
Bridging Missing Gaps in Evaluating DDoS Research

Lumin Shi, Samuel Mergendahl, Devkishen Sisodia, Jun Li
{luminshi,smergend,dsisodia,lijun}@cs.uoregon.edu

University of Oregon

Abstract
While distributed denial-of-service (DDoS) attacks become

stealthier and more disruptive, real-world network operators
often ignore academic DDoS defense research and instead
rely on basic defense techniques that cannot adequately de-
fend them. In fact, prior to the deployment of a DDoS defense
solution, a network operator must understand its impact specif-
ically on their network. However, without a sound empirical
analysis of the solution, which is often the case even for the
most cited academic work, the network operator may fear
its poor defense efficacy or its adverse effects on legitimate
traffic. In this work, we elaborate on the critical missing gaps
in DDoS defense evaluation and propose a new evaluation
platform to help produce the missing defense analytics. To
identify the impact of a defense solution in realistic network
settings, our platform offers to emulate a mini Internet topol-
ogy with realistic IP address space allocation and generate
representational, closed-loop background traffic specific to
particular networks. As such, our platform fulfills the promi-
nent missing gaps in current DDoS research. In the end, we
conduct some experiments to demonstrate the correctness and
efficiency of our platform.

1 Introduction

Advanced distributed denial-of-service (DDoS) attacks, such
as the CrossFire attack [14] and CICADAS [15], seriously
challenge the efficacy of the rudimentary DDoS defense strate-
gies typically deployed by network operators. In particular,
the most commonly deployed DDoS defense systems consist
of two main components: a simple threshold-based DDoS
detection/classification system, such as FastNetMon [9], and
a coarsely grained mitigation solution such as Remotely Trig-
gered Black Hole (RTBH) [18]. Unfortunately, these simple
defense strategies struggle against the aforementioned, ad-
vanced DDoS attacks. A threshold-based detection solution
rarely finds an appropriate balance between false positive
and false negative rates, and a coarsely grained mitigation
solution, by definition, filters legitimate traffic.

Despite over two decades of research to improve DDoS
defense, network operators continue to choose these basic
DDoS defense strategies regardless of their limitations. To
draw insights into this discrepancy, Kokulu et al. recently
surveyed security operation centers and found that network
operators must obtain a thorough quantitative analysis of
any security solution prior to deployment [17]. Without a
comprehensive performance test of a potential security sys-
tem in an environment similar to the network in which the
system will deploy, the network operator cannot justify the
risk associated with the adoption of new research defense
systems. Clearly, to increase real-world DDoS defense de-
ployment, the research community should conduct rigorous
defense evaluation of DDoS defense solutions. However, by
surveying well-received DDoS defense papers, we found that
even highly-cited solutions frequently fail to evaluate their
approach under realistic deployment scenarios. We highlight
a few prominent missing gaps in evaluating DDoS defense
solutions below.

Lack of insights into advanced attacks in action. While
researchers continue to discover advanced DDoS attacks [14,
15, 31, 32], researchers rarely have the opportunity to study
these attacks in action. To better defend against real-world
attacks that leverage advanced attack mechanisms [6, 10],
researchers should be able to run and study these attacks in a
high-fidelity network environment. Preparing such a network
environment is not a trivial task. For example, to correctly
study pulsing attacks, such as CICADAS [15], that exploit
TCP congestion control, the network must provide a traffic
generator [30] to provide realistic background traffic that
honors network condition changes (e.g., congestion control).

Lack of closed-loop networks for DDoS detection. As
the most valuable outcome of a DDoS detection solution is to
facilitate DDoS mitigation, we must evaluate the collabora-
tion of different detection and mitigation solutions. In other
words, rather than evaluate DDoS detection and mitigation
separately, we need to keep all DDoS defense components
in the loop to evaluate each component individually and the
entire defense as a whole, thus a closed-loop evaluation. For



example, a detection solution must work with abrupt network
changes caused by the mitigation effort. Indeed, Vishwanath
et al. [36] found many network systems, including DDoS de-
tection solutions, can present biased conclusions if evaluated
under non-closed-loop networks.

Lack of collateral damage analysis in filter-based miti-
gation. Despite the network community is slowly adopting
fine-grained mitigation solutions for disseminating filtering
rules (e.g., BGP Flowspec [24]), the limited hardware filter
space [7, 12] is insufficient in mitigating DDoS attacks that
do not contain common packet signatures [13, 32]. Network
operators often use limited filters to mitigate attacks but at the
cost of disabling access to non-attacking networks. Soldo et
al. [34] proposed a set of filter generation methods to study
the trade-off between limited filters and collateral damage.
However, the performance of such these methods is highly
dependent on the IP address locality. Therefore, we must
provide an emulation environment with realistic IP addresses,
only then can we evaluate such DDoS mitigation solutions
with confidence.

To facilitate sound empirical evaluation of DDoS defense
solutions, we propose, design, and develop an emulation
platform for evaluating DDoS defense solutions with high
fidelity. Referred to as the DDoS SandBox (or simply, the
SandBox), it has the following capabilities:

1. Generation of inferred Internet topologies at the level of
autonomous systems (ASes);

2. Assignment of realistic IP address spaces to ASes;
3. Routing and packet forwarding functions of each AS;
4. Packet-level mimicry of real network traffic that honors

network condition changes (e.g., congestion); and
5. A simple usage model with high experiment portability.

2 Related Work: Emulation Systems
Dummynet [5] and Modelnet [35] are two early network em-
ulation systems that support unmodified applications. They
have fixed components that render the discussed missing gaps
above difficult to close. For example, Modelnet employs
Click [16], a software router, to configure and route traffic in
the emulation network. This fixed design choice imposes bur-
dens in deploying different routing implementations, which
makes BGP-related DDoS defense techniques [1, 26, 28] dif-
ficult to evaluate. Later emulation platforms, such as de-
scribed in [2,3,19,27,37], unanimously adopted Linux names-
paces [22] to provide each process its own abstracted and iso-
lated system resources with a single system kernel. For exam-
ple, one type of Linux namespace, the Linux network names-
pace [21], can assign a unique network stack to each pro-
cess, which allows the process to have its own routing table.
Thus, network emulation tools can easily spawn “hosts” by
assigning processes different network namespaces. Notably,
mininet [19], a popular network emulation tool, also relies on
Linux namespaces. Mininet then utilizes cgroup [20] to parti-

tion system resources to each process (e.g., set a maximum
CPU utilization for a host – a process in its own namespaces).
A more recent work, Containernet [27], extends mininet to
support Docker. It encourages users to create self-containing
software images to mitigate deployment issues.

A namespace-based emulation system offers low overhead
when compared to virtual machines (VM) and many VM-
based testbeds; the former emulates everything with a single
operating system (OS) kernel while the latter emulates OS
kernels but could incur additional interface translation and
storage overheads. Our SandBox leverages Containernet to
realize its capabilities. Specifically, the Docker support in
Containernet allows us to create self-contained software im-
ages quickly, and its underlying mininet programming inter-
faces enable us to program the links between emulation nodes.
These features create a solid foundation for us to close the
missing gaps in a foreseeable amount of time.

3 DDoS SandBox
3.1 Design Considerations
Using DDoS SandBox. The DDoS SandBox facilitates net-
work operators to evaluate a defense solution in an emulation
environment that mimics a real network. Meanwhile, DDoS
researchers can also utilize the SandBox to gain insights into
different DDoS attacks and defense solutions. Emulating
a distributed system with a wide range of applications is a
challenging task. Experimenters often run into issues such as
fixing software dependencies or configuring network routers
manually in an experiment. Thus, in the SandBox, we reduce
the deployment friction by automating as many components
as possible. In the meantime, the system remains fully cus-
tomizable. For example, users can drop into a shell terminal
of an arbitrary router node, and add or remove its network
interfaces as they wish.

A mini Internet. Both advanced attacks and defense re-
search projects require the emulation system to provide sup-
port for basic network functions (e.g., correct router ICMP
behavior for traceroute). Ideally, the system should provide
a mini Internet that is functionally equivalent to the real In-
ternet. Only then can we study the latest DDoS attacks and
evaluate defense solutions in a closed-loop environment. This
includes but is not limited to 1) realistic AS-level IP space
assignments based on the real-world BGP announcements,
2) BGP routing, and 3) closed-loop background traffic that
reacts to the network conditions in real-time.

Elastic emulation fidelity. Today, anyone can have easy
access to bare-metal servers with 100-core processors and
100s GBytes of memory from major cloud providers [33].
The modern hardware can easily emulate a small to medium
network at high fidelity. However, emulation fidelity is not
only about scalability. An experiment may require specific
hardware for emulation (e.g., using a programmable switch
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Figure 1: DDoS SandBox Architecture

for DDoS detection in the data plane). The emulation system
must also consider supporting additional physical hardware,
and as such, we can both offload the emulation load and
increase the overall emulation fidelity.

3.2 System Components
We introduce the system inputs and main SandBox compo-
nents at a high level, as shown in Fig. 1. The blue colored
boxes are open source software or dataset that anyone can
acquire, the yellow colored boxes are information private to
our users, and the green colored boxes are the main SandBox
components.

Input. The SandBox creates a functional mini Internet
with the following inputs: BGP table dumps from Route-
Views [25], CAIDA AS relationships [4], and traffic traces
(e.g., sFlow or a pcap trace, of a network). Typically, a user
will input a benign traffic trace to generate the AS-level topol-
ogy and background traffic in which the user can later inject
attack traffic using the DDoS repository of attacks (which we
describe further in the Node Images paragraph). However,
the user can also leverage attack traces to study a specific
instance of an attack. We reduce the input effort from users
by automating data processing tasks for the public datasets.
Additionally, users can feed network and experiment spec-
ifications to increase the emulation fidelity. For example,
network operators can specify their intra-AS topologies and
their upstream AS’s partial intra-AS topologies to evaluate a
defense solution of choice.

Topology Generator. The primary objective of Topology
Generator is to create the blueprint of a mini Internet. Specifi-
cally, it leverages the user input data to: 1) create an inferred
AS-level network that mimics a section of the Internet with
regard to the input trace file, and assign realistic IP prefixes
to each AS, 2) automate the network configuration for each
network device (e.g., populate router and BGP configuration
files that include information such as BGP prefix ownership
and neighbors), and 3) attach nodes (e.g., traffic generators,

DDoS bots, DDoS defense modules) to their belonging ASes.
Of course, if the user provides detailed intra-AS topology
information, the SandBox will reflect such information in the
blueprint. Otherwise, we only create one router to represent
an AS. While users are welcome to implement their own
routers in the SandBox, we believe many users may not have
strong preferences of the router implementation, as long as it
is a realistic component. Thus, we provide a reference router
that is based on Quagga routing suite [11].

Node Images. In the SandBox, we define any computa-
tional device, virtual or physical, as a node, and we package
the software environment of the nodes as node images to
improve the experiment portability. For example, if we instan-
tiate a node using our reference router image, the node can
1) read/announce BGP prefix ownership populated by Topol-
ogy Generator and 2) configure its forwarding table based on
BGP announcements from its neighbors. Users can create
a variety of node images containing any applications. For
example, we can create an end host image with the ability to
generate background network traffic by including a traffic gen-
erator. Similarly, to study different DDoS defense solutions,
we plan to create a DDoS repository containing images of
well-received attack strategies and defense solutions, thereby
reducing the need for users to obtain attack traffic traces. We
can then evaluate defense solutions under different attacks in
realistic network environment.

Traffic Mimicker. Traffic Mimicker utilizes input traffic
traces of a real-world network to create closed-loop back-
ground traffic in the SandBox. It generates fine-grained flow
snapshots of ongoing flows based on the input traffic trace.
For example, every second Traffic Mimicker may generate
a snapshot of each 5-tuple network flow in the trace. Then,
the flow distributor distributes a series of flow snapshots of
each flow to the responsible end hosts with matched IPs. The
example below shows a Comcast residential IP 23.24.100.123
communicating with Amazon.com at IP 205.251.242.103 (the
snapshots were taken every second).

Example Output of Traffic Mimiker
[’23.24.100.123’, 2333, ’205.251.242.103’, 443,
’TCP’, 1, [50, 10, ...], [500, 1000, ...]]

We also see that the residential IP sends 50 KB of data to Ama-
zon in the first second, then 10 KB of data in the next second.
In return, Amazon.com sends 500 KB and then 1 MB of data
back in two seconds. Finally, each traffic mimicry agent cre-
ates corresponding network sockets and communicates with
the destination specified in each flow snapshot.

3.3 Proof of Concept (PoC) Implementation
We choose Containernet as the PoC driver to implement the
blueprint produced by Topology Generator. Specifically, we
use Containernet to instantiate node images in Docker (e.g.,
the reference router image) and link instantiated nodes. The



implementation also allows us to pass hardware network in-
terfaces to a router node to achieve high-performance traffic
control (TC) [23, 29] support.

4 Experiments
Goals. To conduct a preliminary evaluation of our PoC,
we first validate the correctness of Topology Generator via
traceroute tests, and we then evaluate the single-host sys-
tem scalability by analyzing network instantiation time with
respect to the number of routers in the network. We plan
on testing other aspects of the DDoS SandBox, such as the
Traffic Mimicker, in our future work.

Setup. To create the AS topology, we feed a sampled sFlow
trace from an IXP in the United States as our only private
information input and two public information datasets (shown
in Fig. 1) into the SandBox. Furthermore, we also attached
several traceroute-enabled end hosts to two ASes within the
AS topology. We conduct our evaluations on two distinct
environments: 1) a Hyper-V VM utilizing three cores on an
Intel i7-4970 processor with 24 GB of memory, and 2) a bare
metal Amazon EC2 C5d instance utilizing 96 virtual cores
with 192 GB of memory. Each Quagga router represents a
single AS, and Docker version 19.03 is used to create and
instantiate the router Docker image.

Traceroute Test. To test network connectivity and show
that each AS is allocated realistic IP addresses, we perform
several traceroute tests between ASes in the SandBox envi-
ronment. An example traceroute is shown in Fig. 2. This
traceroute (without TC policies) shows the route packets take
between a randomly selected educational network and an ar-
bitrary IP at a major cloud provider. The packets generated
at the educational network flow through its upstream AS and
Internet2 to reach the cloud IP. This reflects the real-world
Internet AS topology, and we can find a corresponding AS-
level path on bgpview.io. Furthermore, note that the SandBox
provides a realistic IP assignment to each AS based on its
real-world prefix ownership.

Figure 2: An example traceroute test in DDoS SandBox

Network Instantiation Time. We benchmark the scalabil-
ity of the DDoS SandBox by measuring the time it takes to:
1) create the reference router nodes, 2) populate configura-
tion files for each node, 3) set up veth devices for each node,
and 4) allocate IP addresses to each node. The main factor
that affects network instantiation time is the number of nodes
(or routers in this case) that need to be created in the Sand-
Box. Note, there are many factors other than the number

of nodes that can affect the system instantiation time, albeit
to a smaller degree – for example, if an AS has a high de-
gree of neighboring connections, the system may spend more
time in creating veth devices and generating Quagga routing
configuration files. Fig. 3 shows the network instantiation
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Figure 3: DDoS SandBox Instantiation Time

time with respect to the number of routers instantiated in the
network. The two machines spend a similar amount of time
to instantiate networks that have a limited amount of routers
(i.e., less than 120). In fact, due to its high processor fre-
quency, the 3-core Hyper-V VM performs slightly faster than
the 96-core Amazon EC2 VM. However, for networks with
more than 120 routers, the instantiation time for the Hyper-V
machine increases exponentially due to its limited memory
space, whereas the Amazon EC2 VM continues to follow a
linear trend in instantiation time. Fig. 3 clearly shows that
the SandBox can instantiate relatively large-scale networks
within a relatively short amount of time.

5 Future Work and Conclusion
The DDoS SandBox is an ongoing project that is under ac-
tive development. We are integrating more reference node
images into the SandBox, including Traffic Mimicker, and
reducing the required efforts to include physical devices. We
plan to experiment with the scalability of the SandBox across
multiple servers and investigate different approaches to ex-
trapolate experiment results to the Internet scale. We are
investigating alternatives to Containernet such as Container
Network Interface (CNI) plugins [8] that have better support
and system compatibility in the long run. Our ultimate goal
for the DDoS SandBox is to run sound empirical DDoS attack
and defense experiments. We hope results derived from the
SandBox can draw more attention from network operators,
and pave the way for the deployment of various defense sys-
tems. We will first implement the advanced DDoS attacks
and well-received defense solutions, and provide them as ref-
erence node images in the SandBox for users to run general
DDoS experiments. To the best of our knowledge, this is
the first attempt to bridge the missing gaps for sound empir-
ical DDoS experiments, and we have shown initial success
in bridging those gaps in our PoC. Our PoC system is open
source, and for more design details, the code is available on:
https://github.com/DDoS-SandBox.

https://github.com/DDoS-SandBox
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