can then be judiciously
applied to these suspicious binaries to identify malware.

More advanced polymorphic techniques, such as polymor-
phic blending, try to overcome this weakness by modifying
statistical information of binaries via byte padding or substi-
tution [10]. However, the malware’s decryption routine (which
must remain unencrypted) is often sufficiently unique that
it can be used as a signature to detect an entire family of
polymorphic malware. Semantic analysis techniques can there-
fore single out and identify the unpacker to detect malware
family members [11]. Virtualization-based obfuscators express
malware as bytecode that is interpreted at runtime by a custom
VM. However, this shifts the obfuscation burden to concealing
the (usually large) in-lined, custom VM.

Metamorphism is a more advanced approach to obfusca-
tion that, in lieu of encryption, replaces its malicious code
sequences with semantically equivalent code during propaga-
tion. This is accomplished using a metamorphic engine that
processes binary code and modifies it to output a structurally
different but semantically identical copy. Since the mutations
all consist of purely non-encrypted, plaintext code, they tend to
exhibit statistical properties indistinguishable from other non-
encrypted, benign software.

Simple metamorphic engines mutate by adding padding
(e.g., dead code), permuting registers, or inserting semantic no-
ops consisting of state-preserving instructions and loops. More
advanced engines additionally perform function reordering,
control flow modification or data structure modification.

Current metamorphic engines focus on achieving a high
diversity of mutants in an effort to decrease the probability
that the mutants share any features that can serve as a basis
for signature-based detection. However, diversity does not
necessarily lead to indistinguishability. For example, malware
signatures that whitelist features (i.e., those that classify bi-
naries as suspicious if they do not contain certain features)
actually become more effective as mutant diversity increases.
Similarly, reverse-engineering current metamorphic engines
often reveals patterns that can be exploited to derive a suitable
signature for detection.

Our system, Frankenstein, therefore adopts a different ap-
proach to metamorphism that is inspired by recent advances
in return-oriented programming. Return-oriented programming
searches the address spaces of victim binaries for gadgets—
instruction sequences that end with the return instruction [12].
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Fig. 1. High-level architecture of Frankenstein

Previous work has shown that a sufficiently large code base
(such as the standard C library libc), suffices to find a Turing-
complete set of gadgets that can be used to exploit known
vulnerabilities [13]. Others have also shown that searching for
gadgets is an automatable task [14].

We apply the idea of harvesting instructions to obfuscate
malicious code. Rather than using a metamorphic engine to
mutate, we stitch together harvested code sequences from
benign files on the infected system to create a semantically
equivalent binary. By composing the new binary entirely out
of byte sequences common to benign-classified binaries, the
resulting mutants are less likely to match signatures that
include both whitelisting and blacklisting of binary features.

Our main contribution is a new method to obfuscate mal-
ware that works by synthesizing copies entirely from byte
sequences that have already been classified as benign by local
defenses. In doing so, we demonstrate a heretofore unrecog-
nized synergy between research on metamorphic obfuscation
and that on return-oriented programming.

As a proof-of-concept, we present a toy implementation
consisting of a binary obfuscator that generates stand-alone
x86 native code mutants from a specification (described in
Section II), but that does not self-propagate. Experiments
focus on obfuscating code whose size and functionality is
representative of the small, unencryptable portion of malware
(e.g., unpackers) rather than full malware payloads, to which
alternative approaches are usually applicable (e.g., mimimor-
phism [15]). Thus, we envision our approach as a complement
to these alternatives rather than a replacement.

In Section II we present a high-level overview of Franken-
stein and discuss its constituent components. Section III con-
tains the details of our prototype implementation, and Sec-
tion IV reports experimental results. Related work is discussed
in Section V. Finally, Section VI summarizes and discusses
opportunities for future work.

II. DESIGN

Frankstein searches programs on the local machine for
gadgets, which it composes to form a semantically identical
copy of itself. The different components of Frankenstein are
diagrammatically represented in Figure 1. Below, we describe
our notion of a gadget, which differs from its usual defini-
tion in the context of return-oriented programming, and then
discuss each of the components in more detail.

A. Gadgets

Our definition of a gadget is a more relaxed version of that
needed for return-oriented exploits [12], [14]. Return-oriented
programming, which is a form of control-flow hijacking, relies
on the ret instruction to transfer control from one sequence
of instructions to the next. Thus, only sequences that end with
a ret constitute viable gadgets. Since we statically stitch
gadgets together, we are not bound by this constraint. For
our purposes, a gadget is any sequence of bytes that are
interpretable as valid x86 instructions.

A second difference from return-oriented programming is
that, as a purely static approach, we need not restrict the
search to the address space of a currently running process.
Gadgets are therefore harvested from executable file images on
victim systems. Both these facts afford us a much larger pool
of potential gadgets from which to construct mutants. This is
advantageous since we would like each copy of Frankenstein
to differ as much as possible from all other copies.

Gadgets are categorized by their type (a semantic abstraction
of the kind of task they perform) and by a set of parameters
(instantiated with values that specialize the gadget to a par-
ticular task). For example, the MovReg type represents any
gadget that moves a value from one register to another. All
MovReg gadgets have two parameters, InReg and OutReg ,
that represent the operation OutReg ← InReg .



TABLE I
GADGET TYPES

Gadget Type (t) Input (`) Parameters (p) Semantic Definition

NoOp — — No change to memory or registers
DirectBranch Offset — EIP ← EIP + Offset
DirectConditionalBranch Offset ./cmp, Reg1, Reg2 EIP ← EIP + Offset if Reg1 ./cmp Reg2
LoadReg OutReg , InReg — OutReg ← InReg
LoadConst OutReg , Value — OutReg ← Value
LoadMemAddr OutReg , Addr — OutReg ← [Addr ]
LoadMemReg OutReg , AddrReg Scale, Disp OutReg ← [AddrReg ∗ Scale + Disp]
StoreMemAddr InReg , Addr — [Addr ]← InReg
StoreMemReg InReg , AddrReg Scale , Disp [AddrReg ∗ Scale + Disp]← InReg
Arithmetic OutReg , InReg1, InReg2 �aop OutReg ← InReg1 �aop InReg2

A complete set of gadget types, their associated parameters,
and the semantic task that each encodes is given in Table I.
The symbols ./cmp and �aop represent integer comparison
and modular arithmetic operations, respectively. The collection
is Turing-complete, and therefore suffices to build arbitrary
computations. In contrast to gadget types for return-oriented
programming [14], our collection includes types for condi-
tional and non-conditional branches. These are unnecessary for
return-oriented programming since in that context every gadget
is reached via an appropriate return instruction injected into
the stack. To better resemble benign software, Frankenstein
uses more conventional control-flows that include standard
branching instructions.

Every gadget is also associated with a clobber list, which
represents secondary register and memory locations whose
values the gadget modifies. The clobber list is used to find
a sequence of gadgets that do not interfere with one another.

The types defined in the table are sufficient to carry out our
initial experiments, but future work should consider extending
the table to support obfuscation of more complex tasks.

B. Semantic Blueprint

Typical metamorphic malware recompiles itself from a byte-
code intermediate language during propagation. Each mutant
carries a freshly obfuscated intermediate form of itself for this
purpose. (The intermediate form is data, which is easier to
obfuscate than code.) In contrast, Frankenstein propagates by
re-synthesizing itself from a more abstract semantic blueprint.
The semantic blueprint is a sequence of abstract machine
states, where each step in the sequence is represented as a
logical predicate. Each predicate is a combination of an atomic
term and zero or more locations. A location can be a specific
register, memory address, immediate value, or a variable that
refers to an arbitrary register or memory location. The jump
predicate instead has arguments consisting of a relative offset
into the blueprint’s list of states and an optional condition.

A subset of logical predicates used by Frankenstein is shown
in Table II. For example, the move predicate is an abstraction
of the movement of a value from one location L2 to another
L1. Thus, depending on the values of its locations, a move
predicate might be satisfiable by any of the Load* or Store*
gadget types. The flexibility of a predicate to match multiple
gadget types allows the semantic blueprint to more abstractly

TABLE II
EXAMPLES OF LOGICAL PREDICATES

Predicate Semantic Definition Suitable Gadgets

noop — NoOp
move(L1,L2) L1 ← L2 All Loads/Stores
add(L1,L2,L3) L1 ← L2 + L3 Arithmetic
sub(L1,L2,L3) L1 ← L2 − L3 Arithmetic
jump(n, Why) Jump n blueprint steps DirectBranch,

if Why holds ConditionalBranch

hypotenuse_squared :-
mov(L1, ’[0x401248]’),
mov(L2, ’[0x40124C]’),
mul(L3, L1, L1), mul(L4, L2, L2)
add(L5, L3, L4), mov(’EAX’, L5).

Fig. 2. A semantic blueprint to compute the square of a triangle’s hypotenuse

encode what is computed rather than how the computation is
carried out. This in turn allows for a diverse set of gadgets to
match a given portion of the semantic blueprint.

Figure 2 shows how predicates can be chained together
to form a clause. In the example, the memory locations
0x401248 and 0x40124C contain the values of two sides of
a right-angled triangle, and the calculated length of the square
of the hypotenuse is stored in the EAX register. Variables L1–
L5 can refer to memory locations or registers.

The level of abstraction (and with it the diversity of mutants)
can be tuned by adjusting the granularity of the predicates in
the blueprint. It is possible to create layers of predicates that
can each be expressed as clauses of lower-layer predicates,
each layer effectively abstracting higher-level operations. For
example, two consecutive predicates that increment register
r and then multiply it by 2 could be replaced by a single
predicate that computes 2(r+1). The resulting predicate would
be satisfied by new gadget sequences, such as one that first
multiples by 2 and then adds 2. The trade-off is the greater
search time required to discover implementations of more
abstract gadgets. If the predicates are too abstract, the search
becomes intractable.

Since gadget discovery is based on search, our proof-
of-concept implementation expresses semantic blueprints as
predicates written a logic programming language (Prolog).



Algorithm 1 Gadget discovery
Input: σ0 (initial symbolic machine state), and

[i1, . . . , in] (instruction sequence)
Output: G ⊆ T × Φ (matching gadget types)

for j = 1 to n do
σj ← E [[ij ]]σj−1

end for
G← ∅
for all t ∈ T do

if U(t, σn) is defined then
φ← U(t, σn)
G← G ∪ {(t, φ)}

end if
end for
return G

While a full Prolog search engine is obviously too heavy-
weight for inclusion in real malware, effective gadget search
does not require the full capabilities of logic programming.
We expect a combination of unification and simple depth-
first search to suffice, and consequently believe that a much
slimmer implementation is possible.

C. Gadget Discovery

The majority of the obfuscation process involves finding
a suitable set of gadgets that can be used to implement the
semantic blueprint. The search process proceeds similarly to
gadget searches for return-oriented programming [14], but
with several variations reflecting our different focus (obfusca-
tion as opposed to finding one viable sequence from a limited
code base).

In the discovery phase, Frankenstein searches the local file
system for binaries. From our experiments, our experience
has been that 2–3 binaries from the system32 folder suffices
to provide a code base from which to harvest a diverse,
Turing-complete set of gadgets on Microsoft Windows sys-
tems. Frankenstein starts by collecting byte sequences from
the code sections of these binaries using a variable-length
sliding window. The sliding window approach is simpler
than implementing (and obfuscating) a full disassembler, and
it increases the pool of available gadgets by including for
consideration the many misaligned instruction sequences that
all benign programs contain (but rarely execute).

Each byte sequence is passed through an instruction decoder
to produce an instruction sequence. Sequences containing
invalid op-codes or undesirable branches (such as calls or
returns) are discarded, and the remaining sequences are tested
for gadget viability using Algorithm 1.

Frankenstein performs gadget discovery with the aid of a
small abstract evaluator E : I → Σ→ Σ that defines the effect
of an instruction i ∈ I upon a symbolic machine state σ ∈ Σ.
Notation E [[i]]σ denotes the resulting symbolic state, where
states σ : ` → e map locations ` (viz., registers, flags, and
memory addresses) to symbolic expressions e. For example,

each register’s initial content is encoded as a fresh symbol in
the initial abstract state: σ(eax ) = EAX , and so on.

After composing the effects of all instructions in a candidate
sequence, the final symbolic output state is unified with each
possible gadget type t ∈ T . A gadget type t is conceptually a
state predicate, possibly containing uninstantiated parameters
p. Unification U(t, σ′) succeeds if there exists an instantiation
φ : Φ = p → ParamVals of the parameters such that sub-
stituting t according to φ yields a concrete predicate satisfied
by symbolic state σ′. In that case the unification returns the
parameter instantiation φ. Otherwise U (t, σ′) is undefined
(and the search continues). Two instruction sequences that
match a particular gadget type are considered equivalent if
they have identical instantiations of all parameters, excluding
the clobber list.

It is common for a large instruction sequence to be rec-
ognized as multiple valid gadget types when considering its
effect on different machine state variables. For example, the
instruction sequence

mov ebx, dword ptr [eax*4 + 0xc]
mov ecx, eax
inc ecx

can be used as a LoadReg gadget representing ecx ← ebx , a
loadMemReg gadget representing ebx ← [eax ∗ 4 + 0xc], or
as an Arithmetic gadget representing ecx ← ecx + 1. In each
case, the clobber list includes all other state variables that are
modified. We also include additional constraints for sequences
where memory indirection is involved. In our example gadget
above, the value of eax ∗ 4 must be a valid memory address
to ensure that it does not cause a crash when executed. These
constraints are expressed in the form of logical clauses as part
of the arrangement layer (described below), which ensures that
we only find valid solutions.

D. Gadget Arrangement

The next step involves finding a suitable combination of
gadget types that match the semantic blueprint. In Franken-
stein, gadget arrangement is a natural consequence of the way
that the semantic blueprint is defined. The logical predicates
that we define in Table II also happen to be the lowest level
in the layered approach to constructing predicates described
previously. We call this the arrangement level because all
possible gadget arrangements are expressed in terms of these
predicates.

Given a clause defined in terms of higher-level predicates,
logic programming can be used to reduce them to multiple
clauses composed entirely of arrangement layer predicates,
such that the definition of each clause in turn represents one or
more potential gadget arrangements. We assume that malware
authors have access to arbitrary high-level representations of
the code, including requirements, design, and implementation
of the payload. They can therefore use this information to
express the malware in terms of the higher-level predicates.

At present, our prototype of Frankenstein does not have
support for higher level predicates, and expresses blueprints



using predicates from the arrangement level only. However,
adding higher-level predicates is not conceptually difficult, and
we plan to include this feature in future versions of our system.

E. Gadget Assignment

In the last phase, we use the discovered gadgets to find
satisfiable assignments for each generated gadget arrangement.
We leverage the unification process of logic programming for
this purpose, which is well-suited to this problem. Franken-
stein begins by converting each discovered gadget into an
extended version of one of the predicates defined in Table II.
The extension adds two terms to each predicate: a list of clob-
bered locations and an identification number. The identification
number associates each of these predicates with the instruction
sequence that the gadget represents, while the clobber list
facilitates discovery of sequences of non-interfering gadgets.

Next, the predicates that form the definition of each of
the reduced clauses obtained in the gadget arrangement phase
above are also extended to include variables that represent a
clobber list and identification numbers. To each definition, we
also add a generated list of constraints that prevent the param-
eters of predicates from interfering with one another. Finally,
we use constraint logic programming to solve each clause. The
full set of solutions obtained represent all the possible gadget
assignments that implement the original semantic blueprint.

F. Executable Synthesis

For each successful gadget assignment, Frankenstein masks
all external calls in the code by converting them into computed
jumps. As a result, Frankenstein’s mutants have no noteworthy
system calls in their import address tables, concealing them
from detectors that rely upon such features for fingerprinting.

The last step is injecting the finished code into a correctly
formatted binary so it can be propagated. Frankenstein has a
binary parsing component and a seed binary that it uses as a
template. For each mutant, it injects the code into the template
file and updates all relevant metadata in the header. At this
point the new mutants are natively executable programs.

III. IMPLEMENTATION

To test the viability of our approach, we created a proto-
type stand-alone obfuscator that takes a gadget arrangement
as input and produces a working portable executable (PE)
file as output. The prototype searches the local system for
programs, mines them to discover gadgets, finds a suitable
gadget assignment, and realizes it as a PE file. The prototype
was implemented in a combination of Python and Prolog. The
experiments were performed on a quad-core virtual machine
with 3 GB RAM running 64-bit Windows 7. The host ma-
chine is an Intel i7 Q6500 quad-core laptop running 64-bit
Windows 7.

The gadget discovery, gadget assignment, and duplication
phases implement the algorithms described in the previous
section. However, the abstract evaluator that analyzes and
discovers gadgets currently supports only a limited sub-
set of instructions—about 8 different instructions excluding

branches. Even though this greatly reduces the number of gad-
gets available for incorporation into mutants, it nevertheless
suffices to find more than enough gadgets to implement our
sample programs.

The discovery module, implemented in Python, takes a set
of binaries and a semantic blueprint as input. It outputs a series
of Prolog predicates that define each discovered gadget, as
well as a Prolog query that represents a viable combination
of the gadget types specified in the arrangement. This is
delivered to the assignment module, implemented in Prolog,
which outputs all discovered solutions to the query. Each
solution is then converted into its equivalent byte sequence
by the executable synthesis module, implemented in Python,
which injects the byte code into a template PE file. For
ease of testing, the duplication module contains pre-fabricated
templates for function prologues and epilogues, which are used
to modularize the synthesized byte sequence as a stand-alone
function. We note that function prologues and epilogues could
easily be synthesized using the gadget discovery mechanism
instead, if so desired.

IV. EXPERIMENTAL RESULTS

We tested our prototype by discovering gadgets in some
common Windows binaries. For our results, we only chose
gadgets that contained 2–6 instructions. Our results are tabu-
lated in Table III. We recorded the number of gadgets found
and time taken both with and without using the sliding window
protocol discussed in Section II. Surprisingly, we found that
using the sliding window protocol to discover misaligned
sequences increased the gadget count by only 34% on average
but increased discovery time by 794%, a trade-off that does not
seem worthwhile. We conjencture that increasing the number
of instructions supported by the abstract evaluator will help
balance these ratios somewhat, but that a better strategy is
likely to be one that searches for gadgets using a simple fall-
through disassembly while increasing the number of binaries
mined. All results we discuss hereafter are based on the
numbers for the non-sliding window algorithm.

The results show that even with the limited capacity of our
prototype, 2–3 binaries are sufficient to bring the number of
gadgets above 100,000. On average we discovered about 46
gadgets per KB of code, finding approximately 2338 gadgets
per second.

Next, we tested the prototype’s ability to synthesize working
code. We chose two algorithms for our experiments: insertion
sort and a loop that XORs an array of bytes using a one-
time pad. Both programs contain operations commonly found
within the packers used by conventional malware. The seman-
tic blueprints for these programs are shown in Figures 3 and 4.

The semantic blueprints were reproduced as Prolog queries,
with extensions to predicates and added constraints to ensure
non-interference between gadgets as detailed previously. In
both cases, only gadgets harvested from explorer.exe
were used. The queries produced over 10,000 viable gadget
assignments each, with an average speed of 3 assignments per
second.



TABLE III
GADGET DISCOVERY STATISTICS FOR SOME WINDOWS BINARIES

Without Sliding Window With Sliding Window

Binary Name File Size (KB) Gadgets Found Time Taken (s) Gadgets Found Time Taken (s)

gcc.exe 1327 82885 29.70 97163 172.24
calc.exe 758 41914 22.09 60390 189.86
explorer.exe 2555 89617 40.31 127859 429.56
cmd.exe 295 17514 7.17 25008 88.34
notepad.exe 175 4512 1.82 6974 24.39

Input:
L1 = address of data,
L2 = address of one-time pad,
L3 = array length,
L4 = address of encrypted output
Blueprint:
xor_encryption :-

move(L5, 0),

jump(7, L5 = (L3-1)),

move(L6, [L1+L5*4]),

move(L7, [L2+L5*4]),

xor(L8, L6, L7),

move([L4+L5*4], L8),

add(L4, L4, 1),

add(L5, L5, 1),

jump(-7, always).

Fig. 3. Semantic blueprint for a simple XOR oligomorphism

Input:
L1 = address of array
L2 = length of array
Blueprint:
insertion_sort :-

move(L3, 1),

jump(14, L3 = L2),

move(L4, L3),

move(L5, [L4*4+L1]),

jump(8, L4 = 0),

jump(7, [L1+(L4-1)*4] < L5),

sub(L4, L4, 1),

move(L6, [L4*4+L1]),

add(L4, L4, 1),

move([L4*4+L1], L6),

sub(L4, L4, 1),

jump(-7, always),

move([L4*4+L1], L5),

add(L3, L3, 1),

jump(-13, always).

Fig. 4. Semantic blueprint for insertion sort

This high diversity can be attributed to multiple satisfiable
sub-arrangements of gadgets, which can each be combined
with every variation of all other sub-arrangements, leading to
a combinatorially high number of unique overall arrangements.
Although this might appear to produce a large number of
similar variants, diversity can be ensured by harvesting gad-
gets from different sets of binaries and additionally by only
selecting assignments that have no gadgets in common with
each other.

To better understand the size increase induced by our
approach, we compared the sizes of 100 mutants generated
by Frankenstein for the one-time pad XOR algorithm against
its corresponding compiler generated code. The compiled code
was generated with C++ using Visual Studio 2010 with basic
security checks turned on and optimization set to full. The
mean of the sizes of the generated mutants was 48 bytes
compared to the 25 bytes produced by Visual Studio. The
variance in size between the generated samples was 16. This
shows that the size of a mutant can be expected to be slightly
less than double the size of its optimized compiler-generated
version, an increase that we feel is an acceptable cost for the
benefit of obfuscation.

To assess the binary distribution of the generated mutants,
we generated 20 implementations of the XOR blueprint after
mining donor program explorer.exe for gadgets, and
counted the number of n-grams that do not appear in the
donor program and were shared by at least m mutants. Our
results are tabulated in Table IV. Only about 20 such n-grams
are common across 25% of our mutant population, and no n-
grams are common across more than 35% of the population.
In addition, all the common n-grams are relatively short; no
n-grams of length n ≥ 11 were shared. These are encouraging
results because they indicate that few binary n-gram features
are relevant for distinguishing malware instances from the
benign programs used for gadget harvesting.

Our experimental results are promising, and suggest that
developing a more comprehensive Frankenstein tool is a
worthwhile endeavor. Specifically, we conjecture that a more
comprehensive abstract evaluator that can analyze a greater
number of instructions can potentially find far more gadgets,
and thus produce mutants that exhibit even greater diversity.

V. RELATED WORK

Gadget-based obfuscation is related to past and present
research in the areas of software security and compiler op-
timization. Below we describe some related work.



TABLE IV
THE NUMBER OF FRESH n-GRAMS SHARED BY AT LEAST m MUTANTS

mutant subset size (m out of 20)

n 3 4 5 6 7

2 0 0 0 0 0
3 5 4 4 2 0
4 14 5 4 2 0
5 19 8 4 2 0
6 23 11 4 1 0
7 26 12 3 1 0
8 26 9 1 1 0
9 24 9 1 1 0

10 23 9 1 1 0
11 0 0 0 0 0

total 160 (2.3%) 67 (1.0%) 22 (0.3%) 11 (0.2%) 0 (0%)

A. Return-Oriented Programming

As mentioned previously, Frankenstein borrows the idea of
gadgets from return-oriented programming (RoP). RoP is the
latest in the evolution of code injection attacks. Such attacks
find bytes within a binary’s address space that correspond
(either intentionally or unintentionally) to a sequence of in-
structions that perform a specific computation and end with
the return instruction. Each such sequence forms a gadget. By
searching through a binary for carefully chosen gadgets, it is
possible to chain them together to perform arbitrary Turing-
complete computations [12].

This chaining of gadgets is achieved by loading the stack
with the starting address of each gadget in the chain and
transferring control to the first gadget. Every subsequent return
instruction then transfers control to the next gadget in the
chain. RoP is thus a form of control-flow hijacking, and
depends on a known exploit for a given binary in order to
smash its stack and fill it with the appropriate addresses.

B. Metamorphic Engines

Metamorphic malware changes the structure of its payload
with each generation to evade discovery. Metamorphic engines
typically do this using a bottom-up approach: Starting with a
disassembler to recover assembly code for the payload, they
perform a series of obfuscation phases, followed by application
of an assembler to generate mutated native code. Most engines
use a combination of the following five phases to obfuscate
their payloads [16]: Garbage insertion adds unreachable code
to the original code. Code substitution replaces opcodes with
functionally equivalent but structurally different opcodes. Code
insertion in-lines semantically ineffectual code sequences or
harmless computations. Register swapping reallocates regis-
ters, and control flow scrambling adds jumps and reorders
function calls.

Frankenstein’s gadget-based obfuscation is a more prin-
cipled approach to metamorphism. It both widens the pool
of possible mutations for greater diversity and tailors its
mutations to local defenses for more targeted attacks. For ex-
ample, code substitution in a metamorphic engine is typically
performed by comparing instruction opcodes against a fixed

table of alternative sequences and then randomly choosing one
from amongst them. This induces a degree of randomness with
respect to generated code sequences, but does not ensure that
the generated sequences are vastly different, nor that they do
not contain features widely recognized as malicious.

Frankenstein uses a more top-down approach. By starting
with a high-level representation of the payload logic and
searching benign files for viable gadgets, it implicitly com-
bines all 5 phases described above. This combination gives
it the ability to create mutants with a greater diversity than
standard bottom-up approaches.

C. Program Equivalence

Reasoning about program equivalence arises in connection
with translation validators and certifying compilers. A transla-
tion validator shows that compiler optimizations are semantics-
preserving by proving the semantic equivalence of the original
program and its compiler-optimized counterpart. Approaches
include instrumenting the compiler [17], verifying a simulation
relationship between the two programs [18], and constructing
value-graphs of the two programs and proving their syntactic
equivalence [19], [20].

Certifying compilers prove that object code respects the
semantics of the higher-level source code whence it was
generated. Most certifying compilers do not prove full program
equivalence but instead reduce the complexity by consid-
ering only a subset of verifiable properties, such as type-
safety [21], [22]. Certifying compilers output object code,
type specifications, and code annotations. The annotations
and type specifications can then be fed into a certifier which
either outputs a proof of correctness or a counterexample that
violates type safety.

Our work differs from these related fields in that it does
not attempt to provide any formal evidence of semantic equiv-
alence for mutants. That is, although all mutants satisfy the
abstract specification whence they were generated, the mutator
is under no obligation to provide any evidence of semantic
preservation or equivalence. Thus, there is neither validation
nor certification. Frankenstein does, however, leverage many
theoretical foundations underlying this past research, including
pre- and post-conditions for semantic blueprint specification,
abstract (symbolic) interpretation for gadget discovery, and ab-
stract machine semantics for gadget analysis and arrangement.

D. Superoptimizing Compilers

Superoptimization refers to the transformation of a loop-free
code sequence into the most optimal set of assembly-level in-
structions. Optimality in this context is decided by the speed of
the generated sequence, and hence superoptimizing compilers
attempt to find the fastest sequence of assembly instructions
that are equivalent to the input code. Such compilers use a
lookup table populated with parametrized replacement rules to
perform their optimizations. The lookup table can be generated
manually as is the case with peephole optimizers, or generated
automatically based on a training set of binaries [23].



In an abstract sense, metamorphic obfuscation can be
viewed as a superoptimization problem where the model for
optimality is not the speed of the generated code, but its
dissimilarity to previous versions of the code. However, since
similarity of programs is a high-dimensionality metric, there
is no one unique solution to the obfuscation problem. (In fact,
discovering ever more solutions is a goal of most obfuscation.)

Gadget-based obfuscation can also be compared to super-
optimization, but with a subtle difference. The model for
optimality in this case is the generated sequence’s similarity
to existing benign code. Additionally our technique does not
use a pre-defined set of replacement rules, forgoing them for
a top-down approach to finding viable sequences from benign
files.

VI. CONCLUSION

We presented a new way of obfuscating malware that is
fundamentally different from existing metamorphic malware
approaches. Rather than recompiling the code purely randomly
during propagation, which leads to diverse but potentially
distinguishable binary features, our system searches non-
malicious programs on the local system for byte sequences that
function as the building blocks for semantically equivalent but
syntactically new copies. Our experiments showed that mining
a few files is both sufficient to obtain high mutant diversity,
and fast enough to be a practical mutation strategy.

By creating new copies entirely from byte sequences ob-
tained from benign files, we argue that it becomes significantly
more difficult for defenders to infer adequate signatures that
reliably distinguish malware from non-malware on victim sys-
tems. In particular, signatures that include feature-whitelisting
are less effective against our framework than against more
conventional forms of obfuscation.

For future work, we intend to implement a more comprehen-
sive system and experiments to verify and extend our prelim-
inary results. If successful, our gadget-stitching approach will
constitute a powerful tool for active defense (e.g., offensive
cyber-operations), and will highlight the need for stronger,
purely semantics-based defenses that place less reliance on
syntactic feature detection for early warning.
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