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Abstract
Flourishing OLTP applications promote transaction sys-

tems to scale out to datacenter-level clusters. Benefiting from
high scalability, timestamp ordering (T/O) approaches tend
to win out from a number of concurrency control protocols.
However, under workloads with skewed access patterns, trans-
action systems based on T/O approaches still suffer severe
performance degradation due to frequent transaction aborts.

We present Aurogon, a distributed in-memory transaction
system that pursues taming aborts in all execution phases
of a T/O protocol. The key idea of Aurogon is to mitigate
request reordering, the major cause of transaction aborts in
T/O-based systems, in all phases: in the timestamp alloca-
tion phase, Aurogon uses a clock synchronization mechanism
called 2LClock to provide accurate distributed clocks; in the
request transfer phase, Aurogon adopts an adaptive request
deferral mechanism to alleviate the impact of nonuniform
data access latency; in the request execution phase, Aurogon
pre-attaches certain requests to target data in order to prevent
these requests from being issued late. Our evaluation shows
that Aurogon increases throughput by up to 4.1× and cuts
transaction abort rate by up to 73%, compared with three
state-of-the-art distributed transaction systems.

1 Introduction

Many online transaction processing (OLTP) applications such
as Web service and e-commerce scale out to massive servers
with the growing computational and storage demands. Dis-
tributed transaction systems pursue high throughput and low
latency to meet the requirements of OLTP applications. OLTP
applications have two characteristics. First, OLTP workloads
feature severe skew in data access frequency, making data
hotspots common [4,6,18,35,39,51,56]. Second, requests in
transactions usually contain data dependency [3, 11, 12] such
as read-modify-write (RMW) operations, which are more
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Figure 1: (a) Throughput of distributed transaction system
with varying clock accuracy. (b) Relationship between request
failure rate and access frequency (hotspots are in red box).

complex to handle than overwrite operations due to the de-
pendency of write on read. Multiple RMWs accessing data
hotspots concurrently will bring about high contention, which
triggers numerous transaction aborts. Aborts will decrease
the throughput of distributed transaction systems and increase
transaction latency due to retrying aborted transactions.

Different concurrency control protocols are used in plenty
of transaction systems. These protocols are mainly catego-
rized into two-phase locking (2PL) [10, 49], optimistic con-
currency control (OCC) [8, 13, 44], and timestamp ordering
(T/O) [2, 26]. Under OLTP workloads with the aforemen-
tioned characteristics, 2PL systems suffer performance degra-
dation due to low concurrency levels of locks on data hotspots,
while OCC systems encounter frequent aborts since numerous
RMWs interrupt the execution of read requests. Compared
with them, T/O systems show better performance [19] since
they can support flexible concurrency so long as multiple
requests are served in the timestamp order.

Transaction execution in T/O systems undergoes four
phases: allocating timestamps, transferring requests, exe-
cuting requests and committing transactions. Existing T/O
systems can be categorized into clock-driven approach
[7, 15, 29, 40, 47, 55] and data-driven approach [53, 54], both
of them still have deficiencies in addressing the problem of
transaction aborts. The former only optimizes one of the first
three phases. The latter seeks opportunities in the commit
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phase to save transactions that will be aborted, but aborts are
often already inevitable at that time. To this end, this paper
explores how to tame aborts in all phases of a T/O protocol
when designing a distributed transaction system.

A transaction will abort once the execution of any request
in this transaction fails. The key reason for request execution
failures in T/O systems is that requests are not executed in
the order of their timestamps. We call this phenomenon re-
quest reordering. We examine the aforementioned four phases
of T/O systems and find that request reordering only occurs
in the first three execution phases. Here we introduce three
reasons for request reordering in different phases briefly.
1) Inaccurate distributed clocks in the timestamp allocation
phase. The inaccurate timestamps allocated for transactions
degrade the performance of T/O systems [33, 54]. To verify
this, we adjust the clock offset among servers from 1µs to
10ms manually in a T/O system and see a throughput reduc-
tion of up to 94% (Figure 1(a)) under the YCSB workload [9].
2) Nonuniform data access latency in the request transfer
phase. The nonuniformity of data access latency aggravates
request reordering. The latency of accessing remote servers
via the network (≈2µs) [22] is at least one order of magnitude
larger than that of accessing local memory (≈100ns) [50]. This
perhaps makes the order of request arrivals at the destination
mismatch the order of request timestamps.
3) Requests with data dependency in the request execution
phase. Requests that depend on the previous requests’ results
in the same transaction are called dependent requests in the
rest of this paper. In the request execution phase, dependent
requests will be issued late due to dependency wait, leading
to an execution failure with high probability.

We present Aurogon1, an all-phase reordering-resistant
distributed in-memory transaction system ensuring serializ-
ability. To avoid request reordering, we devise three key tech-
niques to address the three issues, respectively.

To design the clock synchronization for transaction sys-
tems, one key challenge is how to achieve high accuracy of
distributed clocks under serious CPU interference from fore-
ground transaction processing. With the growing capability of
high-speed networks (e.g., RDMA [13, 43]), CPU resources
nowadays are becoming the bottleneck in distributed sys-
tems [17, 52]. Both foreground transaction processing and
background clock synchronization share and even contend for
CPU resources. We have observed that CPU-NIC clock syn-
chronization and NIC-NIC clock synchronization are hetero-
geneous. Inspired by this observation, we propose a two-layer
clock synchronization mechanism called 2LClock. 2LClock
provides a distributed clock with an average accuracy of 41ns
under foreground interference.

To mitigate the impact of nonuniform data access latency,
one challenge is how to trade off between transaction process-
ing latency and abort rate. Performing requests in a first-come-

1Aurogon is a god who controls day and night in Chinese mythology.

first-serve (FCFS) order violates the original timestamp order
of requests [7], leading to potential transaction aborts. Thus,
we have an opportunity to buffer those requests with larger
timestamps and defer their execution to tolerate late arrivals
of requests. But request deferral will increase the latency of
the deferred requests. We further examine the request failure
rate of individual data records (Figure 1(b)) and find that trans-
action aborts mostly arise from failures of requests on data
hotspots. In other words, deferrals of requests performed on
cold data hardly reduce aborts. So, Aurogon adopts an adap-
tive request deferral mechanism that detects data hotspots
dynamically and only defers those requests performed on
hotspots.

Finally, to prevent dependent requests from being issued
late, we pre-attach dependent requests to data when trans-
actions including these requests access the target data for
the first time. Specifically, within a transaction, the metadata
of dependent requests will be transferred to target servers to-
gether with the requests they depend on, and then the metadata
will be attached to the corresponding data. Thus dependency
wait will not lead to the late arrivals at the destination of these
dependent requests.

We implement Aurogon on an RDMA-capable cluster. We
compare Aurogon with three state-of-the-art distributed trans-
action systems (i.e., Sundial-CC2 [54], DrTM+H [48], and
DST [47]) by evaluating them under two typical OLTP work-
loads with different degrees of contention. Our experiments
show that Aurogon achieves up to 4.1× higher throughput
and up to 86% lower average latency than prior systems. Our
further experiments also show that Aurogon decreases the
abort rate by up to 73%.

2 Background and Motivation

In this section, we first show the characteristics of workloads
we target (§2.1). Then we profile prior T/O systems and point
out their deficiencies (§2.2). A main disadvantage is that exist-
ing timestamp allocation schemes are inaccurate, so we need
to introduce clock synchronization approaches to solve this
issue. One common concern is why existing clock synchro-
nization approaches cannot work well in transaction systems,
which is analyzed in §2.3.

2.1 Working Scenario
We conduct detailed profiling on typical OLTP workloads and
characterize two important features below.
Dependent requests. There are two kinds of dependent re-
quests in transactions: 1) key-dependent requests, determining
which key to read or write with the indexing information from
previous read requests, 2) value-dependent requests, determin-
ing the value that they update the records with using the return

2We denote the work [54] as Sundial-CC and the work [28] as Sundial-
Clock in this paper for distinction.
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Figure 2: (a-c) Transaction aborts resulting from request reordering, which is caused by inaccurate distributed clocks (a), by
nonuniform latency of data accesses (b), and by dependent requests (c), respectively. For brevity, we only plot one request for
each transaction. (d) Per-thread throughput and latency when different numbers of threads query the clock of one NIC.

smallbank TPC-C TPC-E
Ratio of transactions with RMWs 90% 92% 25%
Avg. RMW count per transaction 1.41 7.22 3.49

Table 1: Statistics of RMWs in typical OLTP workloads.

results of previous read requests. For instance, in “a[i]+=5”,
WRITE(a[i]) depends on the result of READ(i) so it is a key-
dependent request, and in “a=b+5”, WRITE(a) depends on
the result of READ(b) so it is a value-dependent request.

With dependent requests, developers can implement com-
plex business logic. For instance, RMWs, the most typical
value-dependent requests, are widely used in OLTP applica-
tions (Table 1). However, it is complicated to execute depen-
dent requests efficiently in a serializable transaction system.
Taking a RMW as an example, any other write performed
between the executions of the read and write in the RMW
will make the whole RMW fail.
Skew in data access frequency. Data hotspots exist widely
in real-world database workloads [4, 6, 18, 35, 39, 51, 56]. A
small fraction of data is accessed frequently in a burst with
the occurrence of hot events while other data remains cold.
For instance, the analysis [5] shows that the top Twitter users
had a disproportionate amount of influence indicated by a
power-law distribution, so their tweets become hotspots.

2.2 Limitations of T/O Transaction Systems
There is a great deal of prior work [2, 7, 15, 29, 40, 47, 53–55]
studying T/O transaction systems. The core idea of T/O sys-
tems is to take the partial order relation revealed by times-
tamps as the serializable order in transaction systems. All
transactions in the system reach a consensus on the order that
timestamps reveal. A transaction attaches its timestamp to all
requests it issues, and requests are performed in the timestamp
order on each data record. According to the sources of their
timestamps, existing T/O systems lie in two categories:
1) Clock-driven approach. In these systems [7, 15, 29, 40, 47,
55], timestamps allocated for transactions are obtained from
local clocks. Those timestamp allocation approaches pur-
sue scalability but relax the requirement for timestamp
accuracy. We study three typical systems [7, 29, 47] and con-

clude that they utilize a kind of loosely synchronized clocks,
called chasing clocks.

Specifically, requests record their timestamps on data dur-
ing execution and return the largest timestamp recorded on
data. These returned timestamps help servers to update their
lagging clocks if servers find their clock values are smaller
than the returned timestamp. The process makes it seem that
all clocks chase the fastest one in the system. Although all
clocks will catch up with the fastest one eventually, clocks
are not accurate instantaneously. Therefore, chasing clocks
decrease the performance of transaction systems although
they do not violate the correctness.
2) Data-driven approach. Transactions’ timestamps are de-
termined by their read or write dependency of committed
transactions in these systems [53, 54]. A transaction first ob-
tains the dependencies when accessing data and uses them
to determine its timestamp in the commit phase. Data-driven
approach seeks opportunities in the commit phase to save
transactions that will be aborted by reordering their commit
timestamps without violating the known dependency. How-
ever, a majority of aborts have been inevitable at that time
due to request reordering during execution.
Implications. Existing T/O systems hardly alleviate aborts
due to either inaccurate timestamps caused by chasing clocks
or inevitable request reordering during execution. So our de-
sign adopts high-accuracy clock synchronization to allocate
timestamps and prevent request reordering in each phase of
execution.
Request reordering in each phase. T/O systems execute a
transaction via four phases: 1) allocating a timestamp for each
transaction, 2) transferring requests to the servers containing
required data, 3) executing requests in their timestamp order
and returning execution results, and 4) committing the trans-
action after receiving all acknowledgements successfully.

After analyzing request reordering phase by phase, we
list three key reasons: inaccurate distributed clock, nonuni-
form latency of data accesses, and requests with data depen-
dency. Figure 2(a-c) shows three cases of the reasons, respec-
tively. There are two transactions (Tx0, Tx1), which issue
read/write/RMW requests to one record (X). [wts, rts] repre-
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sents the live period of a certain record version (more details
in §4.1). For a version, a write will fail if its timestamp ts
satisfies wts ≤ ts < rts, and a successful read may increase rts.

In Figure 2(a), inaccurate distributed clocks cause the order
of two transaction timestamps to not be consistent with the
physical time order in which they get timestamps. If it takes
the same time for Tx0 and Tx1 to access X, Tx0 starting later
will abort due to its smaller timestamp.

Figure 2(b) illustrates that nonuniform latency of data ac-
cesses incurs request reordering though clocks are accurate.
Tx1 starting later accesses X earlier than Tx0 since X and
Tx1’s execution reside on the same server. So Tx0 aborts due
to the late arrival of its request. The case occurs frequently in
a large heterogeneous cluster because the latency of access-
ing data from different servers is usually nonuniform due to
different network hop counts and uneven traffic distribution.

Figure 2(c) shows that dependent requests also lead to
reordering. In this case, “X=6” in Tx0 is such a request since
it depends on the result of the previous read. The event “X=6”
arrives at X later than Tx1’s read results in Tx0’s abort because
“X=6” must wait for the return of Tx0’s read to calculate the
value to be written.

2.3 Clock Synchronization Approaches
Clock synchronization dedicated to transaction systems
should meet three requirements: 1) high accuracy, 2) low
calling overhead, and 3) resistant to CPU interference. To
achieve the three requirements, clock synchronization should
adopt differentiated methods on CPU-NIC synchronization
(CPU-NIC sync) and NIC-NIC synchronization (NIC-NIC
sync). Prior work [16, 28, 32, 40] ignore the heterogeneity
between CPU-NIC sync and NIC-NIC sync, so they cannot
be applied to transaction systems directly.
Observation. CPU-NIC sync probes show a larger latency
fluctuation than NIC-NIC sync ones in transaction systems.

The large fluctuation of probe latency will impair the accu-
racy of synchronization [16]. A longer execution time of
a probe suggests the readings of two probed clocks can
differ, leading to inaccurate clock synchronization. Prior
work [16, 28] believes network traffic is the main reason
for inaccurate probes so they focus on eliminating the ef-
fect of link noise. However, that does not cover all cases
especially when foreground applications are CPU-intensive
instead of network-intensive. Table 2 illustrates the laten-
cies of both CPU-NIC sync and NIC-NIC sync probes un-
der DrTM+H [48], a CPU-intensive distributed transaction
system which saturates RDMA networks to accelerate trans-
action processing. The P999/median ratio of network probe
latency only rises by 37% when adding the DrTM+H load.
It suggests that peak network traffic from this advanced dis-
tributed transaction system does not affect the stability of net-
work probes seriously. On the other hand, this ratio reaches
6.75 for CPU-NIC sync probes. This happens because getting

CPU-NIC sync NIC-NIC sync
w/o load w/ load w/o load w/ load

median (µs) 1.26 1.86 0.95 1.05
P999 (µs) 1.33 12.56 0.97 1.47

P999/median ratio 1.06 6.75 1.02 1.40

Table 2: Execution time of two kinds of probes without load
or under the DrTM+H load.

CPU timestamps suffers from latency spikes when the CPU
is preempted by foreground transaction processing.

Based on the heterogeneity we observed, existing clock
synchronization approaches have four limitations. First, they
consume precious CPU resources in transaction systems when
using a dedicated core [40] to poll requests via user-level net-
work interfaces, decreasing transaction throughput. Second,
without separating CPU-NIC sync and NIC-NIC sync [32,40],
high accuracy cannot be achieved due to highly variable
software stack latencies [16]. Third, the synchronized NIC
clocks (e.g., PTP [21], HUYGENS [16]) cannot serve in-
tensive queries from transaction systems. Figure 2(d) illus-
trates that as the number of threads querying the clock of
one NIC increases, the average query latency rises sharply
and the per-thread throughput also decreases. Finally, some
of them [27, 28] rely on customized modification to NICs,
making their extensive deployment in datacenters difficult.

3 System Overview

We propose Aurogon, an all-phase reordering-resistant dis-
tributed in-memory transaction system, with solutions target-
ing the three issues discussed in §2.2.
Design rationale. The key idea of alleviating request re-
ordering is to maintain the timestamp order for requests in all
phases of transaction execution.

First, in the timestamp allocation phase, we propose a clock
synchronization mechanism to improve the accuracy of times-
tamps obtained by transactions. The clock exploits a two-layer
architecture, divided into CPU-NIC sync and NIC-NIC sync.
The high accuracy achieved by 2LClock resists the CPU in-
terference from foreground transaction processing.

Second, in the request transfer phase, Aurogon buffers re-
ceived requests and defers the execution to mitigate the im-
pact of nonuniform data access latency. To cut the latency rise
caused by request deferrals, Aurogon only defers the requests
performed on hotspots and shortens the request deferral time
heuristically.

Third, in the request execution phase, to prevent dependent
requests from being issued late, Aurogon pre-attaches the
metadata of dependent requests to data when their transac-
tions issue requests to the same data at the first time. This
mechanism not only diminishes execution failures of depen-
dent requests, but also saves one network communication for
dependent requests.
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Aurogon Architecture. Figure 3 illustrates the Aurogon ar-
chitecture. Servers are connected with a fast network. Data
is partitioned into multiple shards and each server maintains
one of data shards in its memory. All servers are homoge-
neous and transactions can start to execute in any server. Each
server has four modules: a coordinator, a primary participant,
a backup participant and a clock.
• The coordinator is responsible for coordinating transac-

tions. It sends read/write/commit requests to primary par-
ticipants and it decides to commit or abort transactions
based on the replies. The coordinator also pre-attaches the
metadata of dependent requests to data (§4.3).
• The primary participant processes requests in their times-

tamp order by accessing local in-memory storage, and fi-
nally sends their execution results to coordinators. Mean-
while, the primary participant conducts the method of adap-
tive request deferral to cut aborts.
• The backup participant replicates the commit messages

from a coordinator before transactions are committed to
the primary participant to tolerate a server failure.
• Clocks provide accurate timestamps for transactions and

are synchronized via 2LClock (§5).

4 Concurrency Control Protocol Design

4.1 Protocol Specifications
We first introduce the data management in Aurogon. Auro-
gon leverages a multi-version mechanism to store historical
versions of data records and distinguishes data versions with
timestamps obtained from 2LClock. Each data version has
an active range of timestamps bounded by the write times-
tamp (wts) and the read timestamp (rts). Specifically, wts is
the timestamp of the transaction that has created this version
and rts indicates the maximum timestamp of transactions that
read this version. The versions of a record are organized by a
linked list sorted by their wts in descending order. Each ver-
sion also contains a status that indicates whether this version
is committed.

We now describe the rules for handling requests in Auro-
gon. Read requests always succeed while write requests may
fail during the execution if they conflict with the committed
reads. Reads are regarded as COMMITTED upon finishing exe-
cution so they do not demand an extra commit message, but

writes require an extra communication with participants to
ensure that all writes of the transaction are performed success-
fully.

Algorithm 1 shows the protocol of transaction processing in
Aurogon. The coordinator performs a transaction T beginning
with getting a timestamp (line 3) from local 2LClock (§5).
The timestamp indicates the serial order of the transaction and
is attached to all requests issued by T. Aurogon encodes the
acquired timestamp together with the server and thread IDs
of the coordinator into a 64-bit timestamp to make it globally
unique.

In the request transfer phase, the coordinator traverses T’s
read and write sets dynamically, and sends its read requests
to the participants3 maintaining the required data (line 5-7).
If a write depends on the return of the read accessing the
same data record (e.g., the write in a RMW), the read will pig-
gyback the metadata of these dependent writes. Meanwhile,
independent writes, which do not contain data dependencies,
are issued to corresponding participants directly (line 8-9). It
should be noted that transactions in Aurogon do not require
knowing read and write sets before their executions. Specifi-
cally, transactions can add a key-dependent request into the
read or write set while running, and then the coordinator will
issue such a key-dependent request.

The coordinator receives return messages of T’s requests
from participants and aborts T once it obtains the failure
return of any request (line 10-13). If T is aborted, the coordi-
nator will notify the participants which have performed T’s
requests successfully to rollback the changes brought by T’s
requests. When T’s all requests are returned successfully, the
coordinator will start the commit phase, issuing commit mes-
sages to the participants containing the records in T’s write
set (line 17-20). Finally T can be committed to users.
Tx_read shows the execution of read requests in partic-

ipants. If a read request R is issued together with a depen-
dent write Wd, the participant will first install Wd into the
data list (line 24-26). The installation process is illustrated in
Tx_write later. Then the participant determines whether the
execution of R will be deferred according to the hotness of
data R accesses (line 27-28).

After a possible deferral, R starts to read by searching for
the correct version based on its timestamp: it traverses the data
list in the descending timestamp order (line 29) and chooses
the first version v which satisfies v.wts < R.ts. In other words,
v has the largest wts among versions whose wts are smaller
than R.ts (line 31). The participant will extend v.rts to R.ts if
v.rts < R.ts to show the existence of R (line 32). If v.status is
PENDING, which indicates that v is not yet committed, R will
wait until v.status turns to COMMITTED (line 33-34). Aurogon
chooses to block R instead of reading uncommitted data [26]
to prevent the high overhead caused by cascading aborts. Fi-
nally, R returns the correct data version to the coordinator.

3Participants refer to primary participants in the rest of this paper unless
explicitly stated otherwise.
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Algorithm 1: Pseudo code of Aurogon’s concurrency
control protocol.

1 Function Coordinate(txn)
2 // timestamp allocation phase
3 ts = get_local_clock_ts()
4 // request transfer phase
5 for read,record in txn do
6 send(read.dest_node, Tx_read, read, record)
7 //piggyback the metadata of dependent writes
8 for independent_write,record in txn do
9 send(write.dest_node, Tx_write, write, record)

10 while receiving an ACK do
11 if ACK.status == failure then
12 abort txn
13 return
14 if key-dependent requests exist then
15 update read and write sets and issue requests
16 // commit phase
17 if all ACKs are received then
18 replicate updates to backup participants
19 for write,record in txn do
20 send(write.dest_node, Tx_commit, write, record)
21 commit txn // notify upper users
22 // request execution phase
23 Function Tx_read(record, req)
24 if req.dependent_write exists then
25 if install(record, req.dependent_write) fails then
26 return dependent_write failure // reply to coordinator
27 if record.is_hot == True then
28 wait for deferred_interval
29 for version in record.list do
30 // in descending order of version timestamp
31 if version.wts < req.ts then
32 version.rts = max(version.rts, req.ts)
33 if version.status == PENDING then
34 wait until version.status == COMMITTED
35 reply version’s data to coordinator
36 return success
37 Function Tx_write(record, req)
38 if install(record, req) fails then
39 return failure
40 else
41 return success
42 Function Tx_commit(record, req)
43 find req’s version in record.list
44 version.status = COMMITTED

Tx_write shows the execution of write requests in partic-
ipants. Before a write request W is processed to update the
record r, the participant needs to ensure that no version v of r
satisfies v.wts ≤W.ts < v.rts. If such v exists, W will conflict
with requests which read v and each have a timestamp larger
than W.ts. It is because these reads should return the updates
of W but they have already returned v. W has to fail if such a
conflict occurs as it is expensive or even impossible to change
these reads’ return and abort relevant transactions.

The participant validates W and searches for the correct
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Figure 4: An example of request deferral.

installation position in this way: it traverses the version list
and chooses the first version v f which satisfies v f .wts ≤ W.ts,
followed by validating whether v f .rts ≤ W.ts. The conflict
would only occur on v f since all versions are sorted in the
descending order of wts. If W passes the validation, the par-
ticipant installs a new version v’ in front of v f , setting the
status of v’ to PENDING and v’.wts = v’.rts = W.ts. Now the
installation of W succeeds. The same process is also used to
install a dependent write in Tx_read. Finally the participant
returns the success of W to the coordinator.
Tx_commit shows the commit process of writes in par-

ticipants. If the coordinator commits the transaction T, the
participant finds the versions of all pending writes issued from
T and turns the status of these writes to COMMITTED. Then the
participant returns the pending reads blocked by these writes.

4.2 Adaptive Request Deferral

To decrease the number of transaction aborts, we focus on
reducing the failures of write requests since reads never fail in
Aurogon. As depicted in Figure 2(a) and 2(b), writes will fail
if they conflict with committed reads. If a read R is committed
and returns the version v to the coordinator, an incoming write
W with v.wts ≤ W.ts < R.ts has to fail in order to ensure serial-
izability. Besides inaccurate distributed clocks, nonuniform
data access latency causes that W with a smaller timestamp ar-
rives later than R. The issue results from both the data location
and the network queuing on transmitting links.

To solve this problem, we propose an adaptive request
deferral mechanism to defer the execution of reads until the
straggling writes arrive and finish. Figure 4 shows such a
deferral case. Compared to Figure 2(b), Aurogon buffers Tx1’s
read and defers its execution. “X=5” in Tx0 benefits from the
deferral and can be installed successfully when it arrives at X.
Then the deferral ends, and Tx1’s read is performed, returning
the latest value 5.

However, a raised challenge is that a read’s deferral will
increase the transaction latency inevitably. We tackle the diffi-
culty by two methods: reducing the number of unnecessary
deferred reads and shortening the request deferral time.
Cutting the deferred read count. We examine the failure
rate of individual data records and observe that transaction
aborts usually arise from request reordering on hotspots. The
hotspots account for a small portion of user data but encounter
enormous request failures. Figure 1(b) illustrates that the
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failure rate rises sharply when data is hot. So the request
deferral on hotspots can be much more effective.

To this end, we propose a lightweight hotspot detection
scheme. The scheme counts the number of receiving requests
for each record individually in last 10 milliseconds using
accurate timestamps allocated for requests. If the throughput
of a particular record exceeds a preset threshold, we consider
that the record is being accessed frequently and at great risk of
request failures. Then the request deferral mechanism starts
to defer the execution of reads on high-contention records.
The space overhead of the detection scheme is quite modest
(only an 8-byte counter for each data record). Moreover, the
detection scheme can discover the change of hotspots easily
so that we will conduct deferrals on the new hotspots.
Shortening request deferral time. Aurogon exploits a
heuristic method to increase the deferral time instead of set-
ting an overlong deferral time in advance. The deferral time
of each record is determined individually. Aurogon calculates
the request failure rate of each record dynamically based on
the hotspot detection scheme. The deferral time will be in-
creased heuristically to tolerate late arrivals of more writes
if the failure rate exceeds a preset threshold. If the request
failure rate of the hotspot remains low, Aurogon could cut
the deferral time conservatively to avoid the waste of deferral
time. Our evaluation shows that a 20-microsecond deferral
for reads on hotspots cuts 50% write failures in most cases.

Note that the request deferral mechanism is a best-effort
method which cannot eliminate the write failures completely.
However, we could trade a moderate latency rise of a handful
of transactions for reducing aborts.

4.3 Pre-attaching Dependent Requests to
Data

A dependent request may fail during execution since it has to
wait for the results of requests it depends on within the same
transaction (Figure 2(c)). Dependent requests are classified
into key-dependent requests and value-dependent requests
(§2.1) and we first target value-dependent requests.

Value-dependent requests are writes depending on the pre-
vious reads’ results and the write set of value-dependent re-
quests are deterministic. We first consider the situation that
writes are issued to the same records with previous reads. such
as an auto-increment counter. Taking RMW as an example,
Figure 5 illustrates that three network communications are
consumed in T/O systems [2, 19] without pre-attaching be-
tween the coordinator and the participant: 1) a read R is issued
to the record X and obtains the correct data, 2) a preparing
write request “X=8”, PW, is sent to the record carrying the
updated data, and 3) a commit or abort message C notifies
the participant to commit or rollback the updates from PW. It
leaves a vulnerable interval from the time point R finishes to
the time point PW arrives, in which any arriving write W with
W.ts > PW.ts will break the integrity of RMW’s execution and

Tx: X+=5

Tx: X+=5

install
success!

commit

read(X) 
& install

return 3 &
install success!

X=8

vulnerable interval

X=3+5=8

X=3+5=8 & commit

X: 3[0:0]

X: 3[0:0]
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2
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Figure 5: Dependent request handling with or without pre-
attaching.

cause PW’s failure.
To this end, Aurogon piggybacks the metadata of depen-

dent requests to target data while transferring requests they
depend on, and pre-attaches these dependent requests to data
records for the purpose of eliminating the vulnerable interval
(Figure 5). Specifically, the metadata of PW is issued to the
participant together with R in the first communication, and
the participant first tries to install PW to the data list before
performing R (line 25 in Algorithm 1). If the installation fails,
there is no need to perform R and the participant can return a
failure message to the coordinator, resulting in an early abort
of the transaction which saves CPU resources (line 26).

After installing the version of PW, the participant sets the
version’s status to PENDING and leaves its value NULL since
the coordinator has not obtained R’s return and could not
have calculated PW’s new value. Note that leaving the ver-
sion’s value NULL does not violate the correctness as the
PENDING versions will block incoming reads. The participant
performs R and returns the result immediately after installing
PW, which eliminates the vulnerable interval. In the commit
phase, the participants will receive the message C and com-
mit the version of PW with new data if it is determined the
transaction will commit.

Besides eliminating the vulnerable interval, pre-attaching
dependent requests brings two extra advantages. First, it saves
one network communication compared to prior T/O systems.
Second, it assists the transaction in finding early aborts if the
installation fails in the first network communication, which
cuts unnecessary network bandwidth usage compared to en-
countering PW’s failure after sending PW’s data to the partici-
pant in Figure 5. Meanwhile, since the metadata piggybacked
is just a boolean variable to show the existence of a dependent
write, the latency of transferring requests are not affected.

We now discuss other situations of dependent requests.
For other value-dependent requests (e.g., PW accesses the
records different from R), Aurogon supports issuing R fol-
lowed by transferring the metadata of PW to its corresponding
record for pre-attaching, which shortens the vulnerable inter-
val greatly as well. For key-dependent requests, it is inevitable
to wait for previous reads’ results to determine which data
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to access. Aurogon introduces the modification of adaptive
request deferral mechanism to benefit these requests. Previous
reads’ executions are accelerated by disabling their possible
deferral in participants selectively. Furthermore, for perform-
ing key-dependent requests, a key-dependent read can be per-
formed directly since its dependency wait in the coordinator is
regarded as an implicit deferral, while a key-dependent write
may benefit from read deferrals on hotspots.

4.4 Aurogon’s Isolation Level

Aurogon ensures serializability and here we only give a simple
proof sketch. Each transaction has a globally unique times-
tamp. Requests are executed in the order of their transactions’
timestamps. So each transaction can achieve a view of the
system and update the system’s status consistently with its
globally unique timestamp. Therefore, transactions in Au-
rogon are serializable, and the timestamp order is the serial
order of transactions.

Aurogon also ensures strong partition serializability (SPS)
[1, 7, 41] as an extension. SPS is an isolation level slightly
weaker than strict serializability [20,38]. In a SPS system, for
any two transactions T1 and T2, T1 must precede T2 in the
serial order if two conditions are satisfied: 1) T2 starts after
T1 finishes, 2) T1 and T2 access the same record. One can
achieve strict serializability easily in SPS systems by adding
explicit out-of-band dependencies with a cross-record read,
solving the anomaly usually called “causal reverse”.

Two main anomalies which can happen in serializable Au-
rogon are “stale reads” and “immortal writes” [1] compared
to SPS. The key reason for both anomalies is that timestamps
2LClock allocates cannot match the physical time completely
in a distributed system. A transaction could obtain a smaller
timestamp so it cannot see the newest updates.

We solve the two anomalies by adding some modifications
to request processing in participants. To prevent stale reads,
reads cannot return a version v if there exists a COMMITTED
version v

′

that v
′

.wts > v.wts. To prevent immortal writes,
a write W cannot be inserted if there exists a COMMITTED
version v that v.wts > W.ts. Besides, coordinators should not
commit a transaction T to users until receiving all of its com-
mit acknowledgement messages. An early commit of T may
cause that transactions starting later will find the status of T ’s
updates is PENDING, which should have been COMMITTED,
leading to the incorrect execution of two aforementioned
modifications.

4.5 Fault Tolerance

To tolerate the server-level crash, Aurogon leverages the
widely-used primary-backup replication similar to prior work
[14,24,48]. Aurogon does not require to replicate coordinators
since their commit decisions and states can be recovered from
the states of primary participants and backup participants. If
a transaction T is determined to be committed, its coordinator

first replicates T’s updates to backup participants. Backup
participants perform transactions’ updates asynchronously
to survive primary participant failures. After receiving all
ACKs from backup participants, T’s updates can be commit-
ted to primary participants and T can be returned to users
simultaneously.
Failures of coordinators. The approach for handling the co-
ordinator failure is to finish transactions having been commit-
ted to users and abort running ones it coordinates. If primary
participants detect the failure of a coordinator with periodic
heartbeats, they need to judge whether the transactions coor-
dinated by this coordinator has been committed to users. They
first check if updates of the transaction exist in correspond-
ing backup participants. If all backup participants retain the
updates, it means the transaction is allowed to return to users
so that primary participants will search for the transaction’s
updates in memory and commit them. Otherwise, primary
participants will discard these PENDING updates and inform
backup participants to roll back the possible changes.
Failures of participants. The updates of a transaction will
first be replicated to backup participants followed by primary
participants, so coordinators can select a new primary partici-
pant from backups with a lightweight consensus [25,37] after
detecting a primary participant failure. The correctness is guar-
anteed since backup participants have retained all transactions’
updates that corresponding primary participants received. The
failure of a backup participant can also be recovered by the
consensus protocol.

5 2LClock Design and Implementation
Inspired by the observation in §2.3, we propose 2LClock, a
clock synchronization mechanism using a two-layer mapping
scheme to provide a global clock for each server. We further
implement 2LClock with the help of an emerging network
technique, RDMA [23, 31, 34, 43, 46]. 2LClock meets three
requirements of clock synchronization proposed in §2.3.
• To achieve high accuracy, 2LClock separates CPU-NIC

sync and NIC-NIC sync to alleviate the latency fluctuation
from the software stack, and issues synchronization probes
frequently to resist clock drift.
• To reduce the overhead of querying timestamps for trans-

actions, 2LClock implements CPU-NIC sync to enable
transactions to avoid querying NIC clocks directly.
• To resist the CPU interference from transaction processing,

2LClock filters inaccurate synchronization probes and cuts
the CPU usage of synchronization with the help of RDMA.

5.1 Clock Mapping Functions
In 2LClock, all CPU clocks in the cluster synchronize with
one preset “reference” NIC clock. Specifically, for a server,
its CPU clock is synchronized with its local NIC clock, using
the mapping function F1. Then the local NIC clock uses the
mapping function F2 to synchronize with the reference NIC
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Figure 6: Mapping and probing in clock synchronization.

clock. The principle of constructing a mapping function Fi
(F1 or F2) is to ensure their increasing monotonicity since dis-
tributed transaction systems cannot tolerate individual clocks
going backwards. We now present how to construct Fi.

The synchronization accuracy of Fi will be influenced by
the fluctuation of individual probes if we update the Fi upon
receiving a new probe. So 2LClock divides the time into
multiple successive timeslices with a fixed-length Td and
filters out “bad” probes collected in each timeslice to achieve
high accuracy. As shown in Figure 6(a), 2LClock derives Fi
in four steps. First, 2LClock generates a linear function for
each timeslice (¶), which is different between F1 and F2 and
is elaborated in §5.2. Second, for each timeslice [i ·Td, (i+1) ·
Td), 2LClock gets the middle point Mi of the line segment (·).
The third step is to get the set of anticipated points (¸).
By drawing a line across two middle points Mi and Mi+1,
2LClock gets an anticipated point Ai. Finally, by connecting
each two successive anticipated points (¹), 2LClock gets a
mapping clock function (red lines with diamond symbols in
Figure 6(a)).

One may wonder why 2LClock exploits an extension
method to obtain a piecewise mapping function. It is because
the linear function generated in the first step may not be suc-
cessive at the junction of two timeslices, which may violate
the monotonicity of allocated timestamps.

5.2 Synchronization in a Timeslice
As depicted in the first step in §5.1, to construct either F1 or
F2, 2LClock first needs to generate a linear function for a
timeslice. Here we introduce the ways to generate such linear
functions for F1 and F2 via synchronization.

5.2.1 CPU-NIC Synchronization
In a timeslice, 2LClock first produces a set of mapping pairs
between a server’s CPU clock and its local NIC clock by
probing and measurement. Then, it fits those mapping pairs
with linear regression, generating a linear function for F1.

To produce a mapping pair dataset, a CPU-NIC sync thread
periodically queries its local NIC to get mapping pairs <
tc, tn >, which gives an estimation that the time in local NIC
is tn when time in CPU is tc. Each NIC query generates three
timestamps: a NIC timestamp (Tn) from the query reply, and

two CPU timestamps (Tc1 and Tc2) that the host CPU records
when CPU begins and finishes the NIC query request. So we
get the mapping pair < tc,Tn >, where tc = α ·Tc1 +(1−α) ·Tc2.
α is a parameter in [0,1] and we set it offline4.

After collecting enough mapping pairs within one timeslice,
we discard those outlier pairs whose execution duration, Tc2−

Tc1, deviates far from the normal value. Resource contention
between clock synchronization and transaction processing can
occasionally make the execution duration of some mapping
pairs to millisecond level. So filtering out outlier pairs can
effectively enhance the accuracy of CPU-NIC mapping.

5.2.2 NIC-NIC Synchronization

For NIC-NIC sync, 2LClock uses three steps to generate a lin-
ear function in each timeslice for F2. First, 2LClock produces
a set of mapping pairs between local NIC and the reference
NIC. The reference NIC is on a randomly picked server in the
cluster. 2LClock first gets a quadruple <TAS , TBR, TBS , TAR>

by issuing probes from local NIC to the target NIC, and then
obtains a mapping pair <tn, tg> from such a quadruple. Here
we adopt the link symmetric assumption, widely used in prior
work [16, 27, 28, 32]. Second, 2LClock uses supported vector
machine to filter the mapping pairs deduced from those outlier
probes as prior work [16] does. This is because a probe with
a finishing time beyond the normal range of measurement
encounters network fluctuation with high probability [16],
which will violate the link symmetric assumption. Finally,
2LClock generates a linear function for F2 by fitting mapping
pairs with linear regression.
Tree structure of NIC-NIC sync. 2LClock builds a K-ary
tree to organize the synchronization links, whose root is the
reference NIC. Each NIC issues probes to its parent NIC, so
that each NIC can ultimately get a mapping pair synchronized
with the reference NIC clock. Each tier of the tree will in-
troduce an additional synchronization error [28]. Thus we
set K to 10 intuitively to limit the synchronization error. For
example, only a four-tier tree is required to enable 2LClock
to work in a 1000-server cluster (1+10+102+103=1111).
RDMA characteristics. To reduce CPU usage, 2LClock ex-
ploits two characteristics of RDMA when obtaining the clock
mapping pair between a local NIC and its parent NIC with
probes. First, RDMA ibv_cq_ex can automatically record ac-
curate times when a network request leaves and arrives at an
RDMA NIC (RNIC). This interface allows buffering these
NIC timestamps in both sides’ host memory via direct mem-
ory access without CPU involvement. Second, RDMA has
multiple transport modes [24, 43] including Reliable Con-
nected (RC) and Unreliable Datagram (UD). Specifically, RC
mode uses acknowledgment packets to ensure reliable trans-
mission, while UD mode removes these packets. We have

4Theoretically, α is the ratio between NIC query uplink latency and the
sum of uplink and downlink latencies. In a homogeneous cluster, α’s values
on different servers are the same so the relative time of CPU clocks is not
affected by α’s values.
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found an interesting feature of ibv_cq_ex in RC mode and
used it to probe target RNIC: ibv_cq_ex records the leaving
and arriving times of RC request’s ACK instead of RC request
itself. Next we show how to generate a probe and calculate a
mapping pair.
Using a combination of RDMA modes. Figure 6(b) plots
how a probe gets a quadruple when local RNIC A synchro-
nizes with its parent RNIC B. 2LClock first sends a UD re-
quest from A to B with ibv_cq_ex and records two timestamps,
TAS and TBR, indicating when the UD request leaves A and
arrives at B, respectively. Then 2LClock sends an RC request
from A to B with ibv_cq_ex as well and two timestamps,
TBS and TAR, are recorded, indicating when the RC’s ACK
leaves B and arrives at A. If UD requests suffer packet loss,
we discard the probes directly though it seldom happens [24].
Transferring timestamps asynchronously. Finally, the
server that B resides on obtains existing timestamps TBS
and TBR in a batch by polling local ibv_cq_ex [30, 36] pe-
riodically, and transfers them to A’s server. The clock off-
set between B and A can be calculated as: offsetB−A =

((TBR − TAS ) − (TAR − TBS ))/2, and the mapping pair is
(TAS ,TAS +offsetB−A). We also measure the difference of
one-way delay between RC and UD requests offline, and then
subtract this part when calculating the offset to avoid violating
the link symmetric assumption.

The design of probing in 2LClock reduces the CPU uti-
lization of the parent nodes in the tree since we connect a
parent node with K (10 by default) child nodes to alleviate
additional errors. Specifically, it brings two advantages. First,
using RDMA ibv_cq_ex to obtain accurate timestamps lowers
CPU utilization compared with polling network interfaces fre-
quently with a dedicated core [40]. Second, the combination
of RC and UD requests offloads tasks of issuing probes from
parent servers to child servers.

5.3 Fault Tolerance

2LClock uses a two-phase mechanism to tolerate a server
failure. If a server detects a failure of its parent server with the
heartbeat mechanism, it will turn to a new parent to synchro-
nize with it. The selection of the new parent cannot violate
the requirements in the child count and the height of the K-
ary tree. Such new parent and child servers will perform a
two-phase recovery since it will take a while for them to build
new connections and warm up their clock mapping functions.

Figure 7 depicts how a child server A safely switches from
parent server B to a new parent server C, without breaking
its increasing monotonicity guarantee. For brevity, here we
consider F1 and F2 as a whole, and denote their composite
mapping function as F. When A detects that B fails at t1, A
will immediately connect to a new parent C and probe it to
construct a new mapping function FC synchronized with the
clock in C (green line in Figure 7).

Given that 2LClock finishes warming up the new mapping
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t1 t2 t3
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mapping w/ C (FC)
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done
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Figure 7: Server failure handling in 2LClock.

FC at t2, a new problem is that no mapping is available in A
during the vacant phase from t1 to t2. So 2LClock provides a
temporary clock by extrapolating the old mapping function
synchronized with failed server B during the vacant phase.
We call this mapping as virtual mapping VB, as it may be
inaccurate after a while.

To prevent the time from going backwards, a correction
value is added when switching from VB to FC . However,
different servers add different correction values, leading to
inaccuracy of 2LClock. To eliminate the impact of correc-
tion value, we further add a smoothing phase from t2 to t3
(corresponding to the mapping S C), during which the correc-
tion value decreases gradually till it becomes zero. After t3,
2LClock comes back to the normal state again.

6 Performance Evaluation

6.1 Experiment Setup
Transaction system setup. We compare Aurogon with five
distributed transaction systems. First, we pick the state-of-
the-art T/O systems from clock-driven approach and data-
driven approach, respectively. For clock-driven approach, we
integrate DST [47] into our system and build a compared
system called DST-TO. In DST-TO, we replace 2LClock
with DST and turn off Aurogon’s reordering-resistant tech-
niques. For data-driven approach, we choose Sundial-CC
and replace the original TCP network with RDMA for a fair
comparison based on an open-sourced implementation [45],
called RSundial-CC. Second, we compare with DrTM+H [48],
which saturates RDMA networks to accelerate distributed
transactions. Third, we compare with systems based on tradi-
tional concurrency control protocols. We use the implemen-
tation [45] to evaluate an RDMA version of 2PL and OCC,
called R2PL and ROCC, respectively.
Workloads. We use two workloads, TPC-C and YCSB.

TPC-C [11] is the industry standard benchmark for evaluat-
ing OLTP transaction systems, which simulates a warehouse-
centric order processing application and partitions all data
based on their warehouse IDs. The warehouse count deter-
mines the contention degree of TPC-C. We adopt two con-
tention configurations: one warehouse per server to model
high contention and one warehouse per thread to model
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Figure 8: Throughput and average latency of TPC-C/N.

medium contention. We implement two kinds of TPC-C,
named TPC-C/NP and TPC-C/N. TPC-C/NP contains two rep-
resentative transactions, NewOrder and Payment, comprising
88% of the default TPC-C mix. TPC-C/N only includes the
most complicated transaction NewOrder since some com-
pared systems do not implement Payment.

YCSB is a benchmark commonly used for key-value store
evaluation as well as transaction system evaluation [29, 42].
We list two main configurable parameters in YCSB: the RMW
request ratio RMW_ratio and the skew factor θ. Each transac-
tion contains multiple requests (8 in our evaluation) and each
request is either read or RMW determined by RMW_ratio.
Each request accesses a random record based on the Zipf dis-
tribution and the θ shows the degree of skew in data access (a
larger value means more skew). The YCSB benchmark uses
2 M records in total, uniformly partitioned among servers.
Testbed. All experiments were conducted on a cluster with 5
servers. Each server has two 10-core Intel Xeon Silver 4210R
processors and 64GB DRAM, running CentOS 7.6. Each
server is equipped with a ConnectX-5 MCX556A 100Gbps
Infiniband NIC connected to a Mellanox SB7890 Infiniband
Switch.

6.2 TPC-C Results
Figure 8 and Figure 9 illustrate the aggregated throughput and
average latency of evaluated distributed transaction systems
under TPC-C/N and TPC-C/NP, respectively. We vary the
local_item_ratio from 0% to 99% to adjust the ratio of
records that NewOrder transactions access in remote servers.
Under high contention. Figure 8(a) reveals the performance
results in a high contention scenario using TPC-C/N with one
warehouse per server. When local_item_ratio is small,
most of accessed records reside on remote servers, result-
ing in more network communications. Aurogon improves
throughput by 1.55×-3.16× compared with other systems
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Figure 9: Throughput and average latency of TPC-C/NP.

when local_item_ratio is 0%, which is attributed to Au-
rogon’s capability to reduce aborts caused by accesses from
different servers.

The runner-up of performance is DrTM+H. Although it
enumerates the RDMA primitive combinations to accelerate
network accesses, it suffers throughput degradation as RMWs
on hotspots lead to many transaction aborts. Each NewOrder
contains 11 RMWs on average and the accessed records are
nonuniform. Concurrent RMW operations result in a high
possibility of transaction aborts in the validation phase.

Besides, DST-TO is a clock-driven transaction system uti-
lizing DST to achieve high scalability. Trading accuracy for
scalability in DST decreases the throughput under high con-
tention as inaccurate distributed clocks trigger request reorder-
ing. Two reasons lead to the inaccuracy of DST. First, the
timestamps that DST uses to update lagging clocks are inac-
curate since DST does not consider one-way network delay
when obtaining these timestamps. Second, the frequency drift
among distributed clocks cannot be corrected in DST.

With increasing local_item_ratio, the throughput of
Aurogon rises due to the growing local accesses. Note that
DST-TO improves the throughput a lot since local accesses
use the same clock to get timestamps, easing the reordering.
However, Aurogon still outperforms the runner-up (DrTM+H)
in throughput by 11% when all transactions are local.

Consequently, Aurogon increases throughput by 1.11×-
4.12× compared with other systems, reaching 1.27M transac-
tions per second (0% local_item_ratio) and 2.58M (99%
local_item_ratio, default configuration in standard TPC-
C). Meanwhile, Aurogon cuts average latency by up to 86%.

When mixing NewOrder and Payment5, the aggregated
throughput of Aurogon further expands since Payment ac-
cesses less records. Figure 9(a) shows that Aurogon outper-
forms DST-TO by 70%-99% in throughput and reduces aver-
age latency by 62%-67%.
Under medium contention. Figure 8(b) plots the systems’
performance using TPC-C/N with one warehouse per thread.
When each warehouse is bound to a dedicated thread, the
contention is alleviated since some variables in NewOrder
(e.g., next_o_id) are never shared among threads.

When local_item_ratio is 50%, Aurogon improves
throughput by 28%-82% compared to peer systems. The
throughput of all systems rises gradually with the growing

5We only compare Aurogon with DST-TO under TPC-C/NP and YCSB
because other peer systems do not implement these workloads.
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Figure 10: Performance under YCSB (100% RMW_ratio in
the top two and 50% RMW_ratio in the bottom two).
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Figure 11: Incremental impact of proposed techniques.

local_item_ratio because the contention shrinks. Auro-
gon shows a moderate slowdown by 1.14× compared to
DrTM+H when local_item_ratio is 99%. This is because
recycling stale versions in Aurogon consumes extra CPU re-
sources when memory consumption rises due to the increase
of warehouse count.

Moreover, Figure 9(b) shows that Aurogon outperforms
DST-TO by 19%-42% in throughput and reduces average
latency by 24%-34% under TPC-C/NP.

6.3 YCSB Results

Figure 10 shows the performance comparison of Aurogon
and DST-TO under YCSB with skew factor θ varying from
0.5 to 0.99. When all requests are RMWs, Aurogon increases
throughput by 19%-33% compared to DST-TO.

When RMW_ratio decreases to 50%, the throughput of
both systems rises under low contention (θ is 0.5). Read re-
quests are executed faster than RMWs since reads only require
one network communication and never fail. Unfortunately,
DST-TO suffers a 4× throughput slowdown when θ rises from
0.5 to 0.99. It is because the throughput improvement in-
creases the running request count in the system. Although
conflicts never occur between reads, more reads will make
incoming RMWs’ execution fail since reads may extend old
data version’s rts larger than RMW’s timestamp. So the abort
rate of DST-TO reaches up to 76%. On the contrary, Aurogon
still maintains a low abort rate (16%) when θ is 0.99, since
adaptive request deferral tolerates late arrivals of RMWs. If
RMW_ratio further decreases, the performance improvement
of Aurogon will shrink because Aurogon does not target read-
dominant workloads.
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Figure 12: (a) CDF of accuracy under CPU interference from
foreground transaction system. (b) Aurogon’s performance
with different clocks.

6.4 Impact of Individual Techniques
To isolate the improvement brought by Aurogon’s key tech-
niques, we implement a vanilla version of Aurogon and add
three techniques into Aurogon in turn. Here we take the per-
formance under YCSB as an example, setting θ to 0.99 and
RMW_ratio to 50%.

Figure 11 illustrates that pre-attaching increases the
throughput by 7.01× and cuts the abort rate by 16% com-
pared to vanilla Aurogon. Pre-attaching is significant in high
contention workload as it not only saves one network commu-
nication but also avoids RMW’s execution being interrupted.

2LClock further brings a 87% throughput improvement
and reduces the average latency by 33%. The decrease of
average latency mainly comes from reducing the P99 latency.
Specifically, the overhead of retrying transactions after aborts
incurs long tail latency since the high contention extends
the transaction’s execution time and increases the abort rate.
Aurogon benefits from 2LClock’s high accuracy (41ns) and
boosts performance.

Finally, Aurogon improves the throughput by 70% after
adding adaptive request deferral. One may wonder whether
request deferral is compatible with 2LClock. In fact, 2LClock
helps to shorten the required deferral time. To achieve the
same abort rate, our test shows that 2LClock requires a defer-
ral time of 24.1µs while DST requires 38.4µs.

6.5 Performance and Impact of 2LClock
We first evaluate the accuracy of 2LClock under foreground
CPU interference. Here we compare 2LClock with two state-
of-the-art clock synchronization approaches: HUYGENS [16]
and FaRMv2-clock [40]. HUYGENS synchronizes the NIC
clock of distributed servers with limited CPU involvement.
FaRMv2-clock obtains timestamps directly from CPU to syn-
chronize clocks. We remove FaRMv2-clock’s guarantee of
global increasing monotonicity by skipping its uncertainty
wait and support it to provide timestamps directly.

We adopt a common way [16] to test the clock accuracy:
two clocks (C1, C2) are started on the same NUMA node of
one server, and synchronized with the clock C3 on another
server, respectively. The discrepancy of C1 and C2 would be
0 since they use the same clock. We take the absolute value of
measured discrepancy between C1 and C2 as the clock error.
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Figure 12(a) shows error CDFs of three clocks under fore-
ground transaction load. The average clock error of 2LClock
is 41ns, achieving a cut of 51% and 87% compared to
HUYGENS and FaRMv2-clock, respectively. Furthermore,
2LClock reduces the P99 errors by 2.3× and 31× compared
to HUYGENS and FaRMv2-clock. Note that FaRMv2-clock
encounters a large accuracy fluctuation since CPU timestamps
are inaccurate under foreground interference.

We further replace 2LClock with HUYGENS and FaRMv2-
clock in Aurogon followed by evaluating these systems under
YCSB to show 2LClock’s advantage. Figure 12(b) illustrates
that 2LClock helps Aurogon to improve the throughput by
up to 31% and 14% compared to HUYGENS and FaRMv2-
clock, respectively. Aurogon with HUYGENS shows the low-
est throughput since obtaining timestamps from HUYGENS
takes a longer time (3.3µs) than 2LClock (200ns).

6.6 2LClock Failure Handling
We evaluate how 2LClock handles a server failure of the root
clock. Figure 13 plots the clock accuracy in this process. We
use the same configuration in §6.5 and simulate the situation
where C1 and C2 turn to synchronize with a new reference
clock C4 after the crash of C3.

As illustrated in Figure 13, 2LClock detects the crash of C3
at time 6s. Then, C1 and C2 start their virtual phase (V1 and
V2), in which they build connections with C4 and warm up
the new clock. Note that they still use the previous measured
value of C3 although C3 crashes in this phase.

C1 finishes virtual phase first, taking 2.1s and starts to use
the new clock C4. To smooth the correction value, C1 begins
the smoothing phase S1, which generates a rising error up
to 3.5µs. Then C2 starts S2 as well and the error becomes
stable since two clocks smooth the correction value at the
same speed. As C1 finished S1, we can see an error curve
plunge before S2 ends, after which 2LClock turns to normal
state. This total process takes 6.4s in our experiment.

6.7 Discussion of Scalability
Here we discuss how Aurogon performs in a large cluster.
The rising server count results in more network hops when
accessing data. Meanwhile, the network heterogeneity leads
to more nonuniform data access latency in the cluster.

Let us examine the three techniques in Aurogon when scal-
ing to a large cluster. First, if distributed clocks aim at achiev-

ing high accuracy in a large cluster, the problem is the high
CPU usage of parent servers in synchronization topological
tree. 2LClock utilizes asynchronous transfers and a combi-
nation of two RDMA modes to solve this problem. Second,
the more nonuniform data access latency makes the adaptive
deferral more effective to tolerate straggling requests. Third,
pre-attaching method, saving one RTT for RMWs, is more
effective when the network delay rises.

7 Related Work

T/O transaction systems. T/O systems [2,7,15,29,40,47,53–
55] lie in two categories. 1) Clock-driven approach: DAST [7]
determines timestamps of transactions with a two-phase pro-
tocol to anticipate the best execution timing. Cicada [29]
separates read and write timestamps during allocation to ac-
celerate read-only transactions. 2) Data-driven approach: Tic-
Toc [53] first obtains the data dependencies and determine the
transactions’ timestamps in commit phase.
Clock synchronization. HUYGENS [16] exploits the
network effect to synchronize NIC clocks. Spanner [10],
FaRMv2 [40] and Sundial-Clock [28] utilize uncertainty
wait to ensure increasing monotonicity of global clocks. The
monotonic guarantee is orthogonal to 2LClock since 2LClock
can provide it with moderate modifications. Furthermore,
2LClock increases the accuracy of distributed clocks.
RDMA-enabled transaction systems. FaRM [13],
DrTM [49], FaSST [24], and DrTM+H [48] exploit RDMA
networks to accelerate distributed transaction processing.
Their core target is to fully utilize CPU resources to saturate
RDMA’s high bandwidth. Aurogon proposes a new idea that
RDMA can help to reduce transaction aborts.

8 Conclusion

In this work, we propose, implement and evaluate Aurogon,
an all-phase reordering-resistant distributed in-memory trans-
action system. We alleviate request reordering in all phases
by three techniques: high-accuracy clock synchronization
2LClock, adaptive request deferral, and pre-attaching depen-
dent requests to data. Aurogon reduces distributed transac-
tion aborts significantly and boosts the performance. The
source code of Aurogon is available at https://github.
com/THU-jty/Aurogon.git.
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