
Is Less Really More? Towards Better Metrics for Measuring
Security Improvements Realized Through Software Debloating

Michael D. Brown, Georgia Institute of Technology Santosh Pande, Georgia Institute of Technology

Abstract
Nearly all modern software suffers from bloat that negatively
impacts its performance and security. To combat this prob-
lem, several automated techniques have been proposed to
debloat software. A key metric used in these works to demon-
strate improved security is code reuse gadget count reduction.
The use of this metric is based on the prevailing idea that re-
ducing the number of gadgets available in a software package
reduces its attack surface and makes mounting a gadget-
based code reuse exploit such as return-oriented program-
ming (ROP) more difficult for an attacker.

In this paper, we challenge this idea and show through a va-
riety of realistic debloating scenarios the flaws inherent to the
gadget count reduction metric. Specifically, we demonstrate
that software debloating can achieve high gadget count re-
duction rates, yet fail to limit an attacker’s ability to construct
an exploit. Worse yet, in some scenarios high gadget count
reduction rates conceal instances in which software debloat-
ing makes security worse by introducing new quality gadgets.

To address these issues, we propose new metrics based on
quality rather than quantity for assessing the security impact
of software debloating. We show that these metrics can be
efficiently calculated with our Gadget Set Analyzer tool. Fi-
nally, we demonstrate the utility of these metrics through a
realistic debloating case study.

1. Introduction
Software debloating [1-5] is an emerging field of research fo-
cused on improving software security and performance by
eliminating bloat that occurs as a byproduct of modern soft-
ware engineering practices. While these practices enable the
rapid development of complex, widely deployable, and fea-
ture-rich software, they produce software packages (pro-
grams, libraries, etc.) with large portions of code that are un-
necessary in most end use contexts. These portions of the
package constitute software bloat and result in a variety of
negative performance and security impacts [1, 6, 22].

Software bloat affects virtually all software and primarily oc-
curs vertically in the software stack across layers of abstrac-
tion [1]. Programs that depend on common shared code li-
braries such as libc typically only require a small number of
functions provided by the library, but load the entire library
into the program’s memory space at runtime.

Software bloat also occurs laterally within software packages
suffering from feature creep. Examples include software such
as cUrl, which can be used to transfer data via 23 different
protocols, and iTunes, which features a media player, ecom-
merce platform, and hardware device interface within a sin-
gle package. Since end users are unlikely to use every feature
within these packages, the code associated with unused fea-
tures contributes to software bloat.

Recently, several software debloating techniques [2-5] have
been proposed that promise to improve software security by
removing code bloat at various stages of the software lifecy-
cle. A frequently utilized metric for measuring security im-
provements realized via debloating is the reduction in total
count of code reuse gadgets available to an attacker, which
we refer to as gadget count reduction. Several recent debloat-
ing publications [3-5] claim their methods improve security
citing gadget count reduction data as evidence.

The relationship between gadget count reduction and im-
proved security is based on the premise that reducing the total
number of code reuse gadgets available in a software package
reduces its attack surface. In turn, this decreases the likeli-
hood of an attacker successfully constructing a code reuse ex-
ploit using techniques such as return, jump, or call-oriented
programming (also known as ROP, JOP, and COP [7, 21, 8,
9]). At face value, gadget count reduction is an appealing se-
curity improvement metric as it is easily generated using ex-
isting automated static analysis tools [14] and is directly rel-
evant to a class of cyberattacks that have been the focus of
intense research over the last decade [7-15].

The premise linking gadget count reduction to improved se-
curity holds only if the gadgets removed by debloating are
critical to the construction of an exploit, and other gadgets
with equivalent functionality are not available. For an at-
tacker attempting to construct a code reuse exploit, the total
number of gadgets available is irrelevant; what truly matters
is whether or not the gadgets necessary to express their de-
sired exploit and maintain control flow are available. Recent
research on gadget chaining tools [10, 11] and code reuse at-
tack techniques [12,13] have shown that attackers do not re-
quire a large, diverse, and fully expressive set of gadgets in
order to craft an exploit. As a result, it is possible that debloat-
ing can achieve high gadget count reduction and indicate an
improvement in security, yet fail to remove any of the gadg-
ets an attacker needs to express and construct an exploit.

Even worse, our research indicates that debloating techniques
that remove code from a package introduce new gadgets at a
high rate as a side effect. Except in rare cases where the total
count of gadgets is increased by debloating, this poorly un-
derstood side effect is masked by gadget count reduction
data. This opens the possibility that debloating “successfully”
reduces the overall count of gadgets, but introduces new, use-
ful gadgets that may negatively impact security.

1.1. Contributions
In section 3 of this paper, we present the results of our study
of gadget introduction as a side effect of code-removing
debloaters. We describe the root causes of gadget introduc-
tion, and show that it is occurs at a high rate using two differ-
ent code-removing debloaters.

In section 4 of this paper, we propose new metrics for meas-
uring the security impact of software debloating. Our pro-
posed metrics, functional gadget set expressivity and special
purpose gadget availability, assess the utility of the gadgets
available to the attacker rather than the quantity. We present
our static analysis tool capable of calculating these metrics,
Gadget Set Analyzer (GSA) in section 5.

In section 6, we use GSA to demonstrate the shortcomings of
gadget count reduction and show the value of our proposed
metrics in realistic debloating scenarios. In each scenario,
positive gadget count reduction is achieved; however, GSA
reveals that a significant number of scenarios are negatively
impacted by gadget introduction.

Finally, in section 7 we demonstrate through a case study that
our proposed metrics can be used to mitigate the negative side
effects of debloating. In this case study, we identify a sce-
nario in which debloating had negative effects, adjust the
debloating specification, generate a new variant, and use
GSA to verify that these negative effects are eliminated.

2. Background
2.1. Relevant Terms
Code Reuse Attacks: Code reuse attacks are a class of attacks
in which an attacker compromises the control flow of a pro-
gram and redirects execution to an existing executable part of
the program to cause a malicious effect, bypassing code in-
jection defenses such as Write XOR Execute. In gadget-
based code reuse attack methods such as ROP, JOP, and COP
[7, 21, 8, 9], the attacker chains together short instruction se-
quences called gadgets present in the program in a specific
order to construct a malicious payload without injecting code.

Gadget: A gadget suitable for use in a code reuse attack is a
short sequence of machine instructions that end in a return,
indirect jump, or indirect call instruction. Gadgets can be
chained together using the control flow properties of the ter-
minating instruction to create a malicious payload comprised
entirely of existing code segments.

Gadget Types: When constructing a gadget chain, gadgets are
used for one of two purposes. Functional gadgets are used as
abstract instructions to express the attacker’s malicious in-
tent. Gadgets that can be used to perform important non-ex-
pressive actions such as invoking system calls or maintaining
gadget chain control flow are called special purpose gadgets.

2.2. Related Work
CHISEL: Lee et al. [3] recently proposed an automatic method
for debloating unnecessary features from program source
code called CHISEL. CHISEL takes as input a specification
script that outputs whether or not a debloated variant satisfies
the desired program properties. Using an iterative, feedback-
directed program reduction algorithm, CHISEL progressively
removes segments of the program that are not necessary to
satisfy the desired properties.

This work cites gadget count reduction data as evidence of
security improvement through attack surface reduction, but
does not provide further analysis of the gadgets present in
their debloated programs. CHISEL’s source code and bench-
marks have been made publicly available [16, 17].

TRIMMER: Sharif et al. [4] recently proposed an automated
method for debloating unnecessary functionality from soft-
ware named TRIMMER. TRIMMER takes as input a static user
defined configuration that expresses the deployment context
for a particular program. Static configuration data is treated
as a compile time constant and is propagated throughout the
program. This is followed by custom, aggressive compiler
optimizations to prune functionality from the program.

The authors provide gadget count reduction data as evidence
that TRIMMER reduces the attack surface of a program by re-
moving exploitable gadgets; However, they provide no ex-
planation of what makes a gadget exploitable as opposed to
non-exploitable. Additionally, their data indicates that syscall
gadgets were introduced as a result of debloating, yet no ex-
planation or investigation of this occurrence is provided.
TRIMMER has not yet been made publicly available.

3. Gadget Introduction via Debloating
Techniques such as CHISEL and TRIMMER that debloat by al-
tering a software package’s representation (source code, in-
termediate representation, or binary) through code removal
or progressive optimization can introduce new gadgets into
the debloated variant. Since we do not have prior knowledge
of which gadgets are useful to an attacker, gadget introduc-
tion can potentially offset security improvements realized
through debloating, or even make a debloated package less
secure. We describe the root causes of gadget introduction in
the following two sections.

3.1. Introduction of Intended Gadgets
Gadgets comprised of compiler generated binary instructions
are referred to as intended gadgets. Changes to package’s

representation caused by debloating can cause downstream
compiler stages to make different optimization and code gen-
eration decisions. This results in changes to compiler gener-
ated instructions, introducing new intended gadgets.

Consider the control flow graph (CFG) excerpts from lib-
curl shown in Figure 1. The excerpt on the left is from the
original version of the function curl_version, and the ex-
cerpt on the right shows the results of debloating eight lines
from the corresponding source code. Removing the source
code results in fewer binary instructions as expected, how-
ever this shorter sequence of instructions has simpler control
flow. Specifically, the jmp instruction on line 19 and all but
one instruction in the basic block following it are removed.
As a result, all three basic blocks in the original version are
merged into a single basic block in the debloated version.
This change in locality increases the range of instructions the
compiler can reorder to maximize performance (lines 24-27
in the original version versus lines 1-11 in the debloated ver-
sion). Comparing the number of unique intended ROP gadg-
ets produced by these two sequences, the net result is an in-
crease in the gadget count. Two gadgets, [pop rbx; pop
rbp; retn;] and [pop rbp; retn;], are present in both
versions. One gadget is eliminated from the original version
(lines 24-27), but two gadgets are introduced in the debloated
version (lines 7-11 and 8-11).

Figure 1: Control flow graph snippets of curl_version.

In addition to instruction reordering, we have observed a
number of other compiler operations that can be triggered by
debloating. Examples include CFG generation, loop optimi-
zations, function inlining, and dead code elimination.

3.2. Introduction of Unintended Gadgets
For ISAs with variable length instructions such as x86 and
x86-64, it is possible to decode instructions from an offset
other than the original instruction boundary to obtain new,
potentially valid instruction sequences [7]. Code reuse gadg-
ets found in these sequences are referred to as unintended
gadgets. When debloating alters compiler generated instruc-
tions, it also introduces new unintended gadgets when the al-
tered code is interpreted at unintended offsets.

For example, consider the sequence of instructions taken
from the last basic block of curl_version before debloat-
ing, shown in the top segment of Figure 2. Unintended gadg-
ets can be identified by interpreting the sequence at an offset
of one byte and three bytes after the first instruction bound-
ary, shown in the bottom two segments of Figure 2. After
debloating, the instructions in the final basic block (top seg-
ment of Figure 3) have changed significantly. In addition to
altering the intended gadgets found in this basic block,
debloating also changes the unintended gadgets found at

Figure 2: Final basic block of curl_version before debloating,
interpreted at three different byte offsets.

Figure 3: Final basic block of curl_version after debloating,
interpreted at three different byte offsets.

/* Previous Omitted */
1: cdqe
2: sub rbp, rax
3: add rbx, rax
4: mov rsi, rbp
5: mov rdi, rbx
6: call Curl_http2_ver
7: mov rsi, rbp
8: movsxd rdi, eax
9: lea r9, [rsp+0x6]
10: lea rdx, [0x69EE2]
11: sub rsi, rdi
12: mov r8d, 0x3
13: add rdi, rbx
14: mov ecx, 0x2
15: xor eax, eax
16: mov [rsp+0x6], 0x0
17: call curl_msnprintf
18: mov [0x2841B1], 0x1
19: jmp 0x2671F

Before debloating
curl_version()

After debloating
curl_version()

/* Previous Omitted */
1: mov rsi, rbp
2: movsxd rdi, eax
3: sub rsi, rdi
4: add rdi, rbx
5: call Curl_http2_ver
6: mov [0x2790F1], 0x1
7: add rsp, 0x8
8: lea rax,[0x279100]
9: pop rbx
10: pop rbp
11: retn

20: mov rdx, [rsp+0x8]
21: xor rdx, [0x28]
22: lea rax, [0x2814C0]
23: jnz

24: add rsp, 0x18
25: pop rbx
26: pop rbp
27: retn

48 83 c4 18: add rsp,0x18
5b: pop rbx
5d: pop rbp
c3: ret

83 c4 18: add esp,0x18
5b: pop rbx
5d: pop rbp
c3: ret

18 5b 5d: sbb BYTE PTR[rbx+0x5d],bl
c3: ret

c6 05 0f 4d
24 00 01: mov BYTE PTR[rip+0x244d0f],0x1
48 83 c4 08: add rsp,0x8
48 8d 05 13
4d 24 00: lea rax,[rip+0x244d13]
5b: pop rbx
5d: pop rbp
c3: ret

08 48 8d : or BYTE PTR [rax-0x73],cl
05 13 4d 24 00: add eax,0x244d13
5b: pop rbx
5d: pop rbp
c3: ret

13 4d 24: adc ecx,DWORD PTR [rbp+0x24]
00 5b 5d: add BYTE PTR[rbx+0x5d],bl
c3: ret

Table 1: Number and percentage of gadgets introduced by type in debloated software packages.

Introduced Functional Gadgets Introduced Special Purpose (S.P.) Gadgets
 Debloated

Variant
Gadget Count

Reduction
All

Gadgets
ROP

Gadgets
JOP

Gadgets
COP

Gadgets
System Call

Gadgets
JOP Specific
S.P. Gadgets

COP Specific
S.P. Gadgets

C
A

R
V

E

libmodbus (C) 89 (14%) 222 (39%) 149 (33%) 73 (60%) 33 (66%) N/A 2 (67%) N/A
libmodbus (M) 108 (16%) 221 (40%) 163 (37%) 58 (55%) 35 (67%) N/A 0 (0%) N/A
libmodbus (A) 143 (22%) 252 (49%) 156 (41%) 96 (73%) 44 (73%) N/A 0 (0%) N/A
Bftpd (C) 40 (5%) 249 (35%) 202 (32%) 47 (61%) 20 (80%) N/A 0 (0%) N/A
Bftpd (M) 124 (16%) 260 (41%) 197 (36%) 63 (74%) 44 (90%) N/A 0 (0%) N/A
Bftpd (A) 220 (29%) 196 (37%) 167 (34%) 29 (62%) 14 (78%) N/A 0 (0%) N/A
libcurl (C) 214 (2%) 4727 (51%) 1858 (45%) 2864 (56%) 2165 (52%) 5 (100%) 17 (30%) 305 (99%)
libcurl (M) 1470 (15%) 4178 (52%) 1631 (44%) 2547 (58%) 2003 (56%) 0 (0%) 10 (23%) 287 (99%)
libcurl (A) 3766 (40%) 3334 (58%) 1422 (49%) 1911 (68%) 1664 (69%) 4 (100%) 5 (26%) 171 (99%)
Mongoose (C) 18 (2%) 412 (33%) 307 (29%) 105 (66%) 55 (78%) N/A 0 (0%) N/A
Mongoose (M) 52 (4%) 396 (33%) 277 (27%) 119 (60%) 63 (80%) N/A 0 (0%) 1 (100%)
Mongoose (A) 99 (8%) 405 (35%) 258 (27%) 147 (67%) 63 (80%) N/A 0 (0%) N/A

C
H

IS
E

L

bzip2 442 (65%) 152 (64%) 99 (59%) 53 (76%) 45 (75%) N/A 1 (100%) N/A
chown 327 (65%) 94 (54%) 68 (47%) 26 (84%) 14 (87.5%) N/A 1 (100%) N/A
date 260 (55%) 119 (56%) 89 (51%) 30 (77%) 23 (85%) N/A 1 (100%) N/A
grep 378 (36%) 479 (72%) 380 (69%) 99 (87%) 79 (93%) N/A 1 (100%) N/A
gzip 195 (46%) 156 (68%) 127 (65%) 29 (83%) 25 (86%) N/A 1 (100%) N/A
mkdir 101 (48%) 47 (42%) 35 (38%) 12 (67%) 5 (83%) N/A 1 (100%) N/A
rm 384 (72%) 77 (52%) 47 (41%) 30 (91%) 15 (88%) N/A 1 (100%) N/A
tar 1355 (84%) 144 (57%) 75 (44%) 69 (86%) 52 (88%) N/A 2 (100%) N/A
uniq 176 (59%) 53 (43%) 33 (34%) 20 (77%) 5 (71%) N/A 1 (100%) N/A

various offsets from the original instruction boundary (bot-
tom two segments of Figure 3). These unintended gadgets
differ significantly from those found in the original sequence.
The net result of this operation is the elimination of the unin-
tended gadgets in the original sequence and the introduction
of the unintended gadgets in the resulting sequence.

3.3. Prevalence of Gadget Introduction
To determine the degree to which software debloating intro-
duces new gadgets, we debloated a variety of common soft-
ware packages at varying levels of aggressiveness with two
different code-removing debloaters. We analyzed each pack-
age and its variants using ROPgadget [14] to catalog its gadg-
ets by type, and then performed a set-wise comparison to
identify gadgets present in the debloated variants that were
not present in the original package.

For this analysis we used our debloater, CARVE [20], and
CHISEL (the only publicly available debloating tool). CARVE
operates in a comparable fashion to other feature-based ap-
proaches such as CHISEL and TRIMMER, in that it removes
code associated with features before generating the package
binary. CARVE is implemented as a preprocessor pass on
package source code that has been enriched with user-embed-
ded feature mappings that associate segments of code with
debloatable features. CARVE takes as input a user-specified
list of features to debloat and scans the enriched source code
for corresponding feature mappings. When found, CARVE
performs syntax-aware analysis on the mapped code and in-
telligently removes it in a sound manner. The debloated
source code is then compiled to produce a debloated binary
using the same build process as the original version.

We debloated four software packages with CARVE: libmod-
bus v3.1.4, Bftpd v4.9, libcurl v7.61, and mongoose
v.6.8. Each package was debloated at three levels of aggres-
siveness, defined below:
• Conservative (C): Some peripheral features in the pack-

age are removed.
• Moderate (M): Some peripheral features and some core

features are removed from the package.
• Aggressive (A): All debloatable features except for a

small set of core features are removed from the package.

We used CHISEL to debloat nine software packages from the
author provided benchmark set [17]: bzip2 v1.05, chown
v8.2, date v8.21, grep v2.19, gzip v1.2.4, mkdir v5.2.1,
rm v8.4, tar v1.14, and uniq v8.16. We used the author
provided specifications (roughly equivalent to our definition
of aggressive debloating) to create debloated variants.

Table 1 contains the results of our gadget count reduction and
gadget introduction analysis. As shown in first column,
debloating successfully reduced the total count of gadgets in
all scenarios, and in most cases the total count is reduced by
a large degree (>15%).

The introduction of new gadgets via debloating is neither a
rare nor limited occurrence. In all scenarios, a significant por-
tion of the functional gadgets remaining after debloating were
introduced gadgets (35% was the smallest observed rate). In
12 of 21 scenarios, introduced gadgets accounted for the ma-
jority of remaining gadgets. Further, gadget introduction oc-
curs at a significant rate across all gadget subcategories
(ROP, JOP, COP), aggressiveness levels, and benchmarks.

Significant levels of gadget introduction were also observed
for special purpose gadgets (a value of N/A indicates that no
gadgets of this type were present in the variant). In 14 of the
21 scenarios, debloating resulted in the introduction of new
special purpose gadgets. As was the case with functional
gadgets, special purpose gadget introduction is not strongly
correlated to debloating aggressiveness, gadget subcategory,
or benchmark type.

The prevalence of gadget introduction has serious implica-
tions for the use of gadget count reduction as a security met-
ric. Our data strongly indicates that the gadgets present in a
debloated variant will not be a proper subset of the gadgets in
the original package, rendering metrics that capture only the
change in size of a set insufficient and superficial.
4. Gadget Utility Metrics
In this section, we propose two new metrics for assessing the
security impact of software debloating. Our metrics are de-
signed to measure the degree to which debloating adversely
affects the construction of gadget-based code reuse exploits
by assessing the utility of the gadgets present after debloating
as opposed to the quantity. Since functional gadgets and spe-
cial purpose gadgets are utilized in different manners, we pro-
pose a metric suited for each gadget type.

4.1. Functional Gadget Set Expressivity
Functional gadgets are used as abstract instructions that per-
form basic computational operations such as addition, regis-
ter loading, and logical branching to construct a malicious
payload. The expressivity of a set of gadgets is a measure of
the computational power the set of gadgets permit.

The expressivity of a set of gadgets is typically measured
against the bar of Turing-completeness. A set of gadgets is
considered Turing-complete if it is sufficient to express any
arbitrary program, i.e. it is computationally universal. While
this level of expressivity is not difficult to achieve in practice
[7-9, 12], it is not the minimum level of expressivity neces-
sary to construct a practical ROP exploit. Exploits that mark
a region of memory as writable, inject malicious code, and
redirect execution to this injected code do not require Turing-
complete levels of expressivity [13].

For a gadget set to achieve a certain level of expressivity, it
must contain at least one gadget supporting each necessary
computational class. Thus, a straightforward measure of the
expressivity of a gadget set is the number of computational
classes satisfied by the gadget set. For example, a gadget set
that can be used for addition, register loading, and conditional
branching is considered more expressive than one that sup-
ports only addition and register loading.

If debloating removes all gadgets that perform a certain com-
putation, the number of satisfied classes decreases. As a re-
sult, an attacker may not be able to express their desired

exploit. If debloating introduces gadgets that perform previ-
ously unavailable computations, the number of satisfied clas-
ses increases, indicating a negative security impact.

4.2. Special Purpose Gadget Availability
Special purpose gadgets are used to perform important non-
expressive actions in an exploit gadget chain. These gadgets
must meet specific criteria, and are typically encountered in-
frequently. Without special purpose gadgets, some exploits
are not possible. For example, JOP/COP exploits do not use
the stack, and instead rely on special purpose gadgets such as
dispatchers and trampolines to maintain control flow from
one gadget to the next. Also, exploits that must invoke system
calls require special purpose gadgets.

Given their importance, the availability of special purpose
gadgets is a useful metric for determining if debloating has
reduced the types of exploits an attacker can construct. The
availability of special purpose gadgets can be measured by
maintaining counts of each type of special purpose gadget. If
a debloating operation removes all of the special purpose
gadgets of a particular type, then the attacker may not be able
to construct their desired exploit. This metric is also capable
of detecting the negative side effects of gadget introduction.
If debloating introduces new special purpose gadgets of a par-
ticular type, this increase in availability is observable.

4.3. Discussion of Metrics
We do not claim that these metrics are comprehensive. We
encourage further discussion that will lead to the exploration
of additional useful security-oriented metrics for debloating.
Other measures of functional gadget quality have been ex-
plored by Follner et al. [18] such as gadget length and
memory side effects, which are potentially applicable to the
problem of measuring the security impact of debloating.

5. Gadget Set Analyzer (GSA)
To assess the practicality of our metrics, we created a static
binary analysis tool capable of analyzing a software package
and its debloated variants to capture changes in functional
gadget expressivity and special purpose gadget availability.

5.1. Operation
GSA operates in a rather straightforward manner and makes
use of existing tools where possible. GSA takes as input the
original package binary and one or more debloated variant
binaries. First, GSA uses ROPgadget [14] to search each bi-
nary for unique ROP, JOP and Syscall gadgets. GSA then
performs secondary search of these results to identify unique
COP gadgets and JOP/COP specific special purpose gadgets.

Next, GSA utilizes a tool first proposed and implemented by
Homescu et al. [12] for classifying short ROP gadgets (called
microgadgets) into computational classes. This microgadget
scanner then determines the expressive power of the gadget
set relative to different levels of expressivity by analyzing the

number of computational classes satisfied. GSA uses this
scanner to analyze the gadget set with respect to three levels
of expressivity originally proposed in [12]: simple Turing-
completeness, expressivity required for practical ROP ex-
ploits, and expressivity required for practical, ASLR-proof
ROP exploits. Each level requires a different number of com-
putational classes be satisfied by at least one gadget: 17 for
simple Turing-completeness, 11 for practical ROP exploits,
and 35 for ASLR-proof, practical ROP exploits.

After collecting gadget set and expressivity data using these
tools, GSA compares the data for each debloated variant
against the data collected on the original binary to calculate
functional gadget set expressivity, special purpose gadget
availability, and gadget count reduction metrics.

GSA also provides a means for the user to address gadgets
introduced by debloating. Using the binary analysis library
angr [19], GSA attempts to identify the names of functions
containing introduced gadgets. This information can be used
to identify the source of an undesirable debloating operation,
potentially allowing the user alter their debloating specifica-
tion to generate a new variant that does not introduce the
gadget. GSA provides this as a “best effort” feature, and can-
not guarantee that a function name can be retrieved. This is
due to several factors including imprecision associated with
generating a CFG in angr and the mechanism by which the
gadget was introduced.

5.2. Limitations
GSA has the same limitations as the gadget expressivity scan-
ner it incorporates. Specifically, the microgadget scanner
used by GSA generates functional gadget expressivity data
based solely on an analysis of short gadgets in the set. As a
result, a gadget set may be more expressive than reported by
GSA if longer gadgets excluded from analysis can satisfy ad-
ditional computational classes. Also, the microgadget scan-
ner only calculates the expressivity of ROP gadget sets, and
does not calculate expressivity for JOP or COP gadget sets.

Additionally, dynamically linked external libraries are not
scanned by GSA. At runtime, these libraries are loaded into
memory and their code is mapped to the package’s address
space. Gadgets present in these libraries contribute to overall
expressivity and special purpose gadget availability, and
should be considered for a holistic view.

5.3. Performance
GSA and its dependencies perform binary analysis exclu-
sively with static techniques. As such, the time required to
run GSA increases with the size of the binary. GSA is perfor-
mant, typically requiring less than 30 seconds to analyze a
binary and three variants on a typical laptop. The maximum
time required to execute GSA we observed was 2 minutes and
33 seconds, which occurred when analyzing libcurl and its
three debloated variants.

6. Results
In this section, we present the results generated by GSA
across our debloating scenarios. Our results demonstrate both
the utility of our proposed metrics and the shortcomings of
gadget count reduction.

6.1. Functional Gadget Set Expressivity
Table 2 contains functional gadget set expressivity data col-
lected by GSA. Debloating was generally successful in re-
ducing expressivity when used aggressively on simple soft-
ware packages (CHISEL benchmarks). However, this was not
the case in the larger, more complex packages and less ag-
gressive debloating scenarios (CARVE benchmarks).

In two scenarios, debloating reduced the gadget count but did
not decrease gadget set expressivity (italicized text). In these
cases, gadget count reduction indicates a positive security im-
pact, but the actual impact on security is neutral. Of greater
concern are the four scenarios in which debloating increased
in gadget set expressivity (bold text) by introducing new
gadgets that satisfied previously unsatisfied computational
classes. In all four scenarios, using gadget count reduction as
a security metric indicates positive results, but fails to iden-
tify this negative security impact.

Table 2: Computational Classes Satisfied (and Reduction) by Gadget Set for Three Functional Expressivity Levels.
CARVE CHISEL

Package
Variant

Practical ROP
Exploit Classes

ASLR-Proof
ROP Classes

Simple Turing
Complete Classes

Package
Variant

Practical ROP
Exploit Classes

ASLR-Proof
ROP Classes

Simple Turing
Complete Classes

libmodbus (C) 6 of 11 (0) 10 of 35 (3) 6 of 17 (1) bzip2 3 of 11 (2) 5 of 35 (2) 1 of 17 (2)
libmodbus (M) 6 of 11 (0) 13 of 35 (0) 7 of 17 (0) chown 3 of 11 (0) 5 of 35 (4) 2 of 17 (2)
libmodbus (A) 6 of 11 (0) 13 of 35 (0) 7 of 17 (0) date 3 of 11 (2) 5 of 35 (4) 2 of 17 (2)
Bftpd (C) 7 of 11 (-1) 12 of 35 (3) 6 of 17 (1) grep 3 of 11 (2) 6 of 35 (5) 2 of 17 (5)
Bftpd (M) 7 of 11 (-1) 17 of 35 (-2) 6 of 17 (1) gzip 3 of 11 (2) 5 of 35 (1) 1 of 17 (2)
Bftpd (A) 6 of 11 (0) 11 of 35 (4) 5 of 17 (2) mkdir 3 of 11 (0) 6 of 35 (0) 1 of 17 (1)
libcurl (C) 9 of 11 (0) 26 of 35 (-1) 11 of 17 (-1) rm 3 of 11 (0) 5 of 35 (4) 2 of 17 (2)
libcurl (M) 9 of 11 (0) 24 of 35 (1) 10 of 17 (0) tar 3 of 11 (2) 5 of 35 (4) 1 of 17 (4)
libcurl (A) 10 of 11 (-1) 24 of 35 (1) 10 of 17 (0) uniq 3 of 11 (0) 5 of 35 (4) 1 of 17 (3)
Mongoose (C) 7 of 11 (0) 10 of 35 (6) 8 of 17 (0)
Mongoose (M) 7 of 11 (0) 10 of 35 (6) 8 of 17 (0)
Mongoose (A) 7 of 11 (0) 10 of 35 (6) 8 of 17 (0)

Table 3: Special Purpose Gadget Counts (and Reduction) by Gadget Set (excludes types not observed in any variant).
 Package

Variant
Syscall
Gadget

JOP Dispatcher
Gadgets

JOP Data
Loader Gadgets

JOP Trampoline
Gadgets

COP Dispatcher
Gadgets

COP Intra Stack
Pivot Gadgets

C
A

R
V

E

libmodbus (C) 0 (0) 0 (0) 3 (-2) 0 (0) 0 (0) 0 (0)
libmodbus (M) 0 (0) 0 (0) 1 (0) 0 (0) 0 (0) 0 (0)
libmodbus (A) 0 (0) 0 (0) 1 (0) 0 (0) 0 (0) 0 (0)
Bftpd (C) 0 (0) 0 (0) 9 (1) 0 (0) 0 (0) 0 (0)
Bftpd (M) 0 (0) 0 (0) 1 (9) 0 (0) 0 (0) 0 (0)
Bftpd (A) 0 (0) 0 (0) 1 (9) 0 (0) 0 (0) 0 (0)
libcurl (C) 5 (-1) 7 (1) 50 (1) 0 (1) 304 (15) 4 (0)
libcurl (M) 0 (4) 4 (4) 41 (10) 0 (1) 287 (32) 3 (1)
libcurl (A) 4 (0) 3 (5) 14 (37) 1 (0) 170 (149) 2 (2)
Mongoose (C) 0 (0) 1 (-1) 6 (0) 0 (0) 0 (0) 0 (0)
Mongoose (M) 0 (0) 0 (0) 6 (0) 0 (0) 0 (0) 0 (0)
Mongoose (A) 0 (0) 0 (0) 6 (0) 0 (0) 0 (0) 0 (0)

C
H

IS
E

L

bzip2 0 (0) 0 (0) 1 (0) 0 (0) 0 (0) 0 (0)
chown 0 (4) 0 (0) 1 (0) 0 (0) 0 (0) 0 (0)
date 0 (4) 0 (0) 1 (0) 0 (0) 0 (0) 0 (0)
grep 0 (4) 0 (0) 1 (3) 0 (0) 0 (0) 0 (0)
gzip 0 (0) 0 (0) 1 (0) 0 (0) 0 (0) 0 (0)
mkdir 0 (0) 0 (0) 1 (0) 0 (0) 0 (0) 0 (0)
rm 0 (4) 0 (0) 1 (0) 0 (0) 0 (0) 0 (0)
tar 0 (2) 0 (0) 2 (-1) 0 (0) 0 (0) 0 (0)
uniq 0 (4) 0 (0) 1 (0) 0 (0) 0 (0) 0 (0)

6.2. Special Purpose Gadget Availability
Table 3 contains special purpose gadget availability data col-
lected by GSA. The results measured according to this metric
were similarly mixed. A conclusively positive result (com-
plete elimination of all special purpose gadgets of some type)
was observed in only 8 of 21 debloating scenarios. In eight
other scenarios, debloating did not reduce the availability of
special purpose gadgets (italicized text). In four scenarios,
gadget introduction caused an increase in the count of special
purpose gadgets (bold text). In one instance, debloating intro-
duced a special purpose gadget of a type that was not availa-
ble in the original package, a conclusively negative result. As
was the case with functional gadget set expressivity, measur-
ing special purpose gadget availability captured mixed and
negative debloating results that were not observable using
only gadget count reduction data.

7. Case Study
We demonstrate that our metrics are actionable through a
case study of the debloating scenario libcurl (C), which re-
sulted in a number of negative side effects:
• Increased the gadget set expressivity with respect to

ASLR-Proof practical ROP exploits
• Increased the gadget set expressivity with respect to sim-

ple Turing-completeness
• Increased the number of system call gadgets

In order to mitigate these effects, we attempted to find a less
aggressive debloating configuration that does not suffer these
negative side effects. In this scenario, GSA was not able to
identify the containing function for the newly introduced
gadgets. In the absence of this information, we used alternate
heuristics to decide what adjustments to make to mitigate the

negative effects. We observed the effects debloating different
sets of features had on other variants of libcurl; These neg-
ative effects were not observed in both the aggressive and
moderate debloating scenarios. By analyzing the feature sets
selected for each variant, we determined that a second de-
bloating attempt for libcurl (C) was likely to yield better
results if we did not debloat support for two protocol families
(SCP and RTSP).

We made this modification to the debloating specification,
re-ran CARVE, built the new variant, and analyzed the new
variant with GSA. The results were largely an improvement,
as expected:
• Reduced gadget set expressivity with respect to ASLR-

proof practical ROP exploits
• No change in gadget set expressivity with respect to sim-

ple Turing-completeness
• Decreased the number of system call gadgets

However, changing the debloating configuration did result in
one negative impact. In the new variant, we observed an in-
crease in the number of COP intra stack pivot gadgets by one
gadget. While this is not an ideal result, we determined that it
did not offset the improvements realized in this second round
of debloating. We manually analyzed the newly introduced
gadget and determined that it was functionally identical to
another such gadget included in both the original package and
our newly created variant; therefore, the newly introduced
gadget did not increase the overall gadget set utility.

7.1. Discussion
This case study highlights two important consequences of the
unpredictable nature of gadget introduction worthy of further
discussion. First, it may not be possible to debloat packages

with code-removing debloaters without incurring some neg-
ative impacts. Good security-oriented metrics should high-
light these impacts and support the user in making informed
tradeoffs when debloating, including choosing not to debloat.

Second, debloating does not have a linear relationship with
security improvement. Techniques that debloat a larger por-
tion of a package are not necessarily more effective at im-
proving security than those that debloat less. Research into
code-removing debloating techniques and tools should con-
sider the problem of debloating in manner that minimizes or
mitigates the negative side effects of gadget introduction.

8. Future Work
We have identified several areas worthy of future explora-
tion. First, our proposed metrics are intended to generate dis-
cussion and research into other viable security-oriented met-
rics for software debloating, such as functional gadget quality
and gadget locality. Additionally, there is a need for new
analysis tools that calculate gadget set expressivity data. Im-
mediate needs raised by this work include gadget set expres-
sivity analysis for JOP and COP gadgets, as well as expres-
sivity analysis for arbitrary length gadgets.

9. Conclusion
We presented examples across a variety of debloating scenar-
ios demonstrating the flaws inherent to the gadget count re-
duction metric. Despite achieving sizeable gadget count re-
ductions, our scenarios revealed that debloating can introduce
new gadgets, including gadgets of high value like special pur-
pose gadgets. We proposed two new security-oriented met-
rics, functional gadget set expressivity and special purpose
gadget availability to replace the gadget count reduction met-
ric. We demonstrated that these metrics overcome the limita-
tions of gadget count reduction by identifying when the side
effects of debloating negatively impact security. Finally, we
showed the practicality and of these metrics by introducing
our tool for calculating these metrics, GSA, and using it in a
realistic case study.

Artifact Sharing Statement
GSA and a selected sample of binaries analyzed in this work
have been made publicly available at:

https://github.com/michaelbrownuc/GadgetSetAnalyzer

Acknowledgements
We would like to thank all of our reviewers for their helpful
feedback. We also thank Andrei Homescu and his co-authors
for allowing us to use their microgadget scanner in this work.
Finally, we thank Joshua Kassab for his assistance in gather-
ing our experimental data.

References
[1] QUACH, A., ERINFOLAMI, R., DEMICCO, D., AND PRA-

KASH, A. A multi-OS cross-layer study of bloating in
user programs, kernel, and managed execution environ-
ments. In The 2017 Workshop on Forming an Ecosystem
Around Software Transformation (FEAST) (2017).

[2] CHEN, Y., SUN, S., LAN, T., AND VENKATARAMANI, G.
TOSS: Tailoring online server systems through binary
feature customization. In The 2018 Workshop on Form-
ing an Ecosystem Around Software Transformation
(FEAST) (2018).

[3] LEE, W., HEO, K., PASHAKHANLOO, P., AND NAIK, M. Ef-
fective Program Debloating via Reinforcement Learn-
ing. In Proceedings of the 2018 ACM SIGSAC Confer-
ence on Computer and Communications Security (CCS)
(2018).

[4] SHARIF, H., ABUBAKAR, M., GEHANI, A., AND ZAFFAR,
F. TRIMMER: Application specialization for code
debloating. In Proceedings of the 2018 33rd ACM/IEEE
International Conference on Automated Software Engi-
neering (ASE) (2018).

[5] QUACH, A., PRAKASH, A., AND YAN, L. Debloating soft-
ware through piece-wise compilation and loading. In
Proceedings of the 27th USENIX Security Symposium
(2018).

[6] XU, G., MITCHELL, N., ARNOLD, M., ROUNTEV, A., AND
SEVITSKY, G. Software bloat analysis: finding, remov-
ing, and preventing performance problems in modern
large-scale object-oriented applications. In Proceedings
of the FSE/DSP workshop on Future of Software Engi-
neering Research (FoSER) (2010).

[7] SHACHAM, H. The geometry of innocent flesh on the
bone: return-into-libc without function calls (on the
x86). In Proceedings of 14th ACM conference on Com-
puter and Communications Security (CCS) (2007).

[8] Bletsch, T., Jiang, X., Freeh, V.W., and Liang, Z. Jump-
oriented programming: a new class of code-reuse attack.
In Proceedings of the 6th ACM Symposium on Infor-
mation, Computer and Communications Security (ASI-
ACCS) (2011)

[9] SADEGHI, A., NIKSEFAT, S. AND ROSTAMIPOUR, M. Pure-
call oriented programming (PCOP): chaining the gadgets
using call instructions. In the Journal of Computer Virol-
ogy and Hacking Techniques (2018).

[10] SCHWARTZ, E. J., AVGERINOS, T., AND BRUMLEY, D. Q:
exploit hardening made easy. In Proceedings of the 20th
USENIX security symposium (2011).

[11] ROEMER, R. G. Finding the bad in good code: automated
return-oriented programming exploit discovery. Mas-
ter’s Thesis, University of California (2009).

[12] HOMESCU, A., STEWART, M., LARSEN, P., BRUNTHALER,
S., AND FRANZ, M. Microgadgets: size does matter in tu-
ring-complete return-oriented programming. In Pro-
ceedings of the 6th USENIX conference on offensive
technologies (WOOT) (2012).

[13] ZOVI, D. D. Practical return-oriented programming.
SOURCE Boston, 2010. https://trailofbits
.files.wordpress.com/2010/04/practi-
cal-rop.pdf.

[14] SALWAN, J. ROPgadget: Gadgets finder and auto-roper,
2011. http://shell-storm.org/pro-
ject/ROPgadget/

[15] ABADI, M., BUDIU, M., ERLINGSSON, U., AND LIGATTI, J.
Control-flow integrity. In Proceedings of the 12th ACM
conference on Computer and Communications Security
(CCS) (2005).

[16] ASPIRE PROJECT. CHISEL: A System for Debloating
C/C++ Programs, 2019. http://github.com/as-
pire-project/Chisel

[17] ASPIRE PROJECT. ChiselBench, 2019. https://
github.com/aspire-project/ChiselBench

[18] FOLLNER, A., BARTEL, A., AND BODDEN, E. Analyzing
the gadgets: towards a metric to measure gadget quality.
In Proceedings of the International symposium on Engi-
neering Secure Software and Systems (ESSoS) (2016).

[19] SHOSHITAISHVILI, Y., WANG, R., SALLS, C, STEPHENS,
N., POLINO, M., DUTCHER, A., GROSEN, J., FENG, S.,
HAUSER, C., KRUEGEL, C., AND VIGNA, G. (State of) The
art of war: Offensive techniques in binary analysis. In
Proceedings of the IEEE Symposium on Security and
Privacy (2016).

[20] BROWN, M. D., AND PANDE, S. CARVE: Practical secu-
rity-focused software debloating using simple feature set
mappings. arXiv:1907.02180 [cs.CR] (2019).

[21] CHECKOWAY, S., DAVI, L., DMITRIENKO, A., SADEGHI,
A., SHACHAM, H., AND WINANDY, M. Return-oriented
programming without returns. In Proceedings of the 17th
ACM Conference on Computer and Communications Se-
curity (CCS) (2010).

[22] BHATTACHARYA, S., RAJAMANI, K., GOPINATH, K., AND
GUPTA, M. The interplay of software bloat, hardware en-
ergy proportionality and system bottlenecks. In Proceed-
ings of the 4th workshop on power-aware computing and
systems (HotPower) (2011).

