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Abstract services are motivated to protect their KVSs with the strongest

Persistent key-value stores (KVSs) are fundamental building
blocks of modern software products. A KVS stores persis-
tent states for the products in the form of objects associated
with their keys. Confidential computing (e.g., Intel Software
Guard Extensions (SGX)) can help KVS protect data from
unwanted leaks or manipulation if the KVS is adapted to use
the protected memory efficiently. The characteristics of KVSs
accommodating a large volume of data amplify one of the
well-known performance bottlenecks of SGX, the limited size
of the protected memory. An existing mechanism, Speicher,
applied common techniques to overcome this. However, its
design decision does not scale because the required protected
memory size increases rapidly as the KVS receives additional
data, resulting from the design choice to hide the long latency
of Merkle tree-based freshness verification. We find that the
unique characteristics of the log-structured merge (LSM) tree,
a data structure that most popular persistent KVSs have, help
reduce the high cost of protected memory consumption. We
design TWEEZER on top of this observation by extending
RocksDB, one of the most popular open-source persistent
KVSs. We compare the performance of TWEEZER with the
reproduced version of Speicher. Our evaluation using the stan-
dard db_bench reveals that TWEEZER outperforms Speicher
by 1.94~6.23 x resulting in a reduction of slowdown due to
confidential computing from 16~30x to 4~9x.

1 Introduction

Persistent key-value stores (KVSs) are a cornerstone of mod-
ern software products. Many cloud services, such as Net-
flix [41], Facebook [58] and Uber [18], use these as a storage
engine for large-scale data processing [17, 50] or database
management systems [34, 36, 59]. Accordingly, KVSs are
responsible for securely maintaining service data, including
user credentials and private information. Thus, cloud-based
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mechanism available. This paper presents a KVS protected
through hardware-based confidential computing (e.g., Intel
SGX (Software Guard Extensions) [26]). While our work is
not the first such work, our study is unique in that our so-
lution is 1) tailored to the log-structured merge (LSM) tree,
2) general in that our solution is not tied to any particular
hardware support, and 3) superior in performance (by up to
6.23 x) compared to the state-of-the-art.

Hardware-based confidential computing offers strong secu-
rity guarantees to such KVSs. Most KVSs run on public cloud
services, leaving their content potentially open to anyone with
control of the cloud platform’s privileged software or physical
machines. Confidential computing allows the KVSs to ex-
clude these complex software layers and any hardware but the
processor chip itself from the trusted computing base and rely
only on the correctness of the processor implementation. The
execution context within the processor chip is protected with
access control mechanisms and those on external memory
are protected cryptographically by encryption and the mes-
sage authentication code (MAC). Such a protected execution
environment is commonly called an enclave.

This appealing security guarantee comes at the cost of
performance. Among others, the cryptographic protection of
external memory content introduces limitations in external
memory usage. The confidentiality guarantee requires the
in-memory data to be encrypted, while the integrity guaran-
tee requires MAC computation and verification. As the cost
of MAC increases with the total amount of memory that is
available to an enclave, providing processors with large mem-
ory to an enclave becomes prohibitive. Thus, such memory,
which is called the enclave page cache (EPC), typically is
available only in 128 MB or 256 MB [25] capacity depend-
ing on the choice of design and implementation. An enclave
may use memory beyond EPC capacity, but the pages that do
not fit in the EPC must be paged out of the EPC with simi-
lar cryptographic protection. Also, applications may access
these memory pages only if the pages are loaded back into the
EPC. Therefore, applications must be carefully redesigned to
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minimize such EPC paging and may have to store large data
chunks with manual protection. This requirement has moti-
vated many popular applications to be tailored to the enclave
protection model [6,9,12,16,23,31,47,54,56].

For a persistent KVS to be protected through hardware-
based confidential computing, it must be tailored considering
the EPC limitations, as it is a memory-heavy application deal-
ing with a large (e.g., more than tens of gigabytes) amount
of data. Many persistent KVSs use the LSM tree for data in
storage, accompanied by in-memory caches (e.g., MemTable)
and write-ahead logs (WAL). The LSM tree and WAL must
be manually protected with encryption and MAC, and the
MemTable must also be tailored to efficiently employ EPC
because it is relatively large by default (e.g., 64 MB). Spe-
icher is the first work in this direction where it presents a
design to efficiently protect the three large data structures
that persistent KVSs commonly have [6]. The design divides
the MemTable into two and places only the smaller one with
more frequent access in EPC. The other two data structures
are also protected with encryption and MAC with the Merkle
tree [19]. However, this design choice slows down the KVS
by up to 32.5x as the large Merkle tree induces longer latency
for data retrieval from the LSM tree and increases the use of
EPC pages by other caches as our analysis will show (§7.2).

This paper presents TWEEZER, which shares the same goal
as Speicher. Similar to Speicher, TWEEZER is an extension of
RocksDB [58], a popular LSM tree-based persistent KVS, that
uses the MAC scheme tailored for LSM trees to run efficiently
in an SGX enclave. However, TWEEZER is different from
Speicher in that we make three critical design decisions on
top of these invariants.

First, TWEEZER ensures the freshness of an LSM tree with-
out constructing a Merkle tree spanning across its sorted
string tables (SSTables). This is possible by leveraging the
principle that an LSM tree-based KVS comprises many SSTa-
bles, each containing many key-value pairs and remains im-
mutable once built until it is compacted. Thus, if an SSTable
is authenticated with a unique key and the key is never reused,
an attacker cannot find other pieces of data anywhere other
than the SSTable to perform the replay attack (§5.2).

Second, the uniqueness and invariant ordering of keys in
each data block enable TWEEZER to encrypt and authenticate
each key-value pair separately without losing the capability of
detecting replays within an SSTable. We find that the invariant
ordering among and within the data blocks enables TWEEZER
to detect any attack on freshness without the Merkle tree
generated for each SSTable (see §5.3).

Third, we find the classic hash chain [51] to be a good fit
for authenticating the two logs: the WAL and MANIFEST
logs. Hash chains allow TWEEZER to authenticate the logs
without the trusted counters, which Speicher relies on, as well
as to create as many new log entries as needed (§5.4).

We implement TWEEZER by extending RocksDB 6.14 [58]
and using Scone [4], a library operating system designed to

run unmodified applications in an SGX enclave. Besides the
LSM tree-tailored message authentication scheme, we adopt
the design choices for Speicher [6] for MemTable. We also
reproduce Speicher for a comparison study due to the lack of
an open-source version and demonstrate that the reproduced
version provides similar performance.

Our experimental study using db_bench, the standard
benchmark used for RocksDB, indicates that TWEEZER
achieves the expected performance gain and EPC efficiency.
When tested with extensive data, TWEEZER outperforms Spe-
icher by 1.94~6.23 x depending on the workload and the data
size. Evaluations using the same benchmark configuration
that Speicher was evaluated with also exhibit similar perfor-
mance benefits (1.91~3.94 x). Our analysis reveals that this
improvement is primarily due to the 5.24~7.57x reduction
in EPC paging frequency.

2 Background

2.1 Intel SGX

Intel SGX [26] provides an execution environment called
an enclave that has a protected memory region called the
EPC [14] for programs that need protection. Only the program
running in the enclave can access its EPC content that is
cached in the CPU cache. When the data must be evicted to
external memory, data are encrypted and authenticated using
MAC by the memory encryption engine [27]. Thus, even
strong attackers, who can replace external memory, cannot
obtain or corrupt the EPC content and leave it undetected.
This memory protection mechanism is a well-known per-
formance bottleneck [4,12,31]. The SGX computes the keyed
hash MAC (HMAC) for each cache line, composes a modified
version of the Merkle tree [22], and keeps its root within the
CPU hardware to ensure the freshness of EPC content stored
on external memory. Each cache replacement operation is
accompanied by MAC verification using the Merkle tree to
ensure that the EPC as a whole remains as written by the
enclave. Partially for this reason, the size of the hardware-
protected EPC is limited (e.g., 128 MB in general, 256 MB
in recent releases [24]). For real-world applications that need
larger memory, SGX provides paging of EPC, but the encryp-
tion and MAC verification make this paging expensive as well.
Consequently, an application as-is that is not tailored to this
policy suffers from significant performance overhead [6,31].
Another source of performance penalty is the increased
system call overhead. An enclave runs as part of a user process
as a separated execution context from which an additional
context switch is required to invoke system calls. Therefore,
most applications running on an enclave adopt asynchronous
system calls as a performance optimization [4, 6, 38,43, 62,
63,68], where an application creates a thread that stays in the
user’s context with the role to mediate system calls from the
enclave. TWEEZER adopts this by running on SCONE [4].
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2.2 LSM-based Key-Value Stores

RocksDB [58] is an open-source persistent KVS that is widely
used in production and that uses the LSM tree [42] as its data
structure for the key-value pairs in storage. The four critical
components of RocksDB are the MemTable, SSTable, WAL,
and MANIFEST log.

The MemTable is designed to reside in memory and stores
recently added key-value pairs using a skip list for fast lookup.
Every put operation fills the MemTable before the data are
flushed to a persistent medium. If the size of the MemTable
becomes larger than a configurable threshold, it is marked
as immutable, and another MemTable is created to serve the
following writes. At the same time, RocksDB triggers a back-
ground flush thread to move the immutable MemTable to a
persistent medium in the form of an SSTable.

The new SSTables generated from a series of MemTables
constitute Level O of the LSM tree. Any new read request
must look up all of the SSTables in Level 0 because any
SSTable could contain the key. Thus, RocksDB needs to keep
retained the number of SSTables in Level 0, and thus, triggers
an operation called compaction when the number of SSTables
at Level O exceeds a configurable threshold. A compaction
thread running in the background selects several SSTables,
deletes duplicated keys, and compacts them to create a new
SSTable stored at the lower level, Level 1 here, of the LSM
tree in storage. The resulting levels satisfy an additional prop-
erty of ordering. The compaction procedure ensures that one
key appears at each level at most once (except for Level 0),
and every SSTable is sorted, allowing the KVS to look up, at
most, one SSTable per level to find a key-value pair.

One SSTable comprises several sub-blocks including index
blocks and data blocks. The index block contains a sorted
sequence of index keys. The ith index key is larger than or
equal to the keys in ith data block and smaller than the keys in
i+ 1th data block. At the end of an SSTable is a footer block
containing padding to align the SSTables and a magic number
marking the end of an SSTable. Speicher stores the MACs of
the SSTable’s key-value pairs in this footer block, resulting in
increased EPC usage when the KVS becomes large.

2.3 Speicher

Bailleu et al. [6] were the first to study the problem of running
RocksDB efficiently on an enclave and designed Speicher by
adapting RocksDB. Speicher uses the Merkle tree to authenti-
cate LSM tree by computing a MAC for each data block and
building the Merkle tree on top. They propose three design
changes to an LSM tree-based KVS considering the charac-
teristics of the enclave and its protected memory, EPC. First,
the MemTable must be adapted to reduce the EPC usage. Spe-
icher redesigned MemTable so that a large portion of it, the
values on leaves, are stored explicitly outside the EPC with
cryptographic protection. This design change improves KVS

throughput by reducing the number of EPC paging that Spe-
icher causes. Second, the I/O calls must be handled at the user
level by another thread to avoid leaving the enclave context
on every call. Speicher runs with its own direct I/O library
based on Intel SPDK [1], which reduces the cost of additional
context switches. Third, the KVS should be properly times-
tamped to defeat the rollback and forking attacks. Speicher
uses its own asynchronous monotonic counter that wraps the
synchronous SGX monotonic counter because they could not
use the SGX counter directly.

3 Threat Model

We assume a strong attacker could acquire complete con-
trol of a system running TWEEZER, except for the enclave’s
context that is protected by SGX. They may have obtained
such control by exploiting a known vulnerability in the cloud
provider’s system or as an insider responsible for maintain-
ing them. In particular, such attackers can read or modify
the contents of memory or storage that the user’s KVS uses,
except for those in EPC that the SGX protects. However, the
attacker cannot directly query the KVS because the KVS does
not accept the attacker as an allowed client. The design and
implementation of such an authentication protocol is a well-
studied problem and orthogonal to the design of TWEEZER.
We also do not aim to propose a new remedy to address imple-
mentation bugs that the current implementation of Intel SGX
is known to have, potentially nullifying its security guarantee
completely [11, 13, 60,65,67] as these are not fundamental
flaws in its security model and will be fixed in future releases.
This aligns with the assumptions made by most existing mech-
anisms built on Intel SGX [6,9,12,16,23,31,47,54,56].

4 Overview

TWEEZER is a persistent KVS running on an SGX enclave. To
users, TWEEZER provides all operations that persistent KVSs
usually implement as an extension of RocksDB [58]. The only
additional requirement for users is to retrieve and keep a pair
of cryptographic keys (§5.5) and place heartbeat transactions
(§6). The key pair is required for TWEEZER to recover its
data in case of a crash and the heartbeat transactions provide
rollback resilience.

TWEEZER is built on top of the advances made by an earlier
work, Speicher [6] (see §2.3), with three additional design
decisions (D1~D3 below).

D1. TWEEZER creates and associates one unique MAC key
with each SSTable as shown in Figure 1 (D). Whenever
TWEEZER stores data outside the SGX-protected memory,
it computes the MAC to store along with the data to later ver-
ify the freshness. Among these data are the LSM tree, which
comprises many SSTables in storage. The large size of this
LSM tree, which contains almost all key-value pairs, could
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Figure 1: An overview of design choices made for TWEEZER.

make the MAC computation expensive. The best-known way
to ensure the freshness of this large chunk of data is to build
a Merkle tree [22], as Speicher does, at the cost of potentially
long latency. TWEEZER avoids composing the Merkle tree
spanning the entire LSM tree by associating a unique MAC
key to each SSTable by taking advantage of the three prop-
erties of LSM trees: the immutability of each SSTable, the
uniqueness of a key in each level, and the sorted keys in each
data block. We elaborate on these design details in §5.2 and
provide an in-depth security analysis in §6.

D2. We associate a MAC with each key-value pair rather than
with each data block in an SSTable, as shown in Figure 1 ().
For encrypting and computing the MAC, the data block could
be a natural unit. The SSTables are supposed to reside in stor-
age optimized for block-level access, and RocksDB fetches
and caches the key-value pairs at this granularity. What ren-
ders this design choice potentially inefficient is the limited
size of EPC. For the desired security guarantee, the data block
must reside in the EPC while being accessed, consuming valu-
able EPC space. This setup does not incur a significant perfor-
mance cost when the KVS serves a relatively small data set
and is configured to have only a small block cache. However,
the blocks in EPC quickly become a performance bottleneck
when the KVS requires a larger block cache to accommodate
more data [69], which could quickly exhaust the small EPC.
TWEEZER reduces this read amplification in EPC usage by
encrypting and authenticating each key-value pair separately.
This design choice enables TWEEZER to save EPC space and
use non-EPC memory more effectively as a cache for SSTa-
bles. One drawback of this design choice is the increased use
of storage space because the fine-grained encryption makes
the subsequent per-block compression unproductive and in-
creases the number of MAC:s stored in SSTables. We evaluate
and discuss this in §8 (Figure 12).

D3. We overcome the absence of trusted counters [28] in
the latest Intel SGX using hash chains (3) in Figure 1). An-
other performance-critical piece of data in persistent KVSs
is the WAL that a KVS builds in storage to recover recently

updated key-value pairs after a crash. The logs must be pro-
tected with encryption and MAC because they are supposed
to reside in storage for persistence. Appropriate encryption
and MAC computation provide confidentiality and integrity
guarantees, but freshness requires each log entry to be associ-
ated with additional data. Speicher proposed to use the trusted
counter [28] that an earlier version of the SGX SDK had,
but which has been discontinued [21,28]. Hence, TWEEZER
constructs a hash chain to protect the content and the order
of the logs. The hash chain alone is not enough to prevent
the rollback attack, so TWEEZER requires the user to place a
heartbeat transaction to timestamp the KVS version and use
it later to verify that a snapshot of TWEEZER is the latest one.
We elaborate on this aspect in §5.4.

S Design and Implementation

5.1 Data Encryption

TWEEZER manually encrypts all data that are stored out-
side EPC and decrypts them only within EPC. For example,
TWEEZER ensures the SSTable content remains encrypted in
both storage and memory and decrypts them only within EPC
when it obtains a key-value pair from the SSTable. We use
AES GCM mode with 256-bit key as the encryption scheme.
As such, TWEEZER encrypts all data stored outside EPC to
protect their confidentiality. For the rest of this section, we
focus on how TWEEZER ensures freshness with the authenti-
cation scheme tailored for LSM trees.

5.2 Authentication with Per-SSTable Key

TWEEZER computes the HMAC of SSTables to later verify
their freshness. When TWEEZER creates a new SSTable in
the process of compaction or flush, it generates a new secret
authentication key that is used exclusively for the particular
SSTable (see (D in Figure 1) and stores it in EPC and the
MANIFEST. TWEEZER then computes a MAC for each piece
of data in the newly created SSTable (§5.3) and stores the
MAC along with the encrypted data in the SSTable file. When
TWEEZER reads the SSTable later to obtain a key-value pair,
it computes the MAC again using the authentication key of
the SSTables kept in EPC and compares it with the MAC
stored along with the key-value pair to determine if the data
has been maliciously corrupted or not.

The use of SSTable-unique keys and a set of invariant
checks enable TWEEZER to guarantee the freshness of key-
value pairs using HMAC. This HMAC is strong enough to pre-
vent an attacker from generating correct MAC for an arbitrary
piece of data because the correct MAC computation requires
the secret key. However, a strong attacker who can obtain all
pairs of data and MAC can replay the collected pairs. For ex-
ample, if a KVS uses a single key to generate MAC for multi-
ple SSTables (SSTo, - - - ,SST},), the attacker can obtain pairs of
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(a) Original Data Block (b) Tweezer’s Data Block

Figure 2: The structure of the original data block (left) and
TWEEZER’s data block (right).

SSTables and their MACs, (SSTy, MACy), - -+, (SST,, MAC,,)
and present one of the pairs to bypass the verification. Such
a KVS using one key for multiple SSTables accepts this re-
played pair because the computed MAC matches the pre-
sented MAC. To defeat this, the KVS must have a means to
detect the replay, such as the Merkle tree.

TWEEZER avoids composing a Merkle tree spanning across
all SSTables leveraging the uniqueness of the key for each
SSTable and the immutability of SSTables. In general, the
use of distinct keys suffices to prevent the replays across the
set of data authenticated with different keys. However, this
still does not prevent the replays within the data sharing one
key because the attacker still has multiple pieces of data that
they can potentially switch or replay. In particular, an attacker
may reuse an older version of the data chunk (femporal re-
play) or the data chunks authenticated with the same key
(spatial replay). TWEEZER prevents temporal replay against
each SSTable by taking advantage of their immutability. By
design, an update to an existing key-value pair in an LSM tree
does not modify the SSTable. Instead, the new pair is stored
in one of the SSTables at a lower level. The new pair is thus
authenticated with a different key and the attacker cannot use
the older pair to simply roll back the update. In other words,
the attacker does not have an older version of key-value pairs
authenticated with the same key because TWEEZER has never
computed such MACs. We further discuss how TWEEZER
prevents spatial replay in §5.3.

The performance improvement of Merkle tree-less authen-
tication comes from the lower EPC usage. The large size of
LSM tree makes MAC caching an essential design choice.
To avoid a series of MAC computations along the Merkle
tree for every SSTable read, the known good MAC for each
data block must be cached within EPC. Speicher implicitly
makes this design choice by storing the MAC in the footer
block of each SSTable that RocksDB keeps within memory,
within the EPC when it runs in an enclave (i.e., on Scone [4]).
The cost of retaining the MACs remains small when a KVS
accommodates a small number of SSTables, but increases
quickly as the number of SSTables increases with the size of
the KVS. The additional EPC usage for each SSTable varies
depending on the configuration, but is roughly about 840 KB
for each 64 MB SSTable, when the data block size is 4 KB and
value size is 128 B. This roughly becomes a total of 840 MB
if the KVS contains about 64 GB of key-value pairs, even
assuming that it has no duplicates. This becomes a significant

overhead considering the size of EPC, which is either 128 MB
or 256 MB. Another option is to compute MACs along the
Merkle tree whenever the KVS obtains a new block from
storage, but this will significantly increase read latency con-
sidering the cost of a typical HMAC computation. The use
of per-SSTable key enables TWEEZER to avoid storing too
much data in EPC when serving a large KVS, as we show
in §7.2 (Figure 10).

5.3 Fine-grained Authentication

TWEEZER authenticates each key-value pair individually to
avoid read amplification. An SSTable is composed of many
data blocks that are typically as large as 4 KB, containing
3~28 key-value pairs (Figure 2a). This is a design choice
considering the storage devices that are optimized for burst
data transfers. Speicher chose this as the unit of encryption
and authentication. It computes one MAC for each data block
as shown in Figure 2a and stores the result in the SSTable’s
footer block. However, the encryption and authentication cost
makes the inherent read amplification more expensive be-
cause the KVS must compute the MAC for the entire data
block even when it reads only one key-value pair. In addition,
such verified data must reside in EPC to avoid repeating the
expensive verification, consuming invaluable EPC space. The
block-level decryption and authentication limit the potential
location of the block cache to EPC, and this could become a
scalability bottleneck when the KVS is to contain large data.
In TWEEZER, we slightly rearrange the data block structure
as shown in Figure 2b. This is similar to the key-value separa-
tion approach first proposed by Lu et al. [35], but rearranged
for fine-grained encryption and authentication. Specifically,
each data block is composed of one value block and one key
block. The value block contains all values in the data block
along with the corresponding MAC computed from both the
key and value. The key block contains the sequence of keys
along with the offsets of their values in the value block. This
restructuring comes with two benefits. First, TWEEZER does
not need to verify the freshness of the entire data block to
obtain a single key-value pair, reducing read latency. Second,
TWEEZER can place the block cache in untrusted memory,
which is free from size limitations, because it can directly
read a single key-value pair from an encrypted data block.
TWEEZER utilizes the LSM tree’s invariant ordering to
verify the freshness of the key-value pairs. Each data block
in RocksDB’s SSTable is composed of a sequence of ordered
key-value pairs, and so are the keys in TWEEZER'’s key block.
TWEEZER reads a data block when it fails to find the key
in the MemTable or the SSTables at higher levels. In this
process, TWEEZER firstly consults the index blocks that it
keeps within EPC in plain text. By RocksDB design, each
data block B; in the LSM tree is associated with an index
key in the index block, k;. That is, the keys found in a data
block B; are not smaller than its index key k; and not larger

USENIX Association

20th USENIX Conference on File and Storage Technologies 367



Algorithm 1 Key Ordering

Input: i — The index of data block
Output: Returns 7rue if the data block satisfies invariant.
1: procedure CHECKORDERING(7)
2: keyBlock = GetKeyBlock(i)
3 firstKey = keyBlock.head
4: lastKey = keyBlock tail
5: keyLowerBd = GetIndexKey(i)
6.
7
8

> Obtain index key in EPC
keyU pperBd = GetIndexKey(i + 1)

ret = true
: if firstKey < keyLowerBound then
9: ret = false
10: if lastKey > keyU pperBound then
11: ret = false
12: for jin 1...keyBlock.length —2 do
13: > for each key in the key block except the first and last
14: if keyBlock[j — 1] > keyBlock|j] then
15: ret = false
16: else if keyBlock[j] > keyBlock[j+ 1] then
17: ret = false
18: else
19: continue
20: return ret

than the index key k; of the next data block B, . Utilizing
this, TWEEZER performs a binary search on the index keys
to obtain the data block potentially containing the key it is
looking for.

To find the key from the obtained data block, TWEEZER
decrypts and checks the ordering (Algorithm 1) of its key
block, before looking for the key. If found, TWEEZER uses
the offset associated with the key to obtain the encrypted
value with the MAC. TWEEZER then computes MAC using
the SSTable’s authentication key, the queried key, and the
value. By comparing this with the stored MAC, TWEEZER
verifies the freshness of the key-value pair. If TWEEZER fails
to find the key, it determines that the key does not exist in
the level and moves on to the next level. Although TWEEZER
does not perform MAC-based authentication for the key block,
the ordering check (Algorithm 1) effectively mitigates any
fault attack to deceive TWEEZER that a key does not exist in a
data block. As discussed earlier, all keys in a data block must
be larger than its index key and smaller than the next block’s
index key. TWEEZER checks this invariant by comparing the
first and last key of a key block with the index keys (line 3-7).
Subsequently, it compares each key in the key block with the
neighboring keys (line 13-21) to ensure the ordering within
the key block. As a result, any attempt to inject a fault to a key
block will make TWEEZER interpret the key block as a differ-
ent list of keys making the list highly unlikely to satisfy the
ordering invariant. While the probability of a successful attack
is not zero, as data blocks are small and the key space large, its
probability will be very low. In more detail, when TWEEZER
uses b-byte keys and the difference between the two index
keys is D, the chance of a successful attack is roughly as small
as 28%. When D is 24 and b is 16, this is about 5.42 - 1020
(27%%). Thanks to this invariant-based freshness protection,

the cost of reading a key-value pair becomes as small as one
decryption of a key block, one decrypting of a value entry, and
one MAC computation of a key-value pair. This is roughly
10x smaller than the potential cost of a block-level scheme
when a block contains 10 key-value pairs because the MAC
operation dominates read performance.

This fine-grained encryption and authentication make it nat-
ural to place the block cache outside EPC, which TWEEZER
does. This untrusted block cache is expected to be beneficial
when TWEEZER is to accommodate large data in its LSM
tree. By default, the block caches are placed inside EPC and
Speicher left this in EPC as well because the loaded block
is not encrypted. This does not become a performance bot-
tleneck when a KVS accommodates a small amount of data.
However, RocksDB is often configured to have a large block
cache in production to serve a large amount of data, and the
in-EPC block cache will not scale under this condition. The
block caches may still be placed outside EPC, but this will sig-
nificantly increase the block cache hit latency because every
single cache hit triggers a decryption and verification of the
whole data block. In contrast to this approach, the fine-grained
encryption and authentication approach that TWEEZER takes
enables it to take only a small portion of data into EPC from
the block that resides in the untrusted memory outside EPC.

5.4 Protecting Logs with Hash Chains

TWEEZER ensures the integrity and freshness of the WAL
and MANIFEST log using the classic hash chain [51, 52].
This hash chain is a good fit to protect those two data chunks
because both are append-only lists and the freshness verifi-
cation is performed only upon recovery. When TWEEZER
starts to run either from an empty KVS or after recovery, it
generates a nonce, considers the nonce as the first MAC (M),
and creates a cryptographic key for MAC computation. For
each new log entry (e;), TWEEZER concatenates the encrypted
data entry with the previous log (M,_||E(e;)) to compute the
next MAC (M;) and stores it along with the encrypted data.
The encrypted key-value pair becomes the data entry for the
WAL, and the encrypted new MANIFEST becomes the data
entry for the MANIFEST log. Like it does for each SSTable
(see §5.2), TWEEZER generated a unique key to protect logs
from replay attack. This use of a unique key prevents the
attacks from replaying an entire log chain using an older one.
The replayed log will be verified using a newer key, which
is different from the one used for generating the older chain.
Due to the differences in keys, the replayed MACs are not
considered genuine ones, and TWEEZER recognizes this as
a result of malicious manipulation. This hash chaining suffi-
ciently prevents any attack on the hash chain’s integrity and
freshness as further discussed in §6.

We chose to use this hash chain for log protection rather
than Speicher’s mechanism that relies on the trusted counter
for two reasons. First, the trusted counter that Speicher relies

368 20th USENIX Conference on File and Storage Technologies

USENIX Association



on increments only once every 60ms [6]. This limits the
number of new log entries the KVS can create outside EPC
to one per 60 ms, which is about 23.4 per second [6]. This
is much lower than the expected number of write requests
that a KVS is expected to serve. Speicher inevitably delays
persisting new key-value pairs to overcome this limitation.
In contrast, the hash chain mechanism does not suffer from
this limitation. Second, support for the trusted counter on
server platforms is not yet stable and its availability varies
depending on the system configuration [21]. SGX is designed
to use the trusted counter provided by the accompanying
Trusted Platform Module, but not all server platforms have it.
Furthermore, the SGX SDK for Linux does not provide the
API as well [28]. TWEEZER’s approach using the hash chain
is, therefore, a more portable way to protect the logs.

5.5 Root of Trust

TWEEZER binds the confidentiality and integrity of its data
to a pair of cryptographic keys and MAC computed from
the MANIFEST. TWEEZER users retain these securely (e.g.,
in a physically isolated local machine) for full protection.
TWEEZER uses the cryptographic key and MAC to recover
data from the encrypted backup and to verify the backup’s
freshness. While running, TWEEZER uses these root keys to
encrypt and authenticate the MANIFEST log that contains the
KVS metadata. The other keys (§4) that TWEEZER uses are
kept within the MANIFEST on persistent storage, residing in
EPC during run time. This design choice allows TWEEZER to
use the keys without significant delay and can later obtain a
copy of those keys from the root key pairs and the MANIFEST
file when it loads the data from a snapshot.

5.6 Primitive Operations

This section describes how TWEEZER execute the primitive
operations for handling the requests.

PUT. TWEEZER handles a PUT request by inserting the
key-value pair to WAL for persistence and to MemTable for
efficient lookup. The new key-value pair is first encrypted
with the dedicated log key, and the resulting data is used
for computing a MAC along with the MAC of the previous
entry in WAL (see §5.4). The encrypted pair is stored in
WAL along with the computed MAC. TWEEZER follows a
procedure similar to RocksDB’s when it inserts a key-value
pair to its MemTable, except for the cryptographic operations.
TWEEZER’s MemTable is located in both the EPC and un-
trusted memory, as proposed by Speicher (see §2). TWEEZER
finds out the place in the untrusted memory where the value
from the new pair will be stored using the internal nodes
in EPC and store the encrypted value there. The MAC for
the newly stored value is kept within EPC for verification of
authenticity later.

GET. Upon receiving a GET request that accompanies a key,
TWEEZER first looks up the MemTable within the EPC to
determine if the key exists in the MemTable. If the key is
found, TWEEZER obtains the encrypted value from the un-
trusted memory and MAC from EPC. The obtained MAC is
then compared with the expected one computed using the key
kept in EPC. Only if the stored MAC matches the computed
one does TWEEZER consider the obtained value as a genuine
one and respond to the request with it. If the key is not found
from the MemTable, TWEEZER traverses the LSM tree as
RocksDB does to find the pair with the requested key or deter-
mine that the key does not exist. TWEEZER finds an SSTable
that is likely to contain the requested key like unmodified
RocksDB, from the lowest level of the LSM tree, using the
filter blocks and index blocks cached in EPC, with the sanity
checks described in §5.3. From the data block, TWEEZER
obtains the key block containing all keys, decrypts it in EPC,
and finds the requested key. TWEEZER continues to the next
level of the LSM tree if it fails to find the key from the key
block. Otherwise, if the key is found, TWEEZER speculates
that the key-value pair is stored in the current data block and
obtains the encrypted key-value pair along with its MAC from
the value block. TWEEZER verifies the obtained pair’s authen-
ticity using the authentication key for the SSTable (see §5.2),
and responds to the client with the value if the computed
MAC matches the stored one.

Range. As in RocksDB, TWEEZER handles range queries
by first creating iterators and then traversing the data blocks
in multiple levels. TWEEZER finds the starting key and ini-
tializes the iterators on each level by performing the same
operations for handling GET requests. For each traversal,
TWEEZER determines the latest version of the key-value pair
like RocksDB, by checking the MemTable and then the LSM
tree. If the key exists in MemTable, TWEEZER verifies its
authenticity and decrypts the value as it does to handle a GET
request. The case where TWEEZER finds the key-value pair
from the LSM tree is also handled similarly, and TWEEZER
verifies the absence of a key at a certain level as described
in §5.3.

Recovery. TWEEZER follows the same recovery scheme that
RocksDB implements, with the additional decryption and
verification using the pre-shared credentials (i.e., keys and
MAC). For this, TWEEZER takes the credentials as inputs
in addition to the files constituting the KVS. The first piece
of data that TWEEZER decrypts and verifies are the MANI-
FEST logs as discussed earlier (§5.5). As a result, TWEEZER
obtains the latest MANIFEST that contains the structure of
TWEEZER across the files and cryptographic keys needed to
decrypt and verify the rest of the data chunks. In particular,
TWEEZER obtains these keys from the recovered and veri-
fied MANIFEST update log called version edit. Each version
edit contains the changes made to the KVS structure such
as SSTable creation, SSTable deletion, log entry creation or
log entry deletion. TWEEZER extends these records with the
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additional keys that it uses such as the per-SSTable keys or
log key. Aside from the additional decryption or verification
steps, recovery is done following RocksDB’s scheme. After
recovery, TWEEZER provides the remote user with heartbeat
data that represents the exact version of the snapshot (see §6).

6 Security Analysis

This section discusses in-depth about how TWEEZER ensures
the integrity and freshness of its data against potential attacks.

Replay Attack. Reuse of existing encrypted data-MAC
pairs is a common attack strategy against data integrity. To
TWEEZER, this is the only way for attackers to pass the MAC-
based verification procedure. Under our threat model the at-
tackers can obtain these data-MAC pairs stored outside EPC
because they are assumed to have full access to the mem-
ory content outside the EPC as well as the storage content.
With this strong capability, an attacker may aim to replay
TWEEZER’s data chunks such as MANIFEST log, WAL, a
whole SSTable, or individual key-value pairs.

Log Replay. The first two targets, MANIFEST log and WAL,
are protected by the hash chain. TWEEZER and the remote
user are assumed to have the key pairs for encryption and
MAC computation along with the nonce that TWEEZER uses
as the first hash. When TWEEZER recovers from a snapshot,
TWEEZER correctly determines if each log entry is a replayed
block or not through the MAC verification for the following
reason. To replay the ith block b; from the list of log entries
bg,--- ,b, and pass the verification procedure, the attacker
must generate or obtain MAC M/ computed from h;_||b;
using the correct MAC key, where b/ is the replayed block
and h;_; is the correct MAC of the previous (i.e., (i — 1)th)
block. Howeyver, the attacker cannot obtain such Ml'. because
of the uniqueness of the MAC key and the blocks in the log.
The only data chunks with the corresponding MAC computed
using the MAC key are the log entries. Therefore, the attacker
can only choose one from by, - - - , by as the b]. If the attacker
chooses b; as b;, the only MAC available to the attacker is
the one computed from #4;_;||b;, which does not pass the
verification procedure because h;_1 # hj—1 when j # i.

Key-Value Pair Replay. TWEEZER recognizes any attack
against the latter two (a whole SSTable and an individual key-
value pair) when it verifies their freshness using the MAC. An
attacker’s strategy in this scenario can be classified into three
groups. First, the attacker may try to replace one SSTable as
a whole with another. TWEEZER detects this attempt when it
obtains data blocks from the SSTable and verifies the block
through MAC computation. Similar to the earlier scenario,
the attacker cannot obtain the appropriate MAC because the
key-value pair that the attacker aims to replay has never been
used to compute a MAC with the target SSTable’s key. Each
SSTable is authenticated with its unique key, so the MACs
associated with key-value pairs in another SSTable are con-

sidered incorrect by the verification procedure. Second, an
attacker could try to replay data chunks within one SSTable.
TWEEZER recognizes this using the invariant ordering of
SSTables in an LSM tree as discussed in §5.3. If the replay
is somehow performed within a key block, the attacker in-
evitably breaks the ordering. If the replay switches two keys
k1 and k; and k; is to appear earlier than &, the replay makes
ko appear earlier than k;, breaking the invariant ordering. Du-
plicating a key is not an option as well because it breaks the
uniqueness principle. The last strategy that the attacker can
choose is to replay across the key blocks within an SSTable,
but it violates the property of the index key, which partitions
the set of keys an SSTable contains into contiguous and mu-
tually disjoint ranges.

Rollback Attack. TWEEZER ensures that the user has the
latest version of its data at the granularity of heartbeat transac-
tions. A strong attacker that we assume may place a rollback
attack where they take a snapshot of TWEEZER’s data at some
point and later present to TWEEZER or its remote user as the
genuine and latest version. The online rollback attack that an
attacker performs while TWEEZER is running is infeasible be-
cause the attacker cannot replace the data stored within EPC.
An offline attack in which the attacker replaces TWEEZER’s
files with an older version could, however, be a realistic threat.
To thwart such attacks, TWEEZER relies on periodic interac-
tion with the user to timestamp the versions by periodically
issuing a write transaction to TWEEZER. Later, these result-
ing key-value pairs are used to determine the TWEEZER snap-
shot version. These additional timestamps provide rollback-
resilience because the other verification mechanisms prevent
the attacker from forging a fake snapshot. When given a
snapshot to recover from, TWEEZER and its user verify its
freshness using the root key pairs, starting from the MAN-
IFEST log. As discussed in §5.6, an attacker who does not
have these key pairs cannot make any modifications to any
older TWEEZER snapshot version. The only remaining option
is to present an exact copy of an older version, but the user cor-
rectly determines the copy’s version from the key-value pairs
from the heartbeat transactions after the verified recovery.

Existence Attack. TWEEZER also detects any attempt to
deceive it into believing that an SSTable does not contain a
particular key when, in fact, the SSTable has it. The LSM tree
design strengthens this attack if successful because TWEEZER
may consider an older version of the key-value pair found
in a lower level. The LSM tree-based KVSs handle update
requests by adding the new key-value pair to the higher level
of the LSM tree and leave the older one in a lower level.
An attacker performing the existence attack must first find
the key block that contains the victim key and forge a valid
key block passing TWEEZER’s check. The confidentiality
that TWEEZER ensures using encryption prevents this first
step, which leaves an attack to an unknown key as the only
remaining option. However, this option is also highly unlikely
because of TWEEZER’s invariant check, as discussed in §5.3.
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Figure 3: The normalized slowdown of TWEEZER and reproduced
Speicher, along with the reported slowdown of Speicher [6], where
the unmodified RocksDB is the baseline. The absolute throughput is
also presented as lines using the y axis on the right.

7 Performance Evaluation

Environment. We evaluate the performance of TWEEZER
on a machine with Intel Xeon E-2288G and 64GB of DRAM.
The CPU has 32 KB instruction and data caches, 256 KB of
L2 caches and a 16 MB shared L3 cache. The CPU also im-
plements Intel SGX for confidential computing and AES-NI
to speed up AES block cipher. The system runs Ubuntu 18.04
with Linux Kernel 4.15. For every cryptographic operation,
we used OpenSSL 1.1.1i. Specifically, we chose AES GCM
256 as the block cipher scheme to protect the confidential-
ity of the data, GHASH to compute MAC:s for the logs and
MemTable, and HMAC with SHA3-384 to compute MACs
for SSTables. We followed the schemes that Speicher used
to rule out the performance impact of cryptographic schemes
when we compare TWEEZER and Speicher. Note that, unlike
the encryption or GHASH, the HMAC computation does not
benefit from hardware acceleration because the CPU that we
use does not have hardware extensions to accelerate for SHA
computation. We built both TWEEZER and the reproduced
Speicher based on RocksDB version 6.14.

Benchmarks. We evaluate TWEEZER using db_bench with
three workloads, r100, r90w10, r80w20 each of which is com-
posed of 100% reads; 90% reads and 10% writes; and 80%
reads and 20% writes; respectively. The key size is 16 B, the
SSTable size is 64 MB, and 5 million key-value pairs were
used, as done in Speicher [6]. The block size is either 4 KB,
which is the default of RocksDB, or 32 KB, what Speicher
used for its evaluation. In some experiments, we use db_-
bench to create KVSs as large as 16 GB and 64 GB, and use
them to evaluate the performance of TWEEZER on a practical
setup.

Reproducing Speicher. For comparison, we reproduced Spe-
icher by extending RocksDB because Speicher is not open-
sourced. As discussed in § 1, TWEEZER adopts some of Spe-
icher’s design decisions to save EPC space and relies on
Scone for asynchronous system calls. As such, the repro-
duced Speicher shares these aspects with TWEEZER in our
implementations. Figure 3 shows the normalized through-
put of TWEEZER, the reproduced Speicher, and the original

I Speicher
r100 r90w10

Tweezer

r80w20

16 64 16 64
Initial KVS Size (GB)

Figure 4: Normalized slowdown (lower is better) relative to the
original RocksDB on SGX of TWEEZER.

Normalized Slowdown
(Lower is Better)

Speicher as bars, and the absolute throughput as lines. Here-
after, all normalized results are normalized to the baseline
RocksDB, presented with the absolute throughput. The ex-
perimental results advocate that our reproduction of Speicher
is reasonable in that it exhibits similar or better performance
characteristics compared with the reported number. In this
experiment, we issue 5 million transactions starting from a
KVS filled with 5 million entries, set the value size to 1024 B,
and set the block size to 32 KB to replicate the experiments
as close to those of the original setting [6]. We note that the
difference in experimental setup may have also contributed
to the better performance that replicated Speicher exhibits
compared to the original. Speicher was evaluated with on a
machine with Xeon E3-1270 v5, which has smaller (§ MB)
shared L3 cache and smaller EPC (128 MB), albeit the size
of main memory is the same. Larger EPC and caches poten-
tially reduce the number of cryptographic operations while
Speicher runs, reducing the overhead of storing data within
EPC. Regarding the results, we observe that TWEEZER out-
performs Speicher by 1.91~3.94 x despite the fact that the
KVSs run with smaller amount of data. The 5 million entries
are actually small enough that EPC paging does not occur,
favoring Speicher considerably.

7.1 Throughput

Point Lookups. Figure 4 shows the normalized throughput
of TWEEZER and Speicher on three workloads from db_-
bench with varying initial KVS sizes and 1024B values. The
block size is set to 4 KB, which is the default and the best
for the original RocksDB. Starting from the KVS images
that we created using db_bench, we issue 5 million transac-
tions to measure the throughput. Under the tests using these
large KVSs, TWEEZER consistently outperforms Speicher by
1.94~6.23 x, reducing the slowdown from 16~30x to 4~9x.
Our observation (§7.2) suggests that this performance gap
is primarily due to EPC paging. As the KVS size increases,
Speicher’s footer cache in EPC becomes larger and causes
frequent EPC paging. The use of per-SSTable keys reduces
the amount of data that must be kept within EPC, enabling
TWEEZER to avoid the frequent EPC paging.

Range Query. We evaluate the range query performance
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Figure 5: Normalized throughput of TWEEZER and Speicher on
range queries with varying length. Length refers to the number of
key-value pairs being accessed for each range query.
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Figure 6: Normalized performance of TWEEZER and Speicher with
large (32 KB) data blocks.
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of TWEEZER and Speicher using seekrandom benchmark in
db_bench, with 1024 B values and 32 KB data blocks. As
Figure 5 shows, TWEEZER exhibits higher throughput than
Speicher for short queries, but the advantage diminishes as the
query length increases. This result is due to the fine-grained
authentication (§5.3) that is optimized only for point lookups.
When obtaining a key-value pair, the cryptographic cost is
smaller in TWEEZER than Speicher that decrypts and authen-
ticates a whole data block even for a single request. However,
this whole-block decryption and authentication become less
costly when handling range queries because Speicher decrypts
and authenticates the block only once for multiple pairs. Un-
like this, TWEEZER has no choice but to handle range queries
like a sequence of point lookups, thus authenticating the key-
value pairs separately.

Block Sizes. The data block size in an SSTable can be con-
figured and may affect throughput. While our experiments on
point lookup performance used the default value of 4 KB as
this setting results in the best performance for the baseline
RocksDB, Speicher, in their experiments, used 32 KB blocks.
Thus, we perform the same experiments obtained for Figure 4
except with the block size set to 32 KB. From the results
in Figure 6, we observe that Speicher performance improves
considerably due to the reduction in EPC usage (see §7.2).
Despite this, we see that TWEEZER still outperforms Speicher
by 1.46~2.17x.

Value Sizes. Figure 7 shows how the value size affects the
performance of TWEEZER and Speicher. For these experi-
ments, we used the same setup as the comparison study in Fig-
ure 3 except for the value sizes. Overall, we observe that
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Figure 7: The normalized performance of TWEEZER and Speicher
when running for different value sizes.
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Figure 8: Normalized throughput of TWEEZER and Speicher with
two different memory allocators, musl and mimalloc, as the number
of threads increases.

TWEEZER outperforms Speicher by 1.82~4.70% in all con-
figurations because TWEEZER also, in part, suffers from read
amplification, which diminishes as the value size increases,
resulting in reduced slowdown.

Number of Threads. Figure 8 shows the normalized
throughput of TWEEZER and Speicher as the number of
threads increases. Speicher scales similarly to RocksDB, but
TWEEZER’s slowdown increases as the number of thread in-
creases. According to our analysis, this is due to the default
heap allocator of Scone, musl [49] that does not scale as the
number of threads increases. TWEEZER’s shows scalability
when we replace musl with mi-malloc [39] but the benefit was
limited because Scone [55] does not support the thread local
storage model that mi-malloc uses. Nevertheless, TWEEZER
outperforms Speicher by 1.78 x when running with 4 threads.

Untrusted Block Cache. Fine-grained authentication (§5.3)
enables TWEEZER to place the block cache in untrusted mem-
ory, outside EPC. Having its block cache outside the EPC
is beneficial when TWEEZER starts to serve a large KVS
in which larger block cache could help reduce the average
read latency. Figure 9 presents the normalized throughput of
TWEEZER and Speicher as we change the block cache sizes
from 8 MB (default) to 128 MB and 256 MB using the same
setup as the comparison study in Figure 3. Speicher’s perfor-
mance overhead increases as the block cache size increases
because the additional block caches cause more EPC paging.
Speicher places all block cache content in EPC as it does
not make any adjustment to the block cache management,
increasing EPC usage and resulting in more EPC paging. On
the contrary, TWEEZER does not suffer from the increased

372 20th USENIX Conference on File and Storage Technologies

USENIX Association



B Speicher Tweezer

- o) Block Size 4KB Block Size 32KB
3 %g 0 1 A Foask
=3 v » Vd » » 12k A%
gx.2 20 o 6k O
8258 0 0
zZrz

_3 8 128 256 8 128 256

~ Block Cache Size (MB)

Figure 9: Normalized throughput of TWEEZER and Speicher as the
block cache size increases.
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Figure 10: Cumulative number of EPC paging while running
TWEEZER and Speicher with varying block sizes (4 KB and 32 KB)
and initial KVS sizes (16 GB and 64 GB).

number of EPC paging because it places the block cache
outside the EPC with the same cryptographic protection as
the blocks in the SSTables. TWEEZER still does not benefit
from the block caches as the absolute numbers show, however,
due to the relatively small benefit that the block cache brings
to TWEEZER compared to the unmodified RocksDB. Block
cache miss penalty is high in unmodified RocksDB because it
decompresses the retrieved data block on cache misses. The
cache hit latency is long on TWEEZER, which additionally
decrypts and authenticates the retrieved pairs.

7.2 EPC Usage

EPC Paging. We obtained the number of EPC paging using
sgxtop [32]. Figure 10 shows the cumulative number of EPC
paging observed while running the two configurations of the
benchmarks used for the experiment in §7.1. Specifically, we
accumulated all observed EPC paging from each run after the
recovery because neither TWEEZER nor Speicher is designed
to optimize the recovery phase and both experience a large
number of EPC paging. When the block size is configured to
4 KB (the bottom two in Figure 10), which is the default and
exhibits better performance for TWEEZER, Speicher suffer up
to 430x more EPC paging, due to the cached MACs in the
footer blocks. On the contrary, when we configure the block
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Figure 11: Normalized table cache sizes while running TWEEZER
and Speicher with the r90w10 workload.
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Figure 12: The amount of data stored in file system when we store
the same number of key-value pairs.

size to be 32 KB, we observed that the cumulative number of
EPC paging that TWEEZER experiences approaches that of
Speicher, even though TWEEZER still outperforms Speicher
in terms of throughput (§7.1). According to our analysis, this
additional EPC paging comes from background compaction.
Compared with Speicher, we observe certain periods in time
in which TWEEZER’s cumulative EPC paging suddenly in-
creases. This is due to the additional memory consumption
by the background compaction, which also uses EPC space
to process decrypted blocks. It is worth noting that these EPC
paging numbers were obtained from the runs reported in Fig-
ure 6. That is, TWEEZER still shows much higher performance
albeit the EPC pagings due to the compaction. This is because
the compaction does not usually block the transaction pro-
cessing. TWEEZER’s fine-grained authentication (§5.3) could
enable compaction with encrypted SSTables and reduce these
peaks, but we leave it as future work.

Amount of Data in EPC. The amount of data in EPC is an-
other measure that shows the potential density of EPC paging
over time. Programs using more EPC are likely to experience
more EPC misses and longer EPC access time on average.
To compare the amount of data that TWEEZER and Speicher
store in EPC, we measure the size of the table cache that con-
tains metadata for SSTables and resides in memory. The size
of the table cache is a good estimate of the amount of data
in EPC because the table cache is the largest component in
EPC by design. Figure 11 shows the results for the workload
with 90% reads as we vary the values sizes and block sizes.
We observe that Speicher’s table cache is 3.71~4.17 x larger
compared to that of RocksDB while that of TWEEZER’s is
only 1.08~1.35x larger. In other words, Speicher uses a table
cache that is 2.84~3.08 x larger compared to TWEEZER. This
shows that our design choice of using per-SSTable key (see
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Figure 13: The amount of data that RocksDB, Speicher, and
TWEEZER write to storage as the value size changes, normalized to
the total size of key-value pairs that they received.

§5.2) helps reduce the amount of data in EPC, contributing to
reduced EPC paging.

7.3 Storage Blowup

Increased Storage Usage. One drawback of fine-grained
authentication is the increase in storage usage due to the
less productive compression after encryption and individual
authentication for each key-value pair. As discussed in §4,
TWEEZER’s fine-grained authentication renders RocksDB’s
block compression less effective because the data is encrypted
before compression, unless TWEEZER employs a specially
crafted encryption and compression scheme [29, 53]. To un-
derstand this drawback quantitatively, we evaluate the corre-
sponding storage cost by measuring the size of aggregated
SSTables, with compression, constituting the KVS in varying
configurations used for the evaluations in §7.1. Figure 12
shows the results, and we see that TWEEZER experiences
1.77~3.45x storage overhead. This overhead in size increases
as the value size decreases because the MAC size remains the
same for each key-value pair.

Write Amplification. We also measure the amount of data
that Speicher and TWEEZER write to storage and Figure 13
shows the result. We normalized the amount of written data to
the number of key-value pairs that each KVS accommodates
to compare their impact on write amplification. As expected,
write amplification decreases as the value size increases when
running unmodified RocksDB or Speicher because the amount
of metadata is proportional to the number of entries. When
the total size of key-value pairs is fixed, they write less meta-
data because they store fewer entries as the value size in-
creases. The write amplification of TWEEZER also decreases,
but much less than the other two. We presume that this is
primarily due to the entropy of data in data blocks. Unlike
Speicher, TWEEZER encrypts data blocks before compres-
sion, rendering compression less effective. On the evaluation
with 16 GB KVS, write amplification even increases when
the value size increases from 512 B to 1024 B.
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Figure 14: Throughput of TWEEZER without (TWEEZER) and with
(TWEEZER+) the strong key block authentication.

8 Discussion

Data Obliviousness. TWEEZER is not designed to be data-
oblivious. That is, TWEEZER is not provably immune to side-
channel leakage through data-dependent access patterns. For
example, attackers could learn the following information. By
observing the changes of encrypted values in MemTable
stored outside the EPC, attackers could learn that a write
request was made and handled. However, cryptographic pro-
tection prevents the attacker from revealing or faulting the con-
tent. The relationship between leaves are also under protection
in that the internal nodes are stored within EPC. Only a suc-
cessful side-channel attack against the enclave [10,33,48,66]
could reveal such a relationship. Access patterns within an
SSTable reveals relationships between the queried key and
the index keys. TWEEZER does not shuffle the data blocks in
an SSTable, and an attacker can determine from which data
block TWEEZER found the queried key through the access
pattern. Combining these two, an attacker can infer the likely
range of the queried key, for example, how many keys in the
SSTable would be larger than the queried key. TWEEZER
could mitigate this inference by shuffling the data blocks.

Larger KVS. Our study shows that TWEEZER needs to be
tailored further to have better efficiency in EPC usage when
the KVS size becomes larger. TWEEZER introduces much
smaller amount of additional in-memory data that must be
held in EPC compared with Speicher. However, the amount
of data that TWEEZER holds in EPC still increases as the
KVS size increases because of some data (e.g. index block)
that TWEEZER still caches within EPC, as an extension of
RocksDB. We leave the optimization of RocksDB metadata
to further reduce this EPC usage as future work.

Key Block Freshness. As discussed in §5.3, TWEEZER does
not provably prevent the fault attack against the key block,
although it is highly unlikely for an attacker to successfully
perform the attack. This is due to the lack of MAC-based
verification of the key blocks. As an alternative design choice,
TWEEZER can be strengthened by computing and verifying
MAC for the key blocks as well. Figure 14 is the result of
our experiments showing the performance overhead of this
design choice. As expected, the additional authentication does
incur performance overhead (TWEEZER+). TWEEZER+ is
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119%~24% slower than TWEEZER depending on workloads
and value sizes. The overhead increases with smaller value
size because the key block size increases as the value size
decreases.

9 Related work

This work is closely related to existing attempts to tailor
various important applications to Intel SGX [3,6,12, 16,23,
31,54,56,61] as well as research on securing database systems
including KVSs [15,45].

Running Unmodified Applications on SGX. Haven [7, 8],
SCONE [4], Graphene-SGX [64], Panoply [57], SGX-LKL
[46] are systems designed to help unmodified applications to
run on an enclave. As suggested by the authors, these enabled
us to quickly work on tailoring a persistent KVS for Intel SGX.
In particular, TWEEZER has been implemented and tested on
SCONE. However, it is worth noting that TWEEZER can run
on any of the aforementioned systems because TWEEZER
does not make any assumptions on features unique to SCONE.

Persistent KVSs on SGX. As we have repeatedly discussed,
Speicher [6] is the closest to our work in that it is designed
to boost the performance of a persistent KVS on SGX, tak-
ing RocksDB as an example. Speicher contributes three new
design features to achieve this goal, but fails to scale to
large KVSs. While TWEEZER adopts many of the ideas pro-
posed by Speicher, we propose a new message authentica-
tion scheme and restructures the data block to alleviate the
scalability issue. Furthermore, TWEEZER uses a hash chain
mechanism to protect persistent logs allowing for a solution
that is not bound to platforms that support trusted counters.
Enclage [61] is also close to TWEEZER in that it is designed
to be an SGX-based secure storage engine but does not take
integrity protection into account.

In-memory KVSs on SGX. ShieldStore [31] studies the
design options to adapt an in-memory KVS for SGX. Com-
pared with TWEEZER, ShieldStore is designed for in-memory
KVSs and still relies on the Merkle tree for freshness. Similar
to ShieldStore, EnclaveCache [12] and Avocado [5] are also
designed to use SGX to protect in-memory KVSs.
Cryptographic Approaches. CryptDB is one of the pioneer-
ing systems in which unmodified database queries are prox-
ied and handled by encrypted backend [45]. CryptDB adopts
various cryptographic schemes including homomorphic en-
cryption [20] and focuses on confidentiality guarantees. Dory
goes beyond confidentiality guarantees and mitigates access
pattern-based leakage, providing authenticity relying on dis-
tributed trust [15]. TWEEZER tackles the same problem at a
lower level compared with these approaches in that many re-
lational database systems use RocksDB-like persistent KVSs
as storage engines. One weakness of TWEEZER, when com-
pared to Dory, is the lack of data obliviousness. To overcome
this, TWEEZER has to be strengthened with oblivious search
indices [40] or file system operations [2].

Log Protection. Protection of logs from rollback attacks
have long been an important problem. One of the well-known
mechanisms is the hash chain [44, 51, 52] that TWEEZER
adopts to protect the WAL and MANIFEST logs. However,
the hash chain cannot guarantee freshness against potential
rollback attacks across crashes and recoveries as discussed
in Memoir [44]. Memoir overcomes this limitation and re-
lies on local trusted non-volatile memory. Verena [30] also
addresses a similar problem by using a hash server. Com-
pared with these, TWEEZER’s approach is similar to Verena
in that it relies on the user, who sends heartbeat transactions
to timestamp versions. ROTE is designed solely to address
this weakness of requiring a trusted component to defeat the
rollback attack by using multiple enclaves [37]. TWEEZER
can adopt this to provide rollback resilience without relying
on the heartbeat packets.

10 Conclusion

This paper presented TWEEZER, an LSM tree-based persis-
tent key-value store tailored for confidential computing by
taking advantage of the LSM tree design principles. The
unique invariants that the LSM tree introduces, being a data
structure optimized for storage devices, enables TWEEZER to
avoid constructing a large Merkle tree to protect the integrity
and freshness of the key-value pairs. Our experiments with
the implementation of TWEEZER and a reproduction of a pi-
oneering work, Speicher, shows that this new MAC scheme
for the LSM tree brings considerable performance benefits.
Our implementation of TWEEZER outperforms Speicher on
point lookups (e.g., by 1.91~6.23 x) in all evaluation settings,
and in particular, the ones with large (16~64 GB) KVSs. We
anticipate that our findings and open-sourced implementation
from this work will motivate further improvements in this
direction to secure our data on these key-value stores.
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