

ICS Testbed Tetris: Practical Building Blocks Towards a Cyber Security Resource

CSET '20 - Long Preliminary Work Paper
13th USENIX Workshop on Cyber Security Experimentation and Test
August 10, 2020

Benjamin Green

Richard Derbyshire

William Knowles

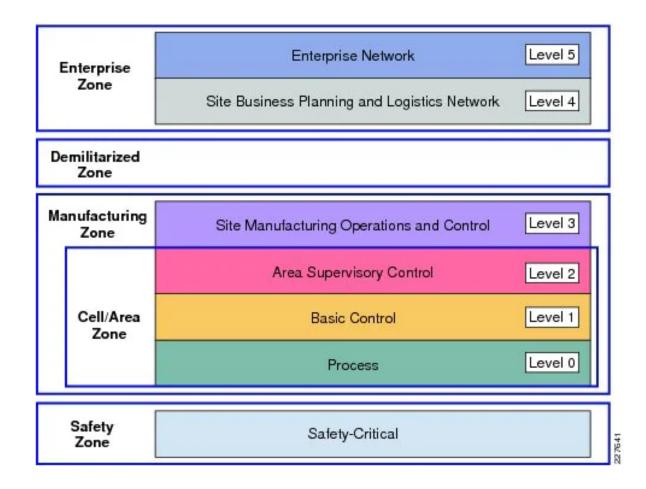
James Boorman

Pierre Ciholas

Daniel Prince

David Hutchison

https://www.lancaster.ac.uk/security-lancaster/



Introduction

- What are Industrial Control Systems (ICS)
- Our work to date/Related work
- Design considerations
- Experiment lifecycle
- High-Level Model
- Model breakdown
- Practical implementation
- Living resource
- TIDE-H and future work

What are Industrial Control Systems (ICS)

Related Work

- Our work
 - Over 6 years of ICS testbed development
 - Collaborative engagement
 - 5 Existing publications in this space
- Related work
 - Surveys
 - Theoretical concepts
 - Practical implementation

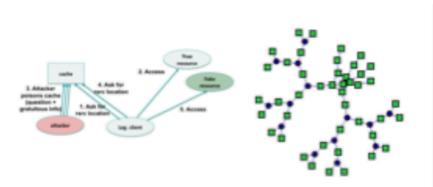
Green, B., Lee, A., Antrobus, R., Roedig, U., Hutchison, D. and Rashid, A., 2017. Pains, gains and PLCs: ten lessons from building an industrial control systems testbed for security research. In 10th {USENIX} Workshop on Cyber Security Experimentation and Test ({CSET} 17).

Green, B., Frey, S.A.F., Rashid, A. and Hutchison, D., 2016. Testbed diversity as a fundamental principle for effective ICS security research. Serecin.

Gardiner, J., Craggs, B., Green, B. and Rashid, A., 2019, November. Oops I did it again: further adventures in the land of ICS security testbeds. In *Proceedings of the ACM Workshop on Cyber-Physical Systems Security & Privacy* (pp. 75-86)

Ani, U.D., Watson, J.M., Green, B., Craggs, B. and Nurse, J., 2019. Design Considerations for Building Credible Security Testbeds: A Systematic Study of Industrial Control System Use Cases. arXiv preprint arXiv:1911.01471.

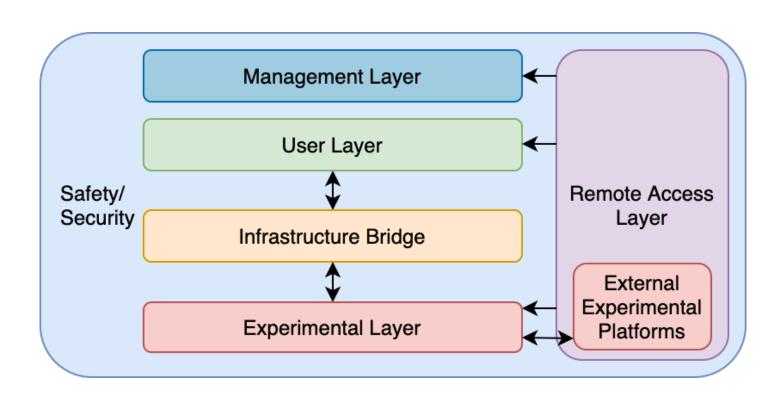
Green, B., Paske, B., Hutchison, D. and Prince, D., 2014. Design and construction of an industrial control system testbed. In PG Net-The 15th Annual PostGraduate Symposium

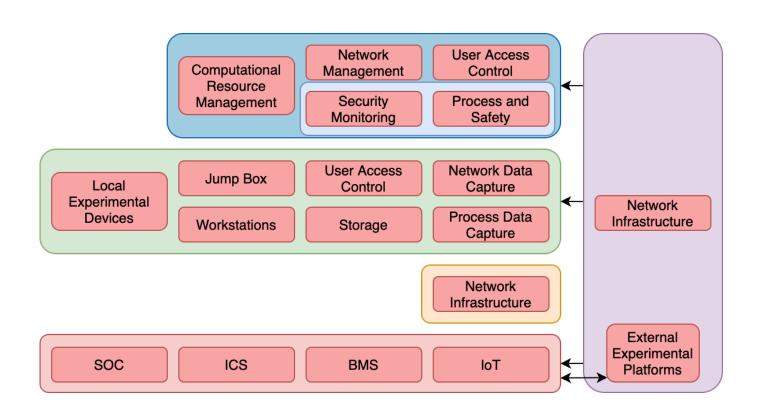

Design Considerations

Characteristic	TBO	TBA	TBE
Fidelity		✓	
Modularity	✓	✓	
Diversity		✓	
Interoperability		✓	
Monitoring and Logging	√	✓	
Openness	✓	✓	
Scalability/Extensibility		✓	
Flexibility/Adaptability	√	✓	
Repeatability/Reproducibility	√	✓	✓
Measurability&Measurement Accuracy		✓	✓
Cost-effectiveness	√	✓	✓
Isolation/Safe Execution	√	✓	
Usability	√	✓	
Complexity		✓	

Cyber Security Experiment Lifecycle

Design ☐ Instantiation ☐ Execution ☐ Analysis





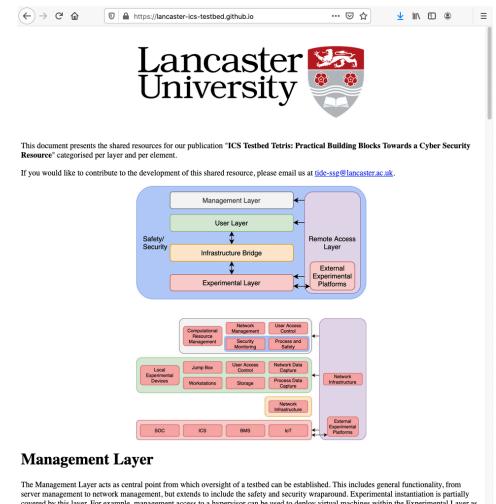
High-Level Model

Model Breakdown

Baseline Implementation Guide

https://www.gunt.de/en/products/process-engineering/water-treatment/multistage-water-treatment/water-treatment-plant-1/083.58100/ce581/glct-1:pa-148:ca-255:pr-57

https://www.fischertechnik.de/en/products/teaching/training-models/554868-edu-training-factory-industry-4-0-24v-education


https://factoryio.com/features

http://snap7.sourceforge.net/

Living Resource

- Online resource
 - www.ics-testbed.co.uk
 - Transcends static nature of paper
 - Community contribution
 - tide-ssg@lancaster.ac.uk

covered by this layer. For example, management access to a hypervisor can be used to deploy virtual machines within the Experimental Layer as

Security Lancaster's TIDE-H & Future Work

LANC TIDE-H: Lancaster's "Threat Intelligence Data

Exchange Hub"

TIDE-H

Academia

Threats Dataset
Repository for
Academic
Collaborations
(iDID, h-UNIQUE,
ICS, OS,
Network,
Social...)

<u>Industry</u>

Anonymized
Sharing of
Attacks &
Threat
Patterns
(Banks, CIP...)

Government

Repositoryfor
Threat rofiles,
Health DBs...
(Police,
GCHQ+ Intl.,
NHS...)

<u>Virtual Labs</u>

Incubator Env.
Tools/Testbeds
/IPR/Best
Practices...

Synergy: Data Sciences Institute, Secure Digitalization (SecureD @UEZ),
Lancaster Technology Accelerator, Manchester/Lancashire CyberFoundry,
Health Innovation Campus, Eden, EC CONCORDIA...

Thank You for Watching!