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Abstract 
Nearly all modern software suffers from bloat that negatively 
impacts its performance and security. To combat this prob-
lem, several automated techniques have been proposed to 
debloat software. A key metric used in these works to demon-
strate improved security is code reuse gadget count reduction. 
The use of this metric is based on the prevailing idea that re-
ducing the number of gadgets available in a software package 
reduces its attack surface and makes mounting a gadget-
based code reuse exploit such as return-oriented program-
ming (ROP) more difficult for an attacker. 

In this paper, we challenge this idea and show through a va-
riety of realistic debloating scenarios the flaws inherent to the 
gadget count reduction metric. Specifically, we demonstrate 
that software debloating can achieve high gadget count re-
duction rates, yet fail to limit an attacker’s ability to construct 
an exploit. Worse yet, in some scenarios high gadget count 
reduction rates conceal instances in which software debloat-
ing makes security worse by introducing new quality gadgets. 

To address these issues, we propose new metrics based on 
quality rather than quantity for assessing the security impact 
of software debloating. We show that these metrics can be 
efficiently calculated with our Gadget Set Analyzer tool. Fi-
nally, we demonstrate the utility of these metrics through a 
realistic debloating case study.  

1. Introduction 
Software debloating [1-5] is an emerging field of research fo-
cused on improving software security and performance by 
eliminating bloat that occurs as a byproduct of modern soft-
ware engineering practices. While these practices enable the 
rapid development of complex, widely deployable, and fea-
ture-rich software, they produce software packages (pro-
grams, libraries, etc.) with large portions of code that are un-
necessary in most end use contexts. These portions of the 
package constitute software bloat and result in a variety of 
negative performance and security impacts [1, 6, 22]. 

Software bloat affects virtually all software and primarily oc-
curs vertically in the software stack across layers of abstrac-
tion [1]. Programs that depend on common shared code li-
braries such as libc typically only require a small number of 
functions provided by the library, but load the entire library 
into the program’s memory space at runtime.  

Software bloat also occurs laterally within software packages 
suffering from feature creep. Examples include software such 
as cUrl, which can be used to transfer data via 23 different 
protocols, and iTunes, which features a media player, ecom-
merce platform, and hardware device interface within a sin-
gle package. Since end users are unlikely to use every feature 
within these packages, the code associated with unused fea-
tures contributes to software bloat. 

Recently, several software debloating techniques [2-5] have 
been proposed that promise to improve software security by 
removing code bloat at various stages of the software lifecy-
cle. A frequently utilized metric for measuring security im-
provements realized via debloating is the reduction in total 
count of code reuse gadgets available to an attacker, which 
we refer to as gadget count reduction. Several recent debloat-
ing publications [3-5] claim their methods improve security 
citing gadget count reduction data as evidence. 

The relationship between gadget count reduction and im-
proved security is based on the premise that reducing the total 
number of code reuse gadgets available in a software package 
reduces its attack surface. In turn, this decreases the likeli-
hood of an attacker successfully constructing a code reuse ex-
ploit using techniques such as return, jump, or call-oriented 
programming (also known as ROP, JOP, and COP [7, 21, 8, 
9]). At face value, gadget count reduction is an appealing se-
curity improvement metric as it is easily generated using ex-
isting automated static analysis tools [14] and is directly rel-
evant to a class of cyberattacks that have been the focus of 
intense research over the last decade [7-15].  

The premise linking gadget count reduction to improved se-
curity holds only if the gadgets removed by debloating are 
critical to the construction of an exploit, and other gadgets 
with equivalent functionality are not available. For an at-
tacker attempting to construct a code reuse exploit, the total 
number of gadgets available is irrelevant; what truly matters 
is whether or not the gadgets necessary to express their de-
sired exploit and maintain control flow are available. Recent 
research on gadget chaining tools [10, 11] and code reuse at-
tack techniques [12,13] have shown that attackers do not re-
quire a large, diverse, and fully expressive set of gadgets in 
order to craft an exploit. As a result, it is possible that debloat-
ing can achieve high gadget count reduction and indicate an 
improvement in security, yet fail to remove any of the gadg-
ets an attacker needs to express and construct an exploit.  



Even worse, our research indicates that debloating techniques 
that remove code from a package introduce new gadgets at a 
high rate as a side effect. Except in rare cases where the total 
count of gadgets is increased by debloating, this poorly un-
derstood side effect is masked by gadget count reduction 
data. This opens the possibility that debloating “successfully” 
reduces the overall count of gadgets, but introduces new, use-
ful gadgets that may negatively impact security. 

1.1. Contributions 
In section 3 of this paper, we present the results of our study 
of gadget introduction as a side effect of code-removing 
debloaters. We describe the root causes of gadget introduc-
tion, and show that it is occurs at a high rate using two differ-
ent code-removing debloaters. 

In section 4 of this paper, we propose new metrics for meas-
uring the security impact of software debloating. Our pro-
posed metrics, functional gadget set expressivity and special 
purpose gadget availability, assess the utility of the gadgets 
available to the attacker rather than the quantity. We present 
our static analysis tool capable of calculating these metrics, 
Gadget Set Analyzer (GSA) in section 5.  

In section 6, we use GSA to demonstrate the shortcomings of 
gadget count reduction and show the value of our proposed 
metrics in realistic debloating scenarios. In each scenario, 
positive gadget count reduction is achieved; however, GSA 
reveals that a significant number of scenarios are negatively 
impacted by gadget introduction. 

Finally, in section 7 we demonstrate through a case study that 
our proposed metrics can be used to mitigate the negative side 
effects of debloating. In this case study, we identify a sce-
nario in which debloating had negative effects, adjust the 
debloating specification, generate a new variant, and use 
GSA to verify that these negative effects are eliminated. 

2. Background 
2.1. Relevant Terms 
Code Reuse Attacks: Code reuse attacks are a class of attacks 
in which an attacker compromises the control flow of a pro-
gram and redirects execution to an existing executable part of 
the program to cause a malicious effect, bypassing code in-
jection defenses such as Write XOR Execute. In gadget-
based code reuse attack methods such as ROP, JOP, and COP 
[7, 21, 8, 9], the attacker chains together short instruction se-
quences called gadgets present in the program in a specific 
order to construct a malicious payload without injecting code. 

Gadget: A gadget suitable for use in a code reuse attack is a 
short sequence of machine instructions that end in a return, 
indirect jump, or indirect call instruction. Gadgets can be 
chained together using the control flow properties of the ter-
minating instruction to create a malicious payload comprised 
entirely of existing code segments. 

Gadget Types: When constructing a gadget chain, gadgets are 
used for one of two purposes. Functional gadgets are used as 
abstract instructions to express the attacker’s malicious in-
tent. Gadgets that can be used to perform important non-ex-
pressive actions such as invoking system calls or maintaining 
gadget chain control flow are called special purpose gadgets. 

2.2. Related Work 
CHISEL: Lee et al. [3] recently proposed an automatic method 
for debloating unnecessary features from program source 
code called CHISEL. CHISEL takes as input a specification 
script that outputs whether or not a debloated variant satisfies 
the desired program properties. Using an iterative, feedback-
directed program reduction algorithm, CHISEL progressively 
removes segments of the program that are not necessary to 
satisfy the desired properties. 

This work cites gadget count reduction data as evidence of 
security improvement through attack surface reduction, but 
does not provide further analysis of the gadgets present in 
their debloated programs. CHISEL’s source code and bench-
marks have been made publicly available [16, 17]. 

TRIMMER: Sharif et al. [4] recently proposed an automated 
method for debloating unnecessary functionality from soft-
ware named TRIMMER. TRIMMER takes as input a static user 
defined configuration that expresses the deployment context 
for a particular program. Static configuration data is treated 
as a compile time constant and is propagated throughout the 
program. This is followed by custom, aggressive compiler 
optimizations to prune functionality from the program.  

The authors provide gadget count reduction data as evidence 
that TRIMMER reduces the attack surface of a program by re-
moving exploitable gadgets; However, they provide no ex-
planation of what makes a gadget exploitable as opposed to 
non-exploitable. Additionally, their data indicates that syscall 
gadgets were introduced as a result of debloating, yet no ex-
planation or investigation of this occurrence is provided. 
TRIMMER has not yet been made publicly available. 

3. Gadget Introduction via Debloating  
Techniques such as CHISEL and TRIMMER that debloat by al-
tering a software package’s representation (source code, in-
termediate representation, or binary) through code removal 
or progressive optimization can introduce new gadgets into 
the debloated variant. Since we do not have prior knowledge 
of which gadgets are useful to an attacker, gadget introduc-
tion can potentially offset security improvements realized 
through debloating, or even make a debloated package less 
secure. We describe the root causes of gadget introduction in 
the following two sections. 

3.1. Introduction of Intended Gadgets 
Gadgets comprised of compiler generated binary instructions 
are referred to as intended gadgets. Changes to package’s 



representation caused by debloating can cause downstream 
compiler stages to make different optimization and code gen-
eration decisions. This results in changes to compiler gener-
ated instructions, introducing new intended gadgets.  

Consider the control flow graph (CFG) excerpts from lib-
curl shown in Figure 1. The excerpt on the left is from the 
original version of the function curl_version, and the ex-
cerpt on the right shows the results of debloating eight lines 
from the corresponding source code. Removing the source 
code results in fewer binary instructions as expected, how-
ever this shorter sequence of instructions has simpler control 
flow. Specifically, the jmp instruction on line 19 and all but 
one instruction in the basic block following it are removed. 
As a result, all three basic blocks in the original version are 
merged into a single basic block in the debloated version. 
This change in locality increases the range of instructions the 
compiler can reorder to maximize performance (lines 24-27 
in the original version versus lines 1-11 in the debloated ver-
sion). Comparing the number of unique intended ROP gadg-
ets produced by these two sequences, the net result is an in-
crease in the gadget count. Two gadgets, [pop rbx; pop 
rbp; retn;] and [pop rbp; retn;], are present in both 
versions. One gadget is eliminated from the original version 
(lines 24-27), but two gadgets are introduced in the debloated 
version (lines 7-11 and 8-11). 

Figure 1: Control flow graph snippets of curl_version. 
 
  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

In addition to instruction reordering, we have observed a 
number of other compiler operations that can be triggered by 
debloating. Examples include CFG generation, loop optimi-
zations, function inlining, and dead code elimination. 

3.2. Introduction of Unintended Gadgets 
For ISAs with variable length instructions such as x86 and 
x86-64, it is possible to decode instructions from an offset 
other than the original instruction boundary to obtain new, 
potentially valid instruction sequences [7]. Code reuse gadg-
ets found in these sequences are referred to as unintended 
gadgets. When debloating alters compiler generated instruc-
tions, it also introduces new unintended gadgets when the al-
tered code is interpreted at unintended offsets. 

For example, consider the sequence of instructions taken 
from the last basic block of curl_version before debloat-
ing, shown in the top segment of Figure 2. Unintended gadg-
ets can be identified by interpreting the sequence at an offset 
of one byte and three bytes after the first instruction bound-
ary, shown in the bottom two segments of Figure 2. After 
debloating, the instructions in the final basic block (top seg-
ment of Figure 3) have changed significantly. In addition to 
altering the intended gadgets found in this basic block, 
debloating also changes the unintended gadgets found at  

Figure 2: Final basic block of curl_version before debloating, 
interpreted at three different byte offsets. 
 
 
 
 
 
 
 
 

Figure 3: Final basic block of curl_version after debloating, 
interpreted at three different byte offsets. 

 

 

 

 

 
 
 
 
 
 

 

/* Previous Omitted */ 
1: cdqe 
2: sub rbp, rax 
3: add rbx, rax 
4: mov rsi, rbp 
5: mov rdi, rbx 
6: call Curl_http2_ver 
7: mov rsi, rbp 
8: movsxd rdi, eax 
9: lea r9, [rsp+0x6] 
10: lea rdx, [0x69EE2] 
11: sub rsi, rdi 
12: mov r8d, 0x3 
13: add rdi, rbx 
14: mov ecx, 0x2 
15: xor eax, eax 
16: mov [rsp+0x6], 0x0 
17: call curl_msnprintf 
18: mov [0x2841B1], 0x1 
19: jmp 0x2671F 

Before debloating  
curl_version() 

After debloating  
curl_version() 

/* Previous Omitted */ 
1: mov rsi, rbp 
2: movsxd rdi, eax 
3: sub rsi, rdi 
4: add rdi, rbx 
5: call Curl_http2_ver 
6: mov [0x2790F1], 0x1 
7: add rsp, 0x8 
8: lea rax,[0x279100] 
9: pop rbx 
10: pop rbp 
11: retn 

20: mov rdx, [rsp+0x8] 
21: xor rdx, [0x28] 
22: lea rax, [0x2814C0] 
23: jnz 

24: add rsp, 0x18 
25: pop rbx 
26: pop rbp 
27: retn 

48 83 c4 18: add rsp,0x18 
5b:          pop rbx 
5d:          pop rbp 
c3:          ret 
 
83 c4 18:    add esp,0x18 
5b:          pop rbx 
5d:          pop rbp 
c3:          ret 
 
18 5b 5d:    sbb BYTE PTR[rbx+0x5d],bl 
c3:          ret 

c6 05 0f 4d  
24 00 01:        mov BYTE PTR[rip+0x244d0f],0x1                     
48 83 c4 08:     add rsp,0x8 
48 8d 05 13  
4d 24 00:        lea rax,[rip+0x244d13] 
5b:              pop rbx 
5d:              pop rbp 
c3:              ret 
 
08 48 8d :       or BYTE PTR [rax-0x73],cl 
05 13 4d 24 00:  add eax,0x244d13 
5b:              pop rbx 
5d:              pop rbp 
c3:              ret 
 
13 4d 24:        adc ecx,DWORD PTR [rbp+0x24] 
00 5b 5d:        add BYTE PTR[rbx+0x5d],bl 
c3:              ret 



Table 1: Number and percentage of gadgets introduced by type in debloated software packages. 

 
  

Introduced Functional Gadgets Introduced Special Purpose (S.P.) Gadgets 
 Debloated 

Variant 
Gadget Count  

Reduction 
All  

Gadgets 
ROP  

Gadgets  
JOP  

Gadgets  
COP  

Gadgets 
System Call 

Gadgets 
JOP Specific 
S.P. Gadgets 

COP Specific 
S.P. Gadgets 

C
A

R
V

E
 

libmodbus (C) 89 (14%) 222 (39%) 149 (33%) 73 (60%) 33 (66%) N/A 2 (67%) N/A 
libmodbus (M) 108 (16%) 221 (40%) 163 (37%) 58 (55%) 35 (67%) N/A 0 (0%) N/A 
libmodbus (A) 143 (22%) 252 (49%) 156 (41%) 96 (73%) 44 (73%) N/A 0 (0%) N/A 
Bftpd (C) 40 ( 5%) 249 (35%) 202 (32%) 47 (61%) 20 (80%) N/A 0 (0%) N/A 
Bftpd (M) 124 (16%) 260 (41%) 197 (36%) 63 (74%) 44 (90%) N/A 0 (0%) N/A 
Bftpd (A) 220 (29%) 196 (37%) 167 (34%) 29 (62%) 14 (78%) N/A 0 (0%) N/A 
libcurl (C) 214 (2%) 4727 (51%) 1858 (45%) 2864 (56%) 2165 (52%) 5 (100%) 17 (30%) 305 (99%) 
libcurl (M) 1470 (15%) 4178 (52%) 1631 (44%) 2547 (58%) 2003 (56%) 0 (0%) 10 (23%) 287 (99%) 
libcurl (A) 3766 (40%) 3334 (58%) 1422 (49%) 1911 (68%) 1664 (69%) 4 (100%) 5 (26%) 171 (99%) 
Mongoose (C) 18 (2%) 412 (33%) 307 (29%) 105 (66%) 55 (78%) N/A 0 (0%) N/A 
Mongoose (M) 52 (4%) 396 (33%) 277 (27%) 119 (60%) 63 (80%) N/A 0 (0%) 1 (100%) 
Mongoose (A) 99 (8%) 405 (35%) 258 (27%) 147 (67%) 63 (80%) N/A 0 (0%) N/A 

C
H

IS
E

L
 

bzip2 442 (65%) 152 (64%) 99 (59%) 53 (76%) 45 (75%) N/A 1 (100%) N/A 
chown 327 (65%) 94 (54%) 68 (47%) 26 (84%) 14 (87.5%) N/A 1 (100%) N/A 
date 260 (55%) 119 (56%) 89 (51%) 30 (77%) 23 (85%) N/A 1 (100%) N/A 
grep 378 (36%) 479 (72%) 380 (69%) 99 (87%) 79 (93%) N/A 1 (100%) N/A 
gzip 195 (46%) 156 (68%) 127 (65%) 29 (83%) 25 (86%) N/A 1 (100%) N/A 
mkdir 101 (48%) 47 (42%) 35 (38%) 12 (67%) 5 (83%) N/A 1 (100%) N/A 
rm 384 (72%) 77 (52%) 47 (41%) 30 (91%) 15 (88%) N/A 1 (100%) N/A 
tar 1355 (84%) 144 (57%) 75 (44%) 69 (86%) 52 (88%) N/A 2 (100%) N/A 
uniq 176 (59%) 53 (43%) 33 (34%) 20 (77%) 5 (71%) N/A 1 (100%) N/A 

various offsets from the original instruction boundary (bot-
tom two segments of Figure 3). These unintended gadgets 
differ significantly from those found in the original sequence. 
The net result of this operation is the elimination of the unin-
tended gadgets in the original sequence and the introduction 
of the unintended gadgets in the resulting sequence. 

3.3. Prevalence of Gadget Introduction 
To determine the degree to which software debloating intro-
duces new gadgets, we debloated a variety of common soft-
ware packages at varying levels of aggressiveness with two 
different code-removing debloaters. We analyzed each pack-
age and its variants using ROPgadget [14] to catalog its gadg-
ets by type, and then performed a set-wise comparison to 
identify gadgets present in the debloated variants that were 
not present in the original package. 

For this analysis we used our debloater, CARVE [20], and 
CHISEL (the only publicly available debloating tool). CARVE 
operates in a comparable fashion to other feature-based ap-
proaches such as CHISEL and TRIMMER, in that it removes 
code associated with features before generating the package 
binary. CARVE is implemented as a preprocessor pass on 
package source code that has been enriched with user-embed-
ded feature mappings that associate segments of code with 
debloatable features. CARVE takes as input a user-specified 
list of features to debloat and scans the enriched source code 
for corresponding feature mappings. When found, CARVE 
performs syntax-aware analysis on the mapped code and in-
telligently removes it in a sound manner. The debloated 
source code is then compiled to produce a debloated binary 
using the same build process as the original version. 

We debloated four software packages with CARVE: libmod-
bus v3.1.4, Bftpd v4.9, libcurl v7.61, and mongoose 
v.6.8. Each package was debloated at three levels of aggres-
siveness, defined below: 
• Conservative (C): Some peripheral features in the pack-

age are removed. 
• Moderate (M): Some peripheral features and some core 

features are removed from the package. 
• Aggressive (A): All debloatable features except for a 

small set of core features are removed from the package. 

We used CHISEL to debloat nine software packages from the 
author provided benchmark set [17]: bzip2 v1.05, chown 
v8.2, date v8.21, grep v2.19, gzip v1.2.4, mkdir v5.2.1, 
rm v8.4, tar v1.14, and uniq v8.16. We used the author 
provided specifications (roughly equivalent to our definition 
of aggressive debloating) to create debloated variants. 

Table 1 contains the results of our gadget count reduction and 
gadget introduction analysis. As shown in first column, 
debloating successfully reduced the total count of gadgets in 
all scenarios, and in most cases the total count is reduced by 
a large degree (>15%). 

The introduction of new gadgets via debloating is neither a 
rare nor limited occurrence. In all scenarios, a significant por-
tion of the functional gadgets remaining after debloating were 
introduced gadgets (35% was the smallest observed rate). In 
12 of 21 scenarios, introduced gadgets accounted for the ma-
jority of remaining gadgets. Further, gadget introduction oc-
curs at a significant rate across all gadget subcategories 
(ROP, JOP, COP), aggressiveness levels, and benchmarks.  



Significant levels of gadget introduction were also observed 
for special purpose gadgets (a value of N/A indicates that no 
gadgets of this type were present in the variant). In 14 of the 
21 scenarios, debloating resulted in the introduction of new 
special purpose gadgets. As was the case with functional 
gadgets, special purpose gadget introduction is not strongly 
correlated to debloating aggressiveness, gadget subcategory, 
or benchmark type. 

The prevalence of gadget introduction has serious implica-
tions for the use of gadget count reduction as a security met-
ric. Our data strongly indicates that the gadgets present in a 
debloated variant will not be a proper subset of the gadgets in 
the original package, rendering metrics that capture only the 
change in size of a set insufficient and superficial. 
4. Gadget Utility Metrics 
In this section, we propose two new metrics for assessing the 
security impact of software debloating. Our metrics are de-
signed to measure the degree to which debloating adversely 
affects the construction of gadget-based code reuse exploits 
by assessing the utility of the gadgets present after debloating 
as opposed to the quantity. Since functional gadgets and spe-
cial purpose gadgets are utilized in different manners, we pro-
pose a metric suited for each gadget type. 

4.1. Functional Gadget Set Expressivity 
Functional gadgets are used as abstract instructions that per-
form basic computational operations such as addition, regis-
ter loading, and logical branching to construct a malicious 
payload. The expressivity of a set of gadgets is a measure of 
the computational power the set of gadgets permit. 

The expressivity of a set of gadgets is typically measured 
against the bar of Turing-completeness. A set of gadgets is 
considered Turing-complete if it is sufficient to express any 
arbitrary program, i.e. it is computationally universal. While 
this level of expressivity is not difficult to achieve in practice 
[7-9, 12], it is not the minimum level of expressivity neces-
sary to construct a practical ROP exploit. Exploits that mark 
a region of memory as writable, inject malicious code, and 
redirect execution to this injected code do not require Turing-
complete levels of expressivity [13].  

For a gadget set to achieve a certain level of expressivity, it 
must contain at least one gadget supporting each necessary 
computational class. Thus, a straightforward measure of the 
expressivity of a gadget set is the number of computational 
classes satisfied by the gadget set. For example, a gadget set 
that can be used for addition, register loading, and conditional 
branching is considered more expressive than one that sup-
ports only addition and register loading. 

If debloating removes all gadgets that perform a certain com-
putation, the number of satisfied classes decreases. As a re-
sult, an attacker may not be able to express their desired 

exploit. If debloating introduces gadgets that perform previ-
ously unavailable computations, the number of satisfied clas-
ses increases, indicating a negative security impact. 

4.2. Special Purpose Gadget Availability 
Special purpose gadgets are used to perform important non-
expressive actions in an exploit gadget chain. These gadgets 
must meet specific criteria, and are typically encountered in-
frequently. Without special purpose gadgets, some exploits 
are not possible. For example, JOP/COP exploits do not use 
the stack, and instead rely on special purpose gadgets such as 
dispatchers and trampolines to maintain control flow from 
one gadget to the next. Also, exploits that must invoke system 
calls require special purpose gadgets.  

Given their importance, the availability of special purpose 
gadgets is a useful metric for determining if debloating has 
reduced the types of exploits an attacker can construct. The 
availability of special purpose gadgets can be measured by 
maintaining counts of each type of special purpose gadget. If 
a debloating operation removes all of the special purpose 
gadgets of a particular type, then the attacker may not be able 
to construct their desired exploit. This metric is also capable 
of detecting the negative side effects of gadget introduction. 
If debloating introduces new special purpose gadgets of a par-
ticular type, this increase in availability is observable. 

4.3. Discussion of Metrics 
We do not claim that these metrics are comprehensive. We 
encourage further discussion that will lead to the exploration 
of additional useful security-oriented metrics for debloating. 
Other measures of functional gadget quality have been ex-
plored by Follner et al. [18] such as gadget length and 
memory side effects, which are potentially applicable to the 
problem of measuring the security impact of debloating. 

5. Gadget Set Analyzer (GSA) 
To assess the practicality of our metrics, we created a static 
binary analysis tool capable of analyzing a software package 
and its debloated variants to capture changes in functional 
gadget expressivity and special purpose gadget availability.  

5.1. Operation 
GSA operates in a rather straightforward manner and makes 
use of existing tools where possible. GSA takes as input the 
original package binary and one or more debloated variant 
binaries. First, GSA uses ROPgadget [14] to search each bi-
nary for unique ROP, JOP and Syscall gadgets. GSA then 
performs secondary search of these results to identify unique 
COP gadgets and JOP/COP specific special purpose gadgets. 

Next, GSA utilizes a tool first proposed and implemented by 
Homescu et al. [12] for classifying short ROP gadgets (called 
microgadgets) into computational classes. This microgadget 
scanner then determines the expressive power of the gadget 
set relative to different levels of expressivity by analyzing the 



number of computational classes satisfied. GSA uses this 
scanner to analyze the gadget set with respect to three levels 
of expressivity originally proposed in [12]: simple Turing-
completeness, expressivity required for practical ROP ex-
ploits, and expressivity required for practical, ASLR-proof 
ROP exploits. Each level requires a different number of com-
putational classes be satisfied by at least one gadget: 17 for 
simple Turing-completeness, 11 for practical ROP exploits, 
and 35 for ASLR-proof, practical ROP exploits. 

After collecting gadget set and expressivity data using these 
tools, GSA compares the data for each debloated variant 
against the data collected on the original binary to calculate 
functional gadget set expressivity, special purpose gadget 
availability, and gadget count reduction metrics.  

GSA also provides a means for the user to address gadgets 
introduced by debloating. Using the binary analysis library 
angr [19], GSA attempts to identify the names of functions 
containing introduced gadgets. This information can be used 
to identify the source of an undesirable debloating operation, 
potentially allowing the user alter their debloating specifica-
tion to generate a new variant that does not introduce the 
gadget. GSA provides this as a “best effort” feature, and can-
not guarantee that a function name can be retrieved. This is 
due to several factors including imprecision associated with 
generating a CFG in angr and the mechanism by which the 
gadget was introduced. 

5.2. Limitations 
GSA has the same limitations as the gadget expressivity scan-
ner it incorporates. Specifically, the microgadget scanner 
used by GSA generates functional gadget expressivity data 
based solely on an analysis of short gadgets in the set. As a 
result, a gadget set may be more expressive than reported by 
GSA if longer gadgets excluded from analysis can satisfy ad-
ditional computational classes. Also, the microgadget scan-
ner only calculates the expressivity of ROP gadget sets, and 
does not calculate expressivity for JOP or COP gadget sets. 

Additionally, dynamically linked external libraries are not 
scanned by GSA. At runtime, these libraries are loaded into 
memory and their code is mapped to the package’s address 
space. Gadgets present in these libraries contribute to overall 
expressivity and special purpose gadget availability, and 
should be considered for a holistic view. 

5.3. Performance 
GSA and its dependencies perform binary analysis exclu-
sively with static techniques. As such, the time required to 
run GSA increases with the size of the binary. GSA is perfor-
mant, typically requiring less than 30 seconds to analyze a 
binary and three variants on a typical laptop. The maximum 
time required to execute GSA we observed was 2 minutes and 
33 seconds, which occurred when analyzing libcurl and its 
three debloated variants.  

6. Results 
In this section, we present the results generated by GSA 
across our debloating scenarios. Our results demonstrate both 
the utility of our proposed metrics and the shortcomings of 
gadget count reduction.  

6.1. Functional Gadget Set Expressivity 
Table 2 contains functional gadget set expressivity data col-
lected by GSA. Debloating was generally successful in re-
ducing expressivity when used aggressively on simple soft-
ware packages (CHISEL benchmarks). However, this was not 
the case in the larger, more complex packages and less ag-
gressive debloating scenarios (CARVE benchmarks). 

In two scenarios, debloating reduced the gadget count but did 
not decrease gadget set expressivity (italicized text). In these 
cases, gadget count reduction indicates a positive security im-
pact, but the actual impact on security is neutral. Of greater 
concern are the four scenarios in which debloating increased 
in gadget set expressivity (bold text) by introducing new 
gadgets that satisfied previously unsatisfied computational 
classes. In all four scenarios, using gadget count reduction as 
a security metric indicates positive results, but fails to iden-
tify this negative security impact. 

Table 2: Computational Classes Satisfied (and Reduction) by Gadget Set for Three Functional Expressivity Levels. 
CARVE CHISEL 

Package 
Variant 

Practical ROP 
Exploit Classes 

ASLR-Proof 
ROP Classes 

Simple Turing 
Complete Classes 

Package 
Variant 

Practical ROP 
Exploit Classes 

ASLR-Proof 
ROP Classes 

Simple Turing 
Complete Classes 

libmodbus (C) 6 of 11 (0) 10 of 35 (3) 6 of 17 (1) bzip2 3 of 11 (2) 5 of 35 (2) 1 of 17 (2) 
libmodbus (M) 6 of 11 (0) 13 of 35 (0) 7 of 17 (0) chown 3 of 11 (0) 5 of 35 (4) 2 of 17 (2) 
libmodbus (A) 6 of 11 (0) 13 of 35 (0) 7 of 17 (0) date 3 of 11 (2) 5 of 35 (4) 2 of 17 (2) 
Bftpd (C) 7 of 11 (-1) 12 of 35 (3) 6 of 17 (1) grep 3 of 11 (2) 6 of 35 (5) 2 of 17 (5) 
Bftpd (M) 7 of 11 (-1) 17 of 35 (-2) 6 of 17 (1) gzip 3 of 11 (2) 5 of 35 (1) 1 of 17 (2) 
Bftpd (A) 6 of 11 (0) 11 of 35 (4) 5 of 17 (2) mkdir 3 of 11 (0) 6 of 35 (0) 1 of 17 (1) 
libcurl (C) 9 of 11 (0) 26 of 35 (-1) 11 of 17 (-1) rm 3 of 11 (0) 5 of 35 (4) 2 of 17 (2) 
libcurl (M) 9 of 11 (0) 24 of 35 (1) 10 of 17 (0) tar 3 of 11 (2) 5 of 35 (4) 1 of 17 (4) 
libcurl (A) 10 of 11 (-1) 24 of 35 (1) 10 of 17 (0) uniq 3 of 11 (0) 5 of 35 (4) 1 of 17 (3) 
Mongoose (C) 7 of 11 (0) 10 of 35 (6) 8 of 17 (0)     
Mongoose (M) 7 of 11 (0) 10 of 35 (6) 8 of 17 (0)     
Mongoose (A) 7 of 11 (0) 10 of 35 (6) 8 of 17 (0)     



Table 3: Special Purpose Gadget Counts (and Reduction) by Gadget Set (excludes types not observed in any variant). 
 Package 

Variant 
Syscall 
Gadget 

JOP Dispatcher 
Gadgets 

JOP Data  
Loader Gadgets 

JOP Trampoline 
Gadgets 

COP Dispatcher 
Gadgets 

COP Intra Stack 
Pivot Gadgets 

C
A

R
V

E
 

libmodbus (C) 0 (0) 0 (0) 3 (-2) 0 (0) 0 (0) 0 (0) 
libmodbus (M) 0 (0) 0 (0) 1 (0) 0 (0) 0 (0) 0 (0) 
libmodbus (A) 0 (0) 0 (0) 1 (0) 0 (0) 0 (0) 0 (0) 
Bftpd (C) 0 (0) 0 (0) 9 (1) 0 (0) 0 (0) 0 (0) 
Bftpd (M) 0 (0) 0 (0) 1 (9) 0 (0) 0 (0) 0 (0) 
Bftpd (A) 0 (0) 0 (0) 1 (9) 0 (0) 0 (0) 0 (0) 
libcurl (C) 5 (-1) 7 (1) 50 (1) 0 (1) 304 (15) 4 (0) 
libcurl (M) 0 (4) 4 (4) 41 (10) 0 (1) 287 (32) 3 (1) 
libcurl (A) 4 (0) 3 (5) 14 (37) 1 (0) 170 (149) 2 (2) 
Mongoose (C) 0 (0) 1 (-1) 6 (0) 0 (0) 0 (0) 0 (0) 
Mongoose (M) 0 (0) 0 (0) 6 (0) 0 (0) 0 (0) 0 (0) 
Mongoose (A) 0 (0) 0 (0) 6 (0) 0 (0) 0 (0) 0 (0) 

C
H

IS
E

L
 

bzip2 0 (0) 0 (0) 1 (0) 0 (0) 0 (0) 0 (0) 
chown 0 (4) 0 (0) 1 (0) 0 (0) 0 (0) 0 (0) 
date 0 (4) 0 (0) 1 (0) 0 (0) 0 (0) 0 (0) 
grep 0 (4) 0 (0) 1 (3) 0 (0) 0 (0) 0 (0) 
gzip 0 (0) 0 (0) 1 (0) 0 (0) 0 (0) 0 (0) 
mkdir 0 (0) 0 (0) 1 (0) 0 (0) 0 (0) 0 (0) 
rm 0 (4) 0 (0) 1 (0) 0 (0) 0 (0) 0 (0) 
tar 0 (2) 0 (0) 2 (-1) 0 (0) 0 (0) 0 (0) 
uniq 0 (4) 0 (0) 1 (0) 0 (0) 0 (0) 0 (0) 

6.2. Special Purpose Gadget Availability 
Table 3 contains special purpose gadget availability data col-
lected by GSA. The results measured according to this metric 
were similarly mixed. A conclusively positive result (com-
plete elimination of all special purpose gadgets of some type) 
was observed in only 8 of 21 debloating scenarios. In eight 
other scenarios, debloating did not reduce the availability of 
special purpose gadgets (italicized text). In four scenarios, 
gadget introduction caused an increase in the count of special 
purpose gadgets (bold text). In one instance, debloating intro-
duced a special purpose gadget of a type that was not availa-
ble in the original package, a conclusively negative result. As 
was the case with functional gadget set expressivity, measur-
ing special purpose gadget availability captured mixed and 
negative debloating results that were not observable using 
only gadget count reduction data. 

7. Case Study 
We demonstrate that our metrics are actionable through a 
case study of the debloating scenario libcurl (C), which re-
sulted in a number of negative side effects: 
• Increased the gadget set expressivity with respect to 

ASLR-Proof practical ROP exploits 
• Increased the gadget set expressivity with respect to sim-

ple Turing-completeness 
• Increased the number of system call gadgets  

In order to mitigate these effects, we attempted to find a less 
aggressive debloating configuration that does not suffer these 
negative side effects. In this scenario, GSA was not able to 
identify the containing function for the newly introduced 
gadgets. In the absence of this information, we used alternate 
heuristics to decide what adjustments to make to mitigate the 

negative effects. We observed the effects debloating different 
sets of features had on other variants of libcurl; These neg-
ative effects were not observed in both the aggressive and 
moderate debloating scenarios. By analyzing the feature sets 
selected for each variant, we determined that a second de-
bloating attempt for libcurl (C) was likely to yield better 
results if we did not debloat support for two protocol families 
(SCP and RTSP). 

We made this modification to the debloating specification, 
re-ran CARVE, built the new variant, and analyzed the new 
variant with GSA. The results were largely an improvement, 
as expected:  
• Reduced gadget set expressivity with respect to ASLR-

proof practical ROP exploits 
• No change in gadget set expressivity with respect to sim-

ple Turing-completeness 
• Decreased the number of system call gadgets 

However, changing the debloating configuration did result in 
one negative impact. In the new variant, we observed an in-
crease in the number of COP intra stack pivot gadgets by one 
gadget. While this is not an ideal result, we determined that it 
did not offset the improvements realized in this second round 
of debloating. We manually analyzed the newly introduced 
gadget and determined that it was functionally identical to 
another such gadget included in both the original package and 
our newly created variant; therefore, the newly introduced 
gadget did not increase the overall gadget set utility. 

7.1. Discussion 
This case study highlights two important consequences of the 
unpredictable nature of gadget introduction worthy of further 
discussion. First, it may not be possible to debloat packages 



with code-removing debloaters without incurring some neg-
ative impacts. Good security-oriented metrics should high-
light these impacts and support the user in making informed 
tradeoffs when debloating, including choosing not to debloat.  

Second, debloating does not have a linear relationship with 
security improvement. Techniques that debloat a larger por-
tion of a package are not necessarily more effective at im-
proving security than those that debloat less. Research into 
code-removing debloating techniques and tools should con-
sider the problem of debloating in manner that minimizes or 
mitigates the negative side effects of gadget introduction. 

8. Future Work 
We have identified several areas worthy of future explora-
tion. First, our proposed metrics are intended to generate dis-
cussion and research into other viable security-oriented met-
rics for software debloating, such as functional gadget quality 
and gadget locality. Additionally, there is a need for new 
analysis tools that calculate gadget set expressivity data. Im-
mediate needs raised by this work include gadget set expres-
sivity analysis for JOP and COP gadgets, as well as expres-
sivity analysis for arbitrary length gadgets.  

9. Conclusion 
We presented examples across a variety of debloating scenar-
ios demonstrating the flaws inherent to the gadget count re-
duction metric. Despite achieving sizeable gadget count re-
ductions, our scenarios revealed that debloating can introduce 
new gadgets, including gadgets of high value like special pur-
pose gadgets. We proposed two new security-oriented met-
rics, functional gadget set expressivity and special purpose 
gadget availability to replace the gadget count reduction met-
ric. We demonstrated that these metrics overcome the limita-
tions of gadget count reduction by identifying when the side 
effects of debloating negatively impact security. Finally, we 
showed the practicality and of these metrics by introducing 
our tool for calculating these metrics, GSA, and using it in a 
realistic case study. 
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