
This paper is included in the Proceedings of the
20th USENIX Conference on File and Storage Technologies.

February 22–24, 2022 • Santa Clara, CA, USA
978-1-939133-26-7

Open access to the Proceedings
of the 20th USENIX Conference on

File and Storage Technologies
is sponsored by USENIX.

The what, The from, and The to:
The Migration Games in Deduplicated Systems

Roei Kisous and Ariel Kolikant, Technion - Israel Institute of Technology;
Abhinav Duggal, DELL EMC; Sarai Sheinvald, ORT Braude College of Engineering;

Gala Yadgar, Technion - Israel Institute of Technology
https://www.usenix.org/conference/fast22/presentation/kisous

The what, The from, and The to: The Migration Games in Deduplicated Systems

Roei Kisous and Ariel Kolikant
Computer Science Department, Technion

Abhinav Duggal
DELL EMC

Sarai Sheinvald
ORT Braude College of Engineering

Gala Yadgar
Computer Science Department, Technion

Abstract
Deduplication reduces the size of the data stored in large-

scale storage systems by replacing duplicate data blocks with
references to their unique copies. This creates dependencies
between files that contain similar content, and complicates the
management of data in the system. In this paper, we address
the problem of data migration, where files are remapped be-
tween different volumes as a result of system expansion or
maintenance. The challenge of determining which files and
blocks to migrate has been studied extensively for systems
without deduplication. In the context of deduplicated storage,
however, only simplified migration scenarios were considered.

In this paper, we formulate the general migration problem
for deduplicated systems as an optimization problem whose
objective is to minimize the system’s size while ensuring that
the storage load is evenly distributed between the system’s
volumes, and that the network traffic required for the migration
does not exceed its allocation.

We then present three algorithms for generating effective
migration plans, each based on a different approach and rep-
resenting a different tradeoff between computation time and
migration efficiency. Our greedy algorithm provides modest
space savings, but is appealing thanks to its exceptionally short
runtime. Its results can be improved by using larger system rep-
resentations. Our theoretically optimal algorithm formulates
the migration problem as an ILP (integer linear programming)
instance. Its migration plans consistently result in smaller and
more balanced systems than those of the greedy approach,
although its runtime is long and, as a result, the theoretical
optimum is not always found. Our clustering algorithm enjoys
the best of both worlds: its migration plans are comparable to
those generated by the ILP-based algorithm, but its runtime is
shorter, sometimes by an order of magnitude. It can be further
accelerated at a modest cost in the quality of its results.

1 Introduction
Many large-scale storage systems employ data deduplication
to reduce the size of the data that they store. The deduplication
process identifies duplicate data blocks in different files and re-
places them with pointers to a unique copy of the block stored
in the system. This reduction in the system’s size comes at the

cost of increased system complexity. While the complexity
of reading, writing, and deleting data in deduplicated storage
systems has been addressed by many academic studies and
commercial systems, the high-level management aspects of
large-scale systems, such as capacity planning, caching, and
quality and cost of service, still need to be adapted to dedupli-
cated storage [44].

This paper focuses on the aspect of data migration, where
files are remapped between separate deduplication domains,
or volumes. A volume may represent a single server within a
large-scale system, or an independent set of servers dedicated
to a customer or dataset. Files might be remapped as a result
of volumes reaching their capacity limitation or of other bot-
tlenecks forming in the system. Deduplication introduces new
considerations when choosing which files to migrate, due to
the data dependencies between files: when a file is migrated,
some of its blocks may be deleted from its original volume,
while others might still belong to files that remain on that
volume. Similarly, some blocks need to be transferred to the
target volume, while others may already be stored there. An
efficient migration plan must optimize several, possibly con-
flicting objectives: the physical size of the stored data after
migration, the load balancing between the system’s volumes,
i.e., the physical size of the data stored on each volume, and
the network bandwidth generated by the migration itself.

Several recent studies address specific (simplified) cases
of data migration in deduplicated systems. Harnik et al. [28]
address capacity estimation and propose a greedy algorithm
for reducing the system’s size. Rangoli [41] is a greedy algo-
rithm for space reclamation, where a set of files is deleted to
reclaim some of the system’s capacity. GoSeed [40] is an ILP
(integer linear programming)-based algorithm for the seeding
problem, in which files are remapped into an initially empty
target volume. While even the seeding problem is shown to
be NP-hard [40], none of these studies address the conflicting
objectives involved in the full data migration problem. Namely,
the tradeoff between minimizing the system size, minimizing
the network traffic consumed during migration, and maximiz-
ing the load balance between the volumes in the system.

In this paper, we address, for the first time, the general case
of data migration. We begin by formulating the data migration

USENIX Association 20th USENIX Conference on File and Storage Technologies 265

problem in its most general form, as an optimization problem
whose main goal is to minimize the overall size of the sys-
tem. We add the traffic and load balancing considerations as
constraints on the migration plan. The degree in which these
constraints are enforced directly affects the solution space,
allowing the system administrator to prioritize different costs.
Thus, the problem of data migration in deduplication systems
maps to finding what to migrate, where to migrate from, and
where to migrate to within the traffic and load balancing con-
straints specified by the administrator.

We then introduce three novel algorithms for generating
an efficient migration plan. The first is a greedy algorithm
that is inspired by the greedy iterative process in [28]. Our ex-
tended algorithm distributes the data evenly between volumes
while ensuring that the migration traffic does not exceed the
maximum allocation. By breaking this process into several
phases, we ensure that the allocated traffic is used for both
load balancing and capacity reduction, balancing between the
two (possibly conflicting) goals.

Our second algorithm is inspired by the ILP-based approach
of GoSeed. GoSeed solves the seeding problem, whose single
natural minimization objective is the system size. In contrast,
our new algorithm addresses the inherently competing objec-
tives (size, balance, traffic) of general migration. We refor-
mulate the ILP problem with variables and constraints that
express the traffic used during migration and the choice of
volumes from which to remap files or to remap files onto. Our
formulation for the general migration problem is naturally
much more complex than the one required for seeding. Never-
theless, we successfully applied it to data migration in systems
with hundreds of millions of blocks.

Our third algorithm is based on hierarchical clustering,
which, to the best of our knowledge, has not been applied to
data deduplication before. We group similar files into clusters,
where the target number of clusters is the number of volumes
in the system. We incorporate the physical location of the files
into the clustering process, such that the similarity between
files expresses the blocks that they share as well as their initial
locations. Clusters are assigned to volumes according to the
blocks already stored on them, and the migration plan remaps
each file to the volume assigned to its cluster.

We implemented our three algorithms and evaluated them
on six system snapshots created from three public datasets [6,
10,38]. Our results demonstrate that all algorithms can success-
fully reduce the system’s size while complying with the traffic
and load balancing constraints. Each algorithm has different
advantages: the greedy algorithm produces a migration plan
in the shortest runtime (often several seconds), although its re-
duction in system size is typically lower than that of the other
algorithms. The ILP-based approach can efficiently utilize the
allowed traffic consumption, and improve as the load balanc-
ing constraints are relaxed. However, its execution must be
timed out on the large problem instances, which often prevents
it from yielding an optimal migration plan. The clustering

algorithm empirically achieves comparable results to those of
the ILP-based approach, and sometimes even exceeds them. It
does so in much shorter runtimes.

We summarize our main contributions as follows. We formu-
late the general migration with deduplication as an optimiza-
tion problem (§ 3), and design and implement three algorithms
for generating general migration plans: the greedy (§ 4) and
ILP-based (§ 5) approaches are inspired by previous studies,
while the clustering-based (§ 6) approach is entirely novel.
We methodologically compare our algorithms to analyze the
advantages and limitations of each approach (§ 7).

2 Background and related work
Data deduplication. In a nutshell, the deduplication process
splits incoming data into fixed or variable-sized chunks, which
we refer to as blocks. The content of each block is hashed to
create a fingerprint, which is used to identify duplicate blocks
and to retrieve their unique copy from storage. Several aspects
of this process must be optimized so as not to interfere with
storage system performance. These include chunking and fin-
gerprinting [11,36,39,50,51], indexing and lookups [12,45,54],
efficient storage of blocks [17, 19, 31, 33, 34, 45, 52], and fast
file reconstruction [24, 30, 32, 53]. Although the first commer-
cial systems used deduplication for backup and archival data,
deduplication is now commonly used in high-end primary
storage.

Data migration in distributed deduplication systems. Nu-
merous distributed deduplication designs were introduced in
commercial and academic studies [18,22,27]. We focus on de-
signs that employ a separate fingerprint index in each physical
server [15,16,20,21,28]. This design choice maintains a small
index size and a low lookup cost, facilitates garbage collec-
tion at the server level, and simplifies the client-side logic. In
this design, each server (volume) is a separate deduplication
domain, i.e., duplicate blocks are identified only within the
same volume. Recipes of files mapped to a specific volume
thus point to blocks that are physically stored in that volume.

Deduplicated systems are different from traditional dis-
tributed systems in that striping files across volumes might
reduce deduplication, even if it is done using a content-based
chunking algorithm. Splitting files across a cluster also com-
plicates garbage collection. Moreover, many storage systems
(e.g., in DataDomain [23] and IBM [28]) are organized as a
collection of independent clusters or “islands” of storage in
the data center or across data centers. Deduplication is per-
formed within each independent subsystem, but files might
be migrated between the different appliances or clusters as a
means to re-balance the entire system’s utilization.

For example, if a subsystem becomes full while another sub-
system has available capacity, migration is quicker and cheaper
than adding capacity to the full subsystem. Existing mecha-
nisms migrate files efficiently by transferring only the files’
metadata and the chunks that are not already present in the
target subsystem [23]. Monthly migration aligns with average

266 20th USENIX Conference on File and Storage Technologies USENIX Association

(a) Initial system: balance = 1/5 (b) Alternative 1: deletion=0, traffic=2, balance=1

(c) Alternative 2: deletion=1/9, traffic=0, balance=0 (d) Alternative 3: deletion=3/9, traffic=1, balance=0
Figure 1: Initial system (a) and alternative migration plans: with optimal balance (b), optimal traffic (c), and optimal deletion (d). All the
blocks in the system are of size 1.

retention period which is seen for typical backup customers.
The coupling of the logical file’s location and the physical

location of its blocks implies that when a file is remapped
from its volume, we must ensure that all its blocks are stored
in the new volume. At the same time, the file’s blocks cannot
necessarily be removed from its original volume, because they
might also belong to other files. For example, consider the
initial system depicted in Figure 1(a), and assume we remap
file F2 from volume V2 to volume V1, resulting in the alternative
system in Figure 1(b). Block B1 is deleted from V2 because it
is already stored in V1. Block B2 is deleted from V2, but must
be copied to V1, because it wasn’t there in the initial system.
Block B3 must also be copied to V1, but is not deleted from
V2 because it also belongs to F3. The total sizes of the initial
system and of this alternative are the same: nine blocks.

Existing approaches. Harnik et al. [28] presented a greedy
iterative algorithm for reducing the total capacity of data in
a system with multiple volumes. In each iteration, one file is
remapped to a new volume, and the process continues until
the total capacity is reduced by a predetermined deletion goal.

GoSeed [40] addresses a simplified case of data migration
called seeding, where the initial system consists of many files
mapped to a single volume. The migration goal is to delete a
portion of this volume’s blocks by remapping files to an empty
target volume [23]. GoSeed formulates the seeding problem
as an ILP (integer linear programming) instance whose solu-
tion determines which files are remapped, which blocks are
moved from the source volume to the target, and which are
replicated to create copies on both volumes. This approach
is made possible by the existence of open-source [4, 5, 9] and
commercial [2, 3] ILP-solvers—heuristic-based software tools
for solving this NP-hard problem efficiently. GoSeed is applied
to instances with millions of blocks with several acceleration
heuristics, some of which we adapt to the generalized problem.

Rangoli [41] is a greedy algorithm for space reclamation—
another specific case of data migration where a set of files is
chosen for deletion in order to delete a portion of the system’s
physical size. Unlike the greedy and ILP-based approaches

that inspire our own algorithms, the problem solved by Rangoli
is too simplified for it to be extended for general migration.
Shilane et al. [44] discuss additional data migration scenarios
and their resulting complexities in deduplicated systems.

3 Motivation and problem statement
Minimizing migration traffic. High-performance storage sys-
tems typically limit the portion of their network bandwidth
that can be used for maintenance tasks such as reconstruction
of data from failed storage nodes [29, 43]. Data migration nat-
urally involves significant network bandwidth consumption,
and traditional data migration plans and mechanisms strive to
minimize their network requirements as one of their optimiza-
tion goals [13, 14, 23, 35, 37, 48]. In this work, we focus on
the amount of data that is moved between nodes. The physical
layout of the nodes and the precise scheduling of the migration
are outside the scope of our current work.

In deduplicated storage, we distinguish between two costs
associated with data migration. The migration traffic is the
amount of data that is transferred between volumes during mi-
gration. The replication cost is the total size of duplicate blocks
that are created as a result of remapping files to new volumes.
Previous studies of data migration in deduplicated systems did
not consider bandwidth explicitly. Harnik et al. [28] did not
address this aspect at all. In the seeding problem addressed
by GoSeed [40], the migration traffic is implicitly minimized
as a result of minimizing the replication cost. In the general
case, however, migration traffic is potentially independent of
the amount of data replication.

For example, Alternative 1 in Figure 1(b) results in trans-
ferring two blocks, B2 and B3, between volumes, even though
B2 is eventually deleted from its source volume. In contrast,
the alternative migration plan in Figure 1(c) does not consume
traffic at all: file F1 is remapped to V2 which already stores
its only block, and thus B1 can simply be deleted from V1.
This alternative also reduces the system’s size to eight blocks,
making it superior to the first alternative in terms of both ob-
jectives. We note, however, that this is not always the case, and

USENIX Association 20th USENIX Conference on File and Storage Technologies 267

that minimizing the overall system size and minimizing the
amount of data transferred might be conflicting objectives.

Load Balancing. Load balancing is a major objective in
distributed storage systems, where it often conflicts with
other objectives such as utilization and management over-
head [14, 42, 49]. Distributed deduplication introduces an in-
herent tradeoff between minimizing the total physical data
size and maximizing load balancing: the system’s size is mini-
mized when all the files are mapped to a single volume, which
clearly gives the worst possible load balancing. Thus, dis-
tributed deduplication systems weigh the benefit of mapping a
file to the volume that contains similar files, against the need
to distribute the load evenly between the volumes. Load bal-
ancing can refer to various measures of load, such as IOPS,
bandwidth requirements, or the number of files mapped to each
volume.

We follow previous work and aim to evenly distribute the
capacity load between volumes [16, 20]. Balancing capacity
is especially important in deduplicated systems that route in-
coming files to volumes that already contain similar files. In
such designs, volumes whose storage occupancy is slightly
higher than others might quickly become overloaded due to
their larger amount of data ‘attracting’ even more new files,
and so on. Capacity load balancing can be expected to lead to
better network utilization and prevent specific volumes from
becoming a bottleneck or exhausting their capacity. While
performance load balancing is not our main objective, we ex-
pect it to improve as a result of distributing capacity. All our
approaches can be extended to address it explicitly.

In this work, we capture the load balancing in the system
with the balance metric, which is similar to a commonly used
fairness metric [25]—the ratio between the size of the small-
est volume in the system and that of the largest volume. For
example, the balance of the initial system in Figure 1(a) is
|V1|/|V2| = 1/5. Alternative 1 (Figure 1(b)) is perfectly bal-
anced, with balance = 1, while Alternative 2 (Figure 1(c)) has
the worst balance: |V1|/|V2|= 0.

Problem statement. There are various approaches for han-
dling conflicting objectives in complex optimization systems.
These include searching for the Pareto frontier [55], or defining
a composite objective function of weighted individual objec-
tives. We chose to keep the system’s size as our main objective,
and to address the migration traffic and load balancing as con-
straints on the migration plan. We define the general migration
problem by extending the seeding problem from [40], and thus
we reuse some of their notations for compatibility.

For a storage system S with a set of volumes V , let B =
{b0,b1, . . .} be the set of unique blocks stored in the system,
and let size(b) be the size of block b. Let F = { f0, f1, . . .} be
the set of files in S, and let IS ⊆ B×F ×V be an inclusion
relation, where (b, f ,v) ∈ IS means that file f mapped to vol-
ume v contains block b which stored in this volume. We use
b ∈ v to denote that (b, f ,v) ∈ IS for some file f . The size
of a volume is the total size of the blocks stored in it, i.e.,

size(v) = Σb∈vsize(b). The size of the system is the total size
of its volumes, i.e., size(S) = size(V) = Σv∈V size(v).

The general migration problem is to find a set of files FM ⊆
F to migrate, the volume each file is migrated to, the blocks
that can be deleted from each volume, and the blocks that
should be copied to each volume. Applying the migration plan
results in a new system, S′. The migration goal is to minimize
the size of S′. This is equivalent to maximizing the size of all
the blocks that can be deleted during the migration, minus the
size of all the blocks that must be replicated.

The traffic constraint specifies Tmax—the maximum traffic
allowed during migration. It requires that the total size of
blocks that are added to volumes they were not stored in is
no larger than Tmax. The load balancing constraint determines
how evenly the capacity is distributed between the volumes.
It specifies a margin 0 ≤ µ < 1 and requires that the size of
each volume in the new system is within µ of the average
volume size. For a system with |V | volumes, this is equivalent
to requiring that balance ≤ [size(S′)/|V |×(1−µ)]/[size(S′)/|V |×(1+µ)].

For example, for the initial system in Figure 1(a), Alterna-
tive 1 (Figure 1(b)) is the only migration plan that satisfies the
load balancing constraint (for any µ). For Tmax lower than 2/9,
no migration is feasible. On the other hand, if we remove the
load balancing constraint, the optimal migration plan depends
on the traffic constraint alone: Alternative 2 (Figure 1(c)) is
optimal for, e.g., Tmax = 0, and Alternative 3 (Figure 1(d)) is
optimal for Tmax = 3.

Refinements. This generalized problem can be refined in
several straightforward ways. For example, we can restrict the
set of files that may be included in FM , the set of volumes
from which files may be removed, or the set of volumes to
which files can be remapped. Similarly, we can require that a
specific volume be removed from the system (enforcing all its
files to be remapped), or that an empty volume be added. We
demonstrate some of these cases in our evaluation.

4 Greedy
The basic greedy algorithm by Harnik et al. [28] iterates over
all the files in each volume, and calculates the space-saving
ratio from remapping a single file to each of the other volumes:
the ratio between the total size of the blocks that would be
replicated and the blocks that would be deleted from the file’s
original volume. In each iteration, the file with the lowest
ratio is remapped. For example, if this basic greedy algorithm
was applied to the initial system in Figure 1(a), it would first
remap file F1 to volume V2, with a space-saving ratio of 0,
resulting in Alternative 2 (Figure 1(c)). The process halts
when the total capacity is reduced by a predetermined deletion
goal. This algorithm is not directly applicable to the general
migration problem because it does not consider traffic and load
balancing.

Addressing the traffic constraint is relatively straightfor-
ward. In our extended greedy algorithm we make it the halting
condition: the iterations stop when there is no file that can be

268 20th USENIX Conference on File and Storage Technologies USENIX Association

Figure 2: Overview of our extended greedy algorithm.

remapped without exceeding the maximum allocated traffic. A
small challenge is that a file might be remapped in several iter-
ations of the algorithm, while, in the resulting migration plan,
it will only be remapped from its original volume to its final
destination. As a result, the sum of traffic of all the individual
iterations can be (and is, in practice) higher than the traffic
required when executing migration plan. This will not violate
the traffic constraint, but will cause the algorithm to halt before
taking advantage of the maximum allowed traffic. Thus, we
heuristically allow the algorithm to use 20% more traffic than
the original traffic constraint, to prevent it from halting prema-
turely. The required traffic for the resulting migration plan is
calculated before its execution. Thus, if it violates the original
traffic constraint, a new plan can be generated by the algo-
rithm without this heuristic. We include this simple extension,
without a load-balancing constraint, in our evaluation.

Complying with the load-balancing constraint is more chal-
lenging. For example, if the basic greedy algorithm reached
Alternative 2 (Figure 1(c)), it could no longer remap any single
file to volume V1 without increasing the system’s capacity, and
thus the system will remain unbalanced with at least one empty
volume. A naive extension to this algorithm could enforce
the load-balancing constraint by preventing files from being
remapped if this increases the system’s imbalance. However,
such a strict requirement might preclude too many opportu-
nities for optimization. For example, for the initial system in
Figure 1(a), it would only allow to remap file F2 to volume V1,
resulting in Alternative 1 (Figure 1(b)). The system would be
perfectly balanced, but the basic algorithm would then termi-
nate without reducing its size at all.

We address this challenge with two main techniques. The
first is defining two iteration types: one whose goal is to bal-
ance the system’s load, and another whose goal is to reduce
its size. We perform these iterations interchangeably, to avoid
the entire allocated traffic from being spent on only one goal.
The second technique is to relax the load-balancing margin for
the early iterations and continuously tighten it until the end of
the execution. The idea is to let the early iterations remap files
more freely, and to ensure that the iterations at the end of the
algorithm result in a balanced system.

Figure 2 illustrates the process of our extended greedy algo-
rithm. We divide the algorithm’s process into phases. 1 Each
phase is allocated an even portion of the traffic allocated for
migration, and is limited by a local load-balancing constraint.
Each phase is composed of two steps. 2 The load-balancing
step iteratively remaps files from large volumes to small ones,

until the volume sizes are within the margin defined for this
phase, or its traffic is exhausted. 3 The capacity-reduction
step uses the remaining traffic to reduce the system’s size by
remapping files between volumes, ensuring that volume sizes
remain within the margin.

Each phase is limited by local traffic and load-balancing
constraints, calculated at the beginning of the phase. The
phase traffic determines the maximum traffic that can be used
in each phase, and is roughly even for all the phases. The
local phase margin determines the minimum and maximum
allowed volume sizes in each phase. It is larger than the global
margin, µ, in the first phase, and gradually decreases before
each phase, until reaching µ in the last phase. By default, our
greedy algorithm consists of p = 5 phases. The phase traffic
for phase i, 0 ≤ i < p, is 1/(p−i) of the unused traffic, and the
phase margin for the first phase is µ×1.5.

The load balancing step is the first step in each phase. In
each of its iterations, the volumes are sorted according to their
sizes, and we attempt to remap files from the largest volumes
to the small ones. A file can be remapped only if some blocks
will be deleted from its source volume as a result. Namely,
we look for a file to remap between a ⟨source, target⟩ pair of
volumes, where source is the largest volume and the target
is the smallest volume for which such a file exists. In each
iteration, the amount of traffic required to remap the chosen
file is calculated, and the iterations halt when the maximum
allowed traffic or allowed volume sizes are reached.

The capacity-reduction step uses the remaining traffic
allocation of the phase. It is similar to the original greedy
algorithm, but it ensures that each file remap does not cause the
volumes to become unbalanced. In other words, we can remap
a file only if this does not cause its source volume to become
too small, or its target volume to become too large. Note that
the amount of traffic that remains for the capacity-reduction
step depends on the degree of imbalance in the initial system.
In the most extreme case of a highly unbalanced system, it is
possible for the load balancing step to consume all the traffic
allocated for the phase. In this case, the capacity-reduction step
halts in the first iteration. For cases other than this extreme, a
higher number of phases can divert more traffic for capacity-
reduction, at the cost of longer computation time due to the
increased number of iterations.

5 ILP
Our ILP-based approach is inspired by GoSeed [40], designed
for the seeding problem, where files can only be remapped

USENIX Association 20th USENIX Conference on File and Storage Technologies 269

from the source volume to the empty target volume. GoSeed
thus defined three types of variables whose assignment spec-
ified (1) whether a file is remapped, (2) whether a block is
replicated on both volumes, and (3) whether a block is deleted
from the source and moved to the target. These limited options
resulted in a fairly simple set of constraints, which cannot be
directly applied to the general migration problem. The major
difference is that the decision of whether or not we can delete
a block from its source volume depends not only on the files
initially mapped to this volume, but also on the files that will
be remapped to it as a result of the migration. Thus, in our ILP-
based approach, every block transfer is modeled as creating a
copy of this block, and a separate decision is made whether or
not to delete the block from its source volume.

The problem’s constraints are defined over the set of vol-
umes, files, and blocks from the problem statement in Sec-
tion 2, the maximum traffic Tmax, and the load-balancing mar-
gin µ. We define the target size of each volume v as wv, given
as percentage of the system size after migration. By default,
wv =1/|V |. For each pair of volumes, v,u, we define their inter-
section as the set of blocks that are stored on both volumes:
Intersectvu = {b|b ∈ u∧ b ∈ v}. The intersections are calcu-
lated before the constraints are assigned, and are used in the
formulation below for better readability.

The constraints are expressed in terms of three types of
variables that denote the actions performed in the migration:
x f st denotes whether file f is remapped from its source volume
s to another (target) volume t. cbst denotes whether block b is
copied from its source volume s to another (target) volume t.
Finally, dbv denotes whether block b is deleted from volume v.
The solution to the ILP instance is an assignment of 0 or 1 to
these variables. The resulting migration plan remaps the set
of files for which x f st = 1 (for some volume t), transfers the
blocks for which cbst = 1 to their target volume, and deletes
the blocks for which dbv = 1 from their respective volumes.

Constraints and objective. The ILP formulation for migra-
tion with load balancing consists of 13 constraint types.

1. All Variables are Boolean.
2. A file can be remapped to at most one volume.
3. A block can only be deleted or copied from a volume it

was originally stored in.
4. A block can be deleted from a volume only if all the files

containing it are remapped to other volumes.
5. A block can be deleted from a volume only if no file

containing it is remapped to this volume.
6. View all the blocks in the volume intersections as having

been copied.
7. When a file is remapped, all its blocks are either copied

to the target volume, or are initially there (as part of the
intersection).

8. A block can be copied to a target volume only from one
source volume.and volume t, Σs such that b/∈Intersectst cbst ≤
1.

9. A block must be deleted if there are no files containing it
on the volume.

10. A block cannot be copied to a target volume if no file will
contain it there.

11. A file cannot be migrated to its initial volume.
12. Traffic constraint: the size of all the copied blocks is not

larger than the maximum allowed traffic.
13. Load balancing constraint: for each volume v,

(wv − µ) × Size(S′) ≤ Size(v′) ≤ (wv + µ) × Size(S′),
where Size(v′) is the volume size after migration, i.e.,
the sum of its non-deleted blocks and blocks copied to i.

▶ Objective: maximize the sum of sizes of all blocks that
are deleted minus all blocks that are copied. This is equiv-
alent to minimizing the overall system size.

Constraints 12 and 13 formulate the traffic and load-
balancing goals, and constraints 8, 9, and 10 ensure that the
solver does not create redundant copies of blocks to artificially
comply with the load balancing constraint. This is similar
to the constraint that prevents orphan blocks in the seeding
problem [40]. For evaluation purposes, we will also refer to a
relaxed formulation of the problem without the load-balancing
constraint. In that version, constraints 8, 9, 10, and 13 are
removed, considerably reducing the problem complexity.

The ILP formulation given in this paper is designed for the
most general case of data migration, where any file can be
remapped to any volume. In reality, the migration goal might
restrict some of the remapping options, potentially simplifying
the ILP instance. For example, we can limit the set of volumes
that files can be migrated to by eliminating the x f st and cbst
variables where t is not in this set. We can similarly restrict
the set of volumes files may be migrated from, or require that
a set of specific files are (or are not) remapped.

Complexity and run time. The complexity of the ILP in-
stance depends on |B|, |F |, and |V |—the number of blocks,
files, and volumes, respectively. The number of variables is
|V |2|F |+ |V |2|B|+ |V |× |B|, corresponding to variable types
x f st , cbst , and dbv. Each of the constraints defined on these vari-
ables contributes a similar order of magnitude. An exception
is constraint 13, which reformulates the system size, twice, to
ensure that each individual volume’s size is within the required
margin. Indeed, the relaxed formulation without this constraint
is significantly simpler than the full formulation.

We use two of the acceleration methods suggested by
GoSeed to address the high complexity of the ILP problem.
The first is fingerprint sampling, where the problem is solved
for a subset of the original system’s blocks. This subset (sam-
ple) is generated by preprocessing the block fingerprints and
including only those that match a predefined pattern. Specifi-
cally, as suggested in [28], a sample generated with sampling
degree k includes only blocks whose fingerprints consist of k
leading zeroes, reducing the number of blocks in the problem
formulation by 1/2k on average.

The second acceleration method is solver timeout, which

270 20th USENIX Conference on File and Storage Technologies USENIX Association

halts the ILP solver’s execution after a predetermined runtime.
As a result, the server returns a feasible solution that is not
necessarily optimal. A feasible solution to the ILP problem
can be directly translated into a migration plan, i.e., a list of
files to migrate and their destination volumes. Thus, even if
the solution is not optimal (due to sampling or timeout), the
process still produces a valid plan for the original system.

We do not repeat the detailed analysis of the effectiveness
of these heuristics, which were shown to be effective in earlier
studies. Namely, the analysis of GoSeed showed that most of
the solver’s progress happens in the beginning of its execution
(hence, timing out does not degrade its quality too much), and
that it is more effective to reduce the sample size than to run
the solver longer on a larger sample, as long as the sampling
degree is not higher than k = 13. Our experiments with the
extended ILP formulation, omitted due to space considerations,
confirmed these findings.

6 Clustering
Overview. Clustering is a well-known technique for grouping
objects based on their similarity [1]. It is fast and effective,
and is directly applicable to our domain: files are similar if
they share a large portion of their blocks. Our approach is thus
to create clusters of similar files and to assign each cluster to a
volume, remapping those files that were assigned to a volume
different from their original location. Despite its simplicity,
three main challenges (Ch1−Ch3) are involved in applying
this idea to the general migration problem.

(Ch1) Unpredictable traffic The traffic required for a migra-
tion plan can only be calculated after the clusters have been
assigned to volumes. When the clustering decisions are be-
ing made, their implications on the overall traffic are un-
known and thus cannot be taken into consideration.

(Ch2) Unpredictable system size The load-balancing con-
straint is given in terms of the system’s size after migration.
However, this size is required to ensure, during the cluster-
ing process, that the created clusters are within the allowed
sizes.

(Ch3) High sensitivity The file similarity metric is based on
the precise set of blocks in each file. When this metric is
applied to a sample of the storage system’s fingerprints, it is
highly sensitive to the sampling degree and rule.

We address these challenges with several heuristics (H1−
H4):

(H1) Traffic weight We define a new similarity metric for
files. This metric is a weighted sum of the files’ content
similarity and a new distance metric that indicates how many
source volumes contain files within a cluster. Our algorithm
considers files as similar if they contain the same blocks and
are mapped to the same source volume. Assigning a higher
weight (WT) to the content similarity will result in a smaller
system but higher migration traffic.

(H2a) Estimated system size We further use the weight to
estimate the size of the system after migration. We calculate
the size of a hypothetical system without duplicates, and
predict that higher migration traffic will bring the system
closer to this hypothetical optimum.

(H2b) Clustering retries We use the estimated final system
size to determine the maximum allowed cluster size. During
the clustering process, we stop adding files to clusters that
reach this size. If the process halts due to this limitation, we
increase the maximum size by a small margin, and restart it.

(H3) Randomization Instead of deterministic clustering de-
cisions, we choose a random option from the set of best
options. Different random seeds potentially result in differ-
ent systems.

(H4) Multiple executions Our heuristics introduce several
parameters which we would be loath to overfit. We use the
same initial state to perform repeated executions of the clus-
tering process with multiple sets of parameter combinations
(180 in our case), and choose the best migration plan from
those executions as our final output.

In the following, we give the required background on the
clustering process and describe each of our optimizations in
detail.

Hierarchical clustering. Hierarchical clustering [26] is
an iterative clustering process that, in each iteration, merges
the most similar pair of clusters into a new cluster. The input
is an initial set of objects, which are viewed as clusters of
size 1. The process creates a tree whose leaves are the initial
objects, and internal nodes are the clusters they are merged
into. For example, Figure 3 shows the clustering hierarchy
created from the set of initial objects {F1, ...,F5}, where the
clusters {C1, ...,C4} were created in order of their indices.

Hierarchical clustering naturally lends itself to grouping
of files. Intuitively, files that share a large portion of their
blocks are similar and should thus belong to the same cluster
and eventually to the same volume. For example, the initial
objects in Figure 3 represent the files in Figure 1(a): F4 and
F5 share two blocks and are thus merged into the first cluster,
C1. Our clustering-based approach is simple: we group the
files into a number of clusters equal to the number of volumes
in the system and assign one cluster to each volume. This
assignment implies which files should be remapped and which
blocks should be transferred and/or deleted in the migration.
For example, for a system with three volumes, we could halt
the clustering process in Figure 3, resulting in a final set of
three clusters: {C1,C2,F3}. We develop this basic approach to
the general migration problem, i.e., to maximize the deletion
and to comply with the traffic and load-balancing constraints.

File similarity. The hierarchical clustering process relies
on a similarity function that indicates which pair of clusters to
merge in each iteration. We use the commonly used Jaccard
index [26] for this purpose. For two sets A and B, their index
is defined as J(A,B) = |A∩B|/|A∪B|. We view each file as a set

USENIX Association 20th USENIX Conference on File and Storage Technologies 271

Figure 3: Hierarchical clustering with the files from Figure 1 (left) and the distance matrices created in the process (right).

of blocks, and thus, the Jaccard index for a pair of files is
the portion of their shared blocks. From hereon, we refer to
the complement of the index: the Jaccard distance which is
defined as distJ = J(A,B) = 1− J(A,B). This is to comply
with the standard terminology in which the two clusters with
the smallest distance are merged in each iteration. For example,
the leftmost table in Figure 3 depicts the distance matrix for
the files in Figure 1. Indeed, the distance is smallest for the
pair F4 and F5 which are the first to be merged.

The Jaccard distance could easily be applied to entire clus-
ters, which can themselves be viewed as sets of blocks. How-
ever, calculating the distance between each new cluster and
all existing clusters would require repeated traversals of the
original file recipes in each iteration. This complexity is ad-
dressed in hierarchical clustering by defining a linkage func-
tion, which determines the distance between the merged clus-
ter and existing clusters based on the distances before the
merge. Specifically, we use complete linkage, defined as fol-
lows: distJ(A∪B,C) = max{distJ(A,C),distJ(B,C)}. For ex-
ample, the row for C1 in the second distance matrix in Figure 3
lists the distances between C1 and each of the remaining files.

Traffic considerations (H1). We limit the traffic required
by our migration plan in two ways. The first is by assigning
each of the final clusters to the volume that contains the largest
number of its blocks. We calculate the size of the intersection
(in terms of the size of the shared blocks) between each cluster
and each volume in the initial system. We then iterativly pick
the ⟨cluster,volume⟩ pair with the largest intersection from
the clusters and volumes that have not yet been assigned.

This assignment alone might still result in excessive traffic,
especially if highly similar files are initially scattered across
many different volumes. To avoid such situations, we incorpo-
rate the traffic considerations into the clustering process itself.
Namely, we define the volume distance, distV (C), of a cluster
as the portion of the system’s volumes whose files are included
in the cluster. For example, in Figure 3, distV (C1) = 1/3 and
distV (C2) = 2/3.

We then define a new weighted distance metric that
combines the Jaccard distance and the volume distance:
distW (A,B) = WT × distJ(A,B) + (1 −WT)× distV (A ∪ B),
where 0 ≤WT ≤ 1 is the traffic weight. Intuitively, increasing
WT increases the amount of traffic allocated for the migration,
which increases the priority of deduplication efficiency over
the network transfer cost. Nevertheless, it does not guarantee
compliance with a specific traffic constraint. We address this
limitation by multiple executions, described below.

Load-balancing considerations (H2). We enforce the load
balancing constraint by preventing merges that result in clus-
ters that exceed the maximal volume size. We determine the
maximal cluster size by estimating the system’s size after
migration. Intuitively, we expect that increasing the traffic allo-
cated for migration will increase the reduction in system size,
and we estimate this traffic with the WT weight described
above. Formally, we estimate the size of the final system
as Size(WT) = WT × Sizeuniq +(1−WT)× size(Sinit), where
Sizeuniq is the size of all the unique blocks in the system. The
maximal cluster size is thus Cmax = Size(WT)/|V |

In each clustering iteration, we ensure that the merged clus-
ter is not larger than Cmax. This requirement might result in
the algorithm halting before the target number of clusters is
reached, due to merging decisions made earlier in the process.
If this happens, we increase the value of Cmax by a small ε and
retry the clustering process. We continue retrying until the al-
gorithm creates the required number of clusters. A small ε can
potentially yield the most balanced system, but might require
excessively many retries. We use ε = 5% as our default.

Sensitivity to sample (H3). As in the ILP-based approach,
we apply the hierarchical clustering process to a sample of
the system, rather than to the complete set of blocks which
can be excessively large. However, it turns out that the Jaccard
distance is highly sensitive to the precise set of blocks that
represent each file in the sample. We found, in our initial ex-
periments, that different sampling degrees as well as different
sampling rules (e.g., k leading ones instead of k leading zeroes
in the fingerprint) result in small differences in the Jaccard
distance of the file pairs.

Such small differences might change the entire clustering
hierarchy, even if the practical difference between the pairs of
files is very small. Thus, rather than merging the pair of clusters
with the smallest distance, we merge a random pair from the set
of pairs with the smallest distances. We include in this set only
pairs whose distance is within a certain percentage of the min-
imum distance. Thus, for a maximum distance difference gap,
we choose a random pair⟨Ci,C j⟩ from the 10 (or less) pairs for
which DistW (Ci,C j)≤ minimum distance× (1+gap).

Constructing the final migration plan (H4). The main
advantage of our clustering-based approach is its relatively
fast runtime. Constructing the initial distance matrix for the
individual files is time consuming, but the same initial matrix
can be reused for all the consecutive clustering processes on
the same initial system. We exploit this advantage to eliminate
the sensitivity of our clustering process to the many parame-

272 20th USENIX Conference on File and Storage Technologies USENIX Association

ters introduced in this section. For the same given system and
migration constraints, we execute the clustering process with
six traffic weights (WT ∈ {0,0.2,0.4,0.6,0.8,1}), three gaps
(gap ∈ {0.5%,1%,3%}), and ten random seeds. This results
in a total of 180 executions, some of which are performed in
parallel (depending on the resources of the evaluation plat-
form). We calculate the deletion, traffic, and balance of each
migration plan (on the sample used as the input for clustering),
and as our final result, use the plan with the best deletion that
satisfies the load-balancing and traffic constraints.

We also include in our evaluation a relaxed scheme without
the load-balancing constraint (i.e., Cmax = ∞). In this scheme,
the final migration plan must only satisfy the traffic constraint.

7 Evaluation
We wish to answer two main questions: (1) how do the al-
gorithms compare in terms of the final system size, load bal-
ancing, and runtime? and (2) how is the performance of the
different algorithms affected by the various system and prob-
lem parameters? In the following, we describe our evaluation
setup and the experiments executed to answer those questions.

7.1 Experimental Setup

We ran our experiments on a server running Ubuntu 18.04.3,
equipped with 128GB DDR4 RAM (with 2666 MHz bus
speed), Intel® Xeon® Silver 4114 CPU (with hyper-threading
functionality) running at 2.20GHz, one Dell®T1WH8 240GB
TLC SATA SSD, and one Micron 5200 Series 960GB 3D TLC
NAND Flash SSD.

File system snapshots. We used two static file system snap-
shots from datasets used to evaluate the seeding problem [40]:
The UBC dataset [7, 38] includes file systems of 857 Mi-
crosoft employees, of which we used the first 500 file systems
(UBC-500). The FSL dataset [10] consists of snapshots of
students’ home directories at the FSL Lab at Stony Brook Uni-
versity [46, 47]. We used nine weekly snapshots of nine users
between August 28 and October 23, 2014 (Homes). These
snapshots include, for each file, the fingerprints of its chunks
and their sizes. Each snapshot file represents one entire file
system, which is the migration unit in our model, and is repre-
sented as one file in our migration problem instances.

We created two additional sets of snapshots from the Linux
version archive [6]. Our Linux-all dataset includes snapshots
of all the versions from 2.0 to 5.9.14. We also created a smaller
dataset, Linux-skip, which consists of every 5th snapshot. The
latter dataset is logically (approximately) 5× smaller than the
former, although their physical size is almost the same.

The UBC-500 and Homes snapshots were created with
variable-sized chunks with Rabin fingerprints, whose specified
average chunk size is 64KB. We created the Linux snapshots
with an average chunk size of 8KB, because they are much
smaller to begin with. We used these sets of snapshots to create
six initial systems, with varying numbers of volumes. They are
listed in Table 1. We emulate the ingestion of each snapshot

System Files |V | Chunks Dedupe Logical
UBC-500 500 5 382M 0.39 19.5 TB

Homes-week 81 3 19M 0.38 8.9 TB
Homes-user 81 3 19M 0.16 8.9 TB
Linux-skip 662 5 / 10 1.76M 0.12 / 0.19 377 GB
Linux-all 2703 5 1.78M 0.03 1.8 TB

Table 1: System snapshots in our evaluation. |V | is the number of
volumes, Chunks is the number of unique chunks, and Dedupe is the
deduplication ratio—the ratio between the physical and logical size
of each system. Logical is the logical size.

into a simplified deduplication system which detects dupli-
cates only within the same volume. In the UBC and Linux
systems we assigned the same number of arbitrary snapshots
to each volume. In the Homes-week system, we assigned snap-
shots from the same week to the same volume, such that each
volume contains all the users’ snapshots from a set of three
weeks. In the Homes-user system, we assign each user to a ded-
icated volume such that each volume contains all the weekly
snapshots of a set of three users.

Implementation. All our algorithms are executed on a sam-
ple of the system’s fingerprints, to reduce their memory con-
sumption and runtime. We use a sampling degree of k = 13
unless stated otherwise. The final system size after migration,
as well as the resulting balance and consumed traffic are cal-
culated on the original system’s snapshot. We use a calculator
similar to the one used in [40]: we traverse the initial system’s
volumes and sum the sizes of blocks that remain in each vol-
ume after migration and those that are added to the volume as
a result of it. We experimented with three Tmax values, 20%,
40%, and 100% of each system’s initial size, and three µ values,
2%, 5%, and 10% of the system size after migration.

For our greedy algorithm (Greedy), we maintain a matrix
where we record, for each block, the number of files pointing
to it in each volume. We update this array to reflect the file
remap performed in each iteration. To determine the space-
saving ratio of each file, we reread its original snapshot file
and lookup the counters of its blocks in the array. This is more
efficient than keeping the list of each file’s blocks in memory.
Our Greedy implementation consists of 680 lines of C++ code.

For our ILP-based algorithm (ILP), we use the commer-
cial Gurobi optimizer [3] as our ILP solver, and use its C++
interface to define our problem instances. We use a two-
dimentional array similar to the one used for Greedy to cal-
culate the set of blocks shared by each pair of volumes. We
then create the variables and constraints as we process each
snapshot file, freeing the original array from the memory be-
fore invoking the optimization by Gurobi. Our program for
converting the input files into an ILP instance and retrieving
the solution from Gurobi consists of 1860 lines of C++ code.
We solve each ILP instance three times, each with a different
random seed. The results in this section are the average of the
three executions.

For our clustering algorithm (Cluster), we create a |F |× |B|
bit matrix to indicate whether each file contains each block,

USENIX Association 20th USENIX Conference on File and Storage Technologies 273

Figure 4: Reduction in system size of all systems and all algorithms (with and without load balancing constraints. k = 13 and µ = 2%).

Figure 5: Resulting balance of all systems and all algorithms (with and without load balancing constraints. k = 13 and µ = 2%).

and use it to create the distance matrix (see Figure 3). The
clustering process uses and updates only the lower triangular
of this matrix. We use the upper triangular to record the initial
distances, and to reset the lower triangular when the clustering
process is repeated for the same system and different input
parameters (WT , gap, or random seed). When the clustering
process completes, we use the file-block bit matrix to deter-
mine the assignment of clusters to volumes. Our program
consists of approximately 1000 lines of C++ code. Each clus-
tering process is performed on a private copy of the distance
matrix within a single thread, and our evaluation platform is
sufficient for executing six processes in parallel.

Each algorithm has different resource requirements. Greedy
is single threaded and requires a simple representation of the
system’s snapshot in memory. The ILP solver uses as much
memory and as many threads as possible (38 in our case). The
clustering algorithm ran in six processes, and used approxi-
mately 50% of our server’s memory. We did not measure CPU
utilization directly, although the runtime of the algorithms
gives another indication of their compute overheads. Our im-
plementation is open-source and available online [8]

7.2 Basic comparison between algorithms
Figure 4 shows the deletion—percentage of the initial system’s
physical size that was deleted by each algorithm. The deletion
is higher for systems that were initially more balanced, i.e., the
Linux and Homes-weeks systems. For all the systems except
UBC-500, Greedy achieved the smallest deletion. For Homes-
users, Greedy increased the system’s size in attempt to comply
with the load balancing constraint. In UBC-500, there is less

similarity and therefore less dependency between files, which
eliminates some of the advantage that Cluster and ILP have
over Greedy, which outperforms them when Tmax = 100%.

ILP and Cluster achieve comparable deletions to one an-
other, even though the ILP solver attempts to find the theo-
retically optimal migration plan. We distinguish between two
cases when explaining this similarity. In the first case (Linux-
skip and Homes), the ILP-solver produces an optimal solution
on the system’s sample, but it is not optimal when applied to
the full (unsampled) system. The deletion of Cluster is up to
1% higher than that of ILP in those cases. In the second case,
marked by a red ‘x’ in the figures, ILP times out (after six hours
in our experiments) and returns a suboptimal solution. Specifi-
cally, the complexity of the UBC-500 system demonstrates an
interesting limitation of ILP: its deletion with Tmax = 20% is
higher than with Tmax = 100%. The reason is that the solution
space grows with Tmax, and thus the best solution found when
the solver times out is farther from the optimum.

The ‘relaxed’ (R) version of the algorithms, without the load
balancing constraint, usually achieves a higher deletion than
their full version. The largest difference is 558%, although the
difference is typically smaller, and can be as low as 1.3%. In
the case of Greedy in the Homes-users system, the relaxed
version does not identify any file that can be remapped, and
does not return any solution.

Figure 5 shows the balance achieved by each algorithm.
With a margin of µ = 2% and five volumes, the balance should
be at least 18/22 = 0.82. In practice, however, the balance might
be lower, for two main reasons. Greedy might fail to bring the

274 20th USENIX Conference on File and Storage Technologies USENIX Association

Figure 6: Algorithm runtime for all systems and all algorithms (with and without load balancing constraints. k = 13 and µ = 2%).

Figure 7: Linux-skip system with 5 volumes, µ = 2%, and two sampling degrees: k = 8,13.

system to a balanced state if it exhausts (or thinks it exhausts)
the maximum traffic allowed for migration. In contrast, Cluster
and ILP generate a migration plan that complies with the load
balancing constraint on the sample, but violates it when applied
to the full (unsampled) system. The violation is highest in the
Linux systems, where some files (i.e., entire Linux versions)
consist of only one or two blocks. Nevertheless, specifying
the load balancing constraint successfully improves the load
balancing of the system. Without it, the relaxed Cluster and
ILP versions create highly unbalanced systems, with some
volumes storing no files at all, or very few small files. Greedy
typically avoids such extremes, because it is unable to identify
and group similar files in the same volume.

Figure 6 shows the runtime of each of the algorithms (note
the log scale of the y-axis). Greedy generates a migration
plan in the shortest runtime: 20 seconds or less in all our
experiments. ILP requires the longest time, because it attempts
to solve an NP-hard problem. Indeed, except for the Homes
systems that have the fewest files, ILP requires more than an
hour, and often halts at the six-hour timeout. The runtime of
Cluster is longer than that of Greedy, and usually shorter than
that of ILP. It is still relatively long, as a result of performing
180 executions of the clustering process. We note, however,
that this runtime can be shortened by reducing the number
of executions, e.g., by reducing the number of random seeds
or gaps. We evaluate the effect of these parameters in the
following subsection.

Removing the load balancing constraint reduces the runtime
of ILP and Cluster by one or two orders of magnitude. In ILP,
this happens because the problem complexity is significantly
reduced. In Cluster, the clustering is completed in a single

attempt, without having to restart it due to illegal cluster sizes.
Surprisingly, removing this constraint from Greedy increases
its run time. The reason is that each iteration in the capacity-
reduction step is much longer than those in the load-balancing
step, as it examines all possible file remaps between all volume
pairs in the system. In the relaxed Greedy version, all the traffic
is allocated to capacity savings and thus its runtime increases.

Implications. Our basic comparison leads to several no-
table observations. (1) Cluster and ILP have a clear advantage
over Greedy. This was not the case in previous studies that
examined simple cases of migration, i.e., seeding [40] and
space reclamation [41]. However, the increased complexity
of the general migration problem increases the gap between
the greedy and the optimal solutions. (2) Cluster is compa-
rable and might even outperform ILP, despite the premise of
optimality of the ILP-based approach. This is a combination
of the high complexity of the ILP problem with the ability to
execute multiple clustering processes quickly and in parallel.
We conclude that hierarchical clustering is highly efficient for
grouping similar files, and that our heuristics for addressing
the traffic and load balancing constraints are highly effective.
(3) In most systems, adding the load balancing constraint lim-
its the potential capacity reduction, but this limit is usually
modest, i.e., several percents of the system’s size. The extent
of this limitation depends on the degree of similarity between
files and the balance of the initial system.

7.3 Sensitivity to problem parameters
Effect of sampling degree. Figure 7 shows the deletion, load
balancing, and runtime of all the algorithms on two samples of
the Linux-skip system. The small and large samples were gen-
erated with sampling degrees of k = 13 and k = 8, respectively.

USENIX Association 20th USENIX Conference on File and Storage Technologies 275

Figure 8: UBC-500 system with k = 13 and different load balancing margins.

The sample size affects each algorithm differently. Greedy
achieves a higher deletion on the larger sample (by up to
238%), as it identifies more opportunities for capacity reduc-
tion. In contrast, ILP suffers from the increase in the problem
size: it spends more time on finding a feasible solution and
has less time for optimization, and thus its deletion on the
larger sample is smaller. We repeated the execution of ILP on
the large (k = 8) sample with a longer timeout—twelve hours
instead of size—but the increase in deletion was minor. This
confirmed the observation made for GoSeed [40], that it is
more effective to reduce the sample size than to increase the
runtime of the ILP solver. The relaxed ILP instance is much
simpler, and thus relaxed ILP does not suffer such degrada-
tion. Cluster returns similar results for both sample sizes. The
differences in the accuracy of the sample are masked by its
randomized process.

All the algorithms return a more balanced system for the
larger sample (k = 8), because the load-balancing constraint
is enforced on more blocks, and thus more accurately. At the
same time, as we expected, their runtime was higher by several
orders of magnitude, as the large sample included 25× more
blocks than the small one. We note that Greedy is so much
faster than ILP and cluster, that its runtime on the large sample
is considerably shorter than their runtime on the small one.
Thus, if the sample is generated on-the-fly for the purpose
of constructing the migration plan, it is possible to execute
Greedy on a larger sample for a better migration plan.

Effect of load balancing and traffic constraints. Figure 8
shows the deletion, balance, and traffic consumption of all the
algorithms on the UBC-500 system with different values of
Tmax and µ. The results on this system shows the highest sensi-
tivity to these constraints due to the lower similarity between
the files. The deletion achieved by all the algorithms increases
as Tmax increases, and their traffic consumption increases ac-
cordingly. Removing the load-balancing constraint also allows
for more deletion, as we observed in Figure 4. At the same
time, the precise value of the load balancing margin, µ, has a
much smaller effect on the achieved deletion, although in most
cases, a lower margin does guarantee a more balanced system.
Increasing the margin increases the runtime (not shown) of
Greedy, as a result of more space-reduction iterations, as dis-
cussed above. The runtime of ILP and Cluster is not affected

Figure 9: The distribution of migration traffic (top) and reduction
in system size (bottom) in the set of plans returned by Cluster for
Linux-all with k = 13.

by the precise value of µ.
Effect of randomization on Cluster. Figure 9 shows the

range of deletion values and traffic usage of the migration plans
generated by Cluster for Linux-all with k = 13. Each bar shows
the 25th, 50th, and 75th percentiles, and the whiskers show
the minimum and maximum values achieved with different
random seeds for each combination of gap and WT . Recall that
Cluster picks the plan with the highest deletion that complies
with the traffic and load-balancing constraints.

Our results show that different random seeds can result in
large differences in the deletion and traffic: up to 84% and
400%, respectively, when WT and gap are fixed. At the same
time, WT cannot predict the actual traffic used by the migration
plan, which is why we repeat the clustering process for a range
of values. Indeed, different WT values result in very different
deletions. For a given WT , the range of deletion and traffic
values generated by different gaps are similar. Thus, as no gap
consistently outperforms the others, executing the clustering
with one or two gaps instead of three will likely have a limited
effect on the results while significantly reducing the runtime.

276 20th USENIX Conference on File and Storage Technologies USENIX Association

Figure 10: Linux-skip with different numbers of target volumes with
Tmax = 100,k = 13,µ = 2%.

We compared these results to final plans generated from 5
and 15 seeds (90 and 270 runs, respectively). The comparison,
omitted due to space considerations, showed that using more
than 5 random seeds carries diminishing returns. Thus, in
practice, it is possible to halt the algorithm when additional
runs do not improve the best solution so far.

Effect of the number of volumes. Figure 10 shows the
deletion and runtime of our algorithms on the Linux-skip sys-
tem when the number of volumes is reduced (‘4’), increased
(‘6’), or is larger overall (‘10’). Due to the high similarity
between the Linux versions, the same deletion is achieved
when the number of volumes remains five, or when a volume
is added or removed (the reduced performance of Cluster is
an outlier for µ = 2%). When the initial number of volumes
is 10, there are more duplicates in the system. This provides
more opportunities for deletion, which is indeed higher.

The number of volumes affects the problem’s complexity,
affecting each algorithm differently. Greedy requires less time
when a volume is added or removed (compared to a problem
where the number of volumes remains the same), because
most of its traffic is spent on the faster load-balancing step.
The runtime for a system with 10 volumes is much longer than
for a system with only five volumes because there are more
volume pairs and thus more file remap options to consider in
each iteration. The ILP problem complexity increases with
every additional volume and thus its runtime increases until it
reaches the timeout. The clustering process could, potentially,
stop at an earlier stage when more clusters are needed. How-
ever, as the number of clusters increases the load balancing
constraint is encountered at an earlier stage, causing the clus-
tering to restart more often when the number of volumes is
higher. Nevertheless, all our algorithms successfully generated

migration plans for a varying number of volumes, most of
them within less then an hour.

8 Conclusions and Future Challenges
We formulated the general migration problem for storage sys-
tems with deduplication, and presented three algorithms for
generating an efficient migration plan. Our evaluation showed
that the greedy approach is the fastest but least effective, and
that the clustering-based approach is comparable to the one
based on ILP, despite ILP’s premise of optimality. While the
ILP-based approach guarantees a near-optimal solution (given
sufficient runtime), clustering lends itself to a range of opti-
mizations that enable it to produce such a solution faster.

All our approaches can be applied to more specific cases
of migration, presenting additional opportunities for further
optimizations in the future. For example, thanks to its short
runtime, we can use Greedy to generate multiple plans with dif-
ferent traffic constraints. These plans are points on the Pareto
frontier [55], i.e., they represent different tradeoffs between
the conflicting objectives of maximizing deletion and minimiz-
ing traffic. The multiple executions in the clustering algorithm
provide a similar set of options.

Applying our approach in a live deduplicated system intro-
duces several challenges, such as collecting and generating
the system’s snapshot as input to the algorithms, efficiently
updating the metadata, determining the migration schedule,
and adjusting it if new files are added to the system during this
process. We leave these challenges for future work.

Acknowledgments
We thank the reviewers and our shepherd, Dalit Naor, for their
feedback and suggestions. We thank Aviv Nachman for help
with the ILP approach, Nadav Elias for the Linux snapshots,
and Danny Harnik for insightful discussions. This research
was supported by the Israel Science Foundation (grant No.
807/20).

References
[1] Cluster analysis. https://en.wikipedia.org/wiki/

Cluster_analysis. Accessed: 2020-10-24.

[2] CPLEX Optimizer. https://www.ibm.com/
analytics/cplex-optimizer. Accessed: 2018-
10-24.

[3] The fastest mathematical programming solver. http:
//www.gurobi.com/. Accessed: 2018-10-24.

[4] GLPK (GNU Linear Programming Kit). https://www.
gnu.org/software/glpk/. Accessed: 2018-10-24.

[5] Introduction to lp_solve 5.5.2.5. http://lpsolve.
sourceforge.net/5.5/. Accessed: 2018-10-24.

[6] Linux Kernel Archives. https://mirrors.edge.
kernel.org/pub/linux/kernel/.

USENIX Association 20th USENIX Conference on File and Storage Technologies 277

https://en.wikipedia.org/wiki/Cluster_analysis
https://en.wikipedia.org/wiki/Cluster_analysis
https://www.ibm.com/analytics/cplex-optimizer
https://www.ibm.com/analytics/cplex-optimizer
http://www.gurobi.com/
http://www.gurobi.com/
https://www.gnu.org/software/glpk/
https://www.gnu.org/software/glpk/
http://lpsolve.sourceforge.net/5.5/
http://lpsolve.sourceforge.net/5.5/
https://mirrors.edge.kernel.org/pub/linux/kernel/
https://mirrors.edge.kernel.org/pub/linux/kernel/

[7] SNIA IOTTA Repository. http://iotta.snia.org/
tracetypes/6. Accessed: 2018-10-24.

[8] Source code of migration algorithms. https://github.
com/roei217/DedupMigration. Accessed: 2022-02-
22.

[9] SYMPHONY development home page. https://
projects.coin-or.org/SYMPHONY. Accessed: 2018-
10-24.

[10] Traces and snapshots public archive. http://tracer.
filesystems.org/. Accessed: 2018-10-24.

[11] Bhavish Aggarwal, Aditya Akella, Ashok Anand, Athula
Balachandran, Pushkar Chitnis, Chitra Muthukrishnan,
Ramachandran Ramjee, and George Varghese. EndRE:
An end-system redundancy elimination service for enter-
prises. In 7th USENIX Conference on Networked Systems
Design and Implementation (NSDI 10), 2010.

[12] Yamini Allu, Fred Douglis, Mahesh Kamat, Ramya Prab-
hakar, Philip Shilane, and Rahul Ugale. Can’t we all get
along? Redesigning protection storage for modern work-
loads. In 2018 USENIX Annual Technical Conference
(USENIX ATC 18), 2018.

[13] Eric Anderson, Joseph Hall, Jason D. Hartline, Michael
Hobbs, Anna R. Karlin, Jared Saia, Ram Swaminathan,
and John Wilkes. An experimental study of data mi-
gration algorithms. In 5th International Workshop on
Algorithm Engineering (WAE 01), 2001.

[14] Eric Anderson, Michael Hobbs, Kimberly Keeton, Susan
Spence, Mustafa Uysal, and Alistair Veitch. Hippodrome:
Running circles around storage administration. In 1st
USENIX Conference on File and Storage Technologies
(FAST 02), 2002.

[15] Bharath Balasubramanian, Tian Lan, and Mung Chiang.
SAP: Similarity-aware partitioning for efficient cloud
storage. In IEEE Conference on Computer Communica-
tions (INFOCOM 14), 2014.

[16] Deepavali Bhagwat, Kave Eshghi, Darrell D. E. Long,
and Mark Lillibridge. Extreme binning: Scalable, paral-
lel deduplication for chunk-based file backup. In IEEE
International Symposium on Modeling, Analysis Sim-
ulation of Computer and Telecommunication Systems
(MASCOTS 09), 2009.

[17] Feng Chen, Tian Luo, and Xiaodong Zhang. CAFTL:
A content-aware flash translation layer enhancing the
lifespan of flash memory based solid state drives. In 9th
USENIX Conference on File and Stroage Technologies
(FAST 11), 2011.

[18] Austin T. Clements, Irfan Ahmad, Murali Vilayannur,
and Jinyuan Li. Decentralized deduplication in SAN
cluster file systems. In 2009 Conference on USENIX
Annual Technical Conference (USENIX 09), 2009.

[19] Biplob Debnath, Sudipta Sengupta, and Jin Li.
ChunkStash: Speeding up inline storage deduplication
using flash memory. In 2010 USENIX Conference on
USENIX Annual Technical Conference (USENIX ATC
10), 2010.

[20] Wei Dong, Fred Douglis, Kai Li, Hugo Patterson, Saz-
zala Reddy, and Philip Shilane. Tradeoffs in scalable
data routing for deduplication clusters. In 9th USENIX
Conference on File and Stroage Technologies (FAST 11),
2011.

[21] Fred Douglis, Abhinav Duggal, Philip Shilane, Tony
Wong, Shiqin Yan, and Fabiano Botelho. The logic of
physical garbage collection in deduplicating storage. In
15th USENIX Conference on File and Storage Technolo-
gies (FAST 17), 2017.

[22] Cezary Dubnicki, Leszek Gryz, Lukasz Heldt, Michal
Kaczmarczyk, Wojciech Kilian, Przemyslaw Strzelczak,
Jerzy Szczepkowski, Cristian Ungureanu, and Michal
Welnicki. HYDRAstor: A scalable secondary storage. In
7th Conference on File and Storage Technologies (FAST
09), 2009.

[23] Abhinav Duggal, Fani Jenkins, Philip Shilane, Ram-
prasad Chinthekindi, Ritesh Shah, and Mahesh Kamat.
Data Domain Cloud Tier: Backup here, backup there,
deduplicated everywhere! In 2019 USENIX Annual Tech-
nical Conference (USENIX ATC 19), 2019.

[24] Min Fu, Dan Feng, Yu Hua, Xubin He, Zuoning Chen,
Wen Xia, Fangting Huang, and Qing Liu. Accelerating
restore and garbage collection in deduplication-based
backup systems via exploiting historical information. In
2014 USENIX Annual Technical Conference (USENIX
ATC 14), 2014.

[25] Ron Gabor, Shlomo Weiss, and Avi Mendelson. Fair-
ness enforcement in switch on event multithreading.
4(3):15–es, September 2007.

[26] Michael Greenacre and Raul Primicerio. Hierarchical
Cluster Analysis. Fundación BBVA, Bilbao, 2013.

[27] Fanglu Guo and Petros Efstathopoulos. Building a high-
performance deduplication system. In 2011 USENIX
Conference on USENIX Annual Technical Conference
(USENIX ATC 11), 2011.

[28] Danny Harnik, Moshik Hershcovitch, Yosef Shatsky,
Amir Epstein, and Ronen Kat. Sketching volume capaci-
ties in deduplicated storage. In 17th USENIX Conference
on File and Storage Technologies (FAST 19), 2019.

278 20th USENIX Conference on File and Storage Technologies USENIX Association

http://iotta.snia.org/tracetypes/6
http://iotta.snia.org/tracetypes/6
https://github.com/roei217/DedupMigration
https://github.com/roei217/DedupMigration
https://projects.coin-or.org/SYMPHONY
https://projects.coin-or.org/SYMPHONY
http://tracer.filesystems.org/
http://tracer.filesystems.org/

[29] Cheng Huang, Huseyin Simitci, Yikang Xu, Aaron
Ogus, Brad Calder, Parikshit Gopalan, Jin Li, and Sergey
Yekhanin. Erasure coding in Windows Azure Storage. In
2012 USENIX Annual Technical Conference (USENIX
ATC 12), 2012.

[30] Michal Kaczmarczyk, Marcin Barczynski, Wojciech Kil-
ian, and Cezary Dubnicki. Reducing impact of data
fragmentation caused by in-line deduplication. In Pro-
ceedings of the 5th Annual International Systems and
Storage Conference (SYSTOR 12), 2012.

[31] Cheng Li, Philip Shilane, Fred Douglis, Hyong Shim,
Stephen Smaldone, and Grant Wallace. Nitro: A capacity-
optimized SSD cache for primary storage. In 2014
USENIX Annual Technical Conference (USENIX ATC
14), 2014.

[32] Mark Lillibridge, Kave Eshghi, and Deepavali Bhagwat.
Improving restore speed for backup systems that use
inline chunk-based deduplication. In 11th USENIX Con-
ference on File and Storage Technologies (FAST 13),
2013.

[33] Mark Lillibridge, Kave Eshghi, Deepavali Bhagwat,
Vinay Deolalikar, Greg Trezise, and Peter Camble.
Sparse indexing: Large scale, inline deduplication us-
ing sampling and locality. In 7th Conference on File and
Storage Technologies (FAST 09), 2009.

[34] Xing Lin, Guanlin Lu, Fred Douglis, Philip Shilane, and
Grant Wallace. Migratory compression: Coarse-grained
data reordering to improve compressibility. In 12th
USENIX Conference on File and Storage Technologies
(FAST 14), 2014.

[35] Chenyang Lu, Guillermo A. Alvarez, and John Wilkes.
Aqueduct: Online data migration with performance guar-
antees. In 1st USENIX Conference on File and Storage
Technologies (FAST 02), 2002.

[36] Udi Manber. Finding similar files in a large file system.
In USENIX Winter 1994 Technical Conference (WTEC
94), 1994.

[37] Keiichi Matsuzawa, Mitsuo Hayasaka, and Takahiro Shi-
nagawa. The quick migration of file servers. In 11th ACM
International Systems and Storage Conference (SYSTOR
18), 2018.

[38] Dutch T. Meyer and William J. Bolosky. A study of
practical deduplication. In 9th USENIX Conference on
File and Stroage Technologies (FAST 11), 2011.

[39] Athicha Muthitacharoen, Benjie Chen, and David Maz-
ières. A low-bandwidth network file system. In
18th ACM Symposium on Operating Systems Principles
(SOSP 01), 2001.

[40] Aviv Nachman, Sarai Sheinvald, Ariel Kolikant, and Gala
Yadgar. GoSeed: Optimal seeding plan for deduplicated
storage. ACM Trans. Storage, 17(3), August 2021.

[41] P. C. Nagesh and Atish Kathpal. Rangoli: Space manage-
ment in deduplication environments. In 6th International
Systems and Storage Conference (SYSTOR 13), 2013.

[42] Edmund B. Nightingale, Jeremy Elson, Jinliang Fan,
Owen Hofmann, Jon Howell, and Yutaka Suzue. Flat
datacenter storage. In 10th USENIX Symposium on Op-
erating Systems Design and Implementation (OSDI 12),
2012.

[43] K. V. Rashmi, Nihar B. Shah, Dikang Gu, Hairong
Kuang, Dhruba Borthakur, and Kannan Ramchandran.
A solution to the network challenges of data recovery in
erasure-coded distributed storage systems: A study on the
Facebook warehouse cluster. In 5th USENIX Workshop
on Hot Topics in Storage and File Systems (HotStorage
13), 2013.

[44] Philip Shilane, Ravi Chitloor, and Uday Kiran Jonnala.
99 deduplication problems. In 8th USENIX Workshop
on Hot Topics in Storage and File Systems (HotStorage
16), 2016.

[45] Kiran Srinivasan, Tim Bisson, Garth Goodson, and
Kaladhar Voruganti. iDedup: Latency-aware, inline data
deduplication for primary storage. In 10th USENIX Con-
ference on File and Storage Technologies (FAST 12),
2012.

[46] Zhen Sun, Geoff Kuenning, Sonam Mandal, Philip Shi-
lane, Vasily Tarasov, Nong Xiao, and Erez Zadok. A
long-term user-centric analysis of deduplication patterns.
In 32nd Symposium on Mass Storage Systems and Tech-
nologies (MSST 16), 2016.

[47] Vasily Tarasov, Amar Mudrankit, Will Buik, Philip Shi-
lane, Geoff Kuenning, and Erez Zadok. Generating real-
istic datasets for deduplication analysis. In 2012 USENIX
Annual Technical Conference (USENIX ATC 12), 2012.

[48] Nguyen Tran, Marcos K. Aguilera, and Mahesh Balakr-
ishnan. Online migration for geo-distributed storage sys-
tems. In 2011 USENIX Conference on USENIX Annual
Technical Conference (USENIX ATC 11), 2011.

[49] Sage A. Weil, Scott A. Brandt, Ethan L. Miller, and
Carlos Maltzahn. CRUSH: Controlled, scalable, decen-
tralized placement of replicated data. In ACM/IEEE
Conference on Supercomputing (SC 06), 2006.

[50] Wen Xia, Hong Jiang, Dan Feng, Lei Tian, Min Fu, and
Yukun Zhou. Ddelta: A deduplication-inspired fast delta
compression approach. Performance Evaluation, 79:258
– 272, 2014. Special Issue: Performance 2014.

USENIX Association 20th USENIX Conference on File and Storage Technologies 279

[51] Wen Xia, Yukun Zhou, Hong Jiang, Dan Feng, Yu Hua,
Yuchong Hu, Qing Liu, and Yucheng Zhang. FastCDC: A
fast and efficient content-defined chunking approach for
data deduplication. In 2016 USENIX Annual Technical
Conference (USENIX ATC 16), 2016.

[52] Zhichao Yan, Hong Jiang, Yujuan Tan, and Hao Luo.
Deduplicating compressed contents in cloud storage en-
vironment. In 8th USENIX Workshop on Hot Topics in
Storage and File Systems (HotStorage 16), 2016.

[53] zhichao Cao, Hao Wen, Fenggang Wu, and David H.C.
Du. ALACC: Accelerating restore performance of data
deduplication systems using adaptive look-ahead win-
dow assisted chunk caching. In 16th USENIX Conference
on File and Storage Technologies (FAST 18), 2018.

[54] Benjamin Zhu, Kai Li, and Hugo Patterson. Avoiding
the disk bottleneck in the Data Domain deduplication file
system. In 6th USENIX Conference on File and Storage
Technologies (FAST 08), 2008.

[55] Eckart Zitzler, Joshua Knowles, and Lothar Thiele. Qual-
ity Assessment of Pareto Set Approximations, pages 373–
404. Springer Berlin Heidelberg, Berlin, Heidelberg,
2008.

Appendix
Formal formulation of constraints and objective. The ILP
formulation for migration with load balancing consists of 13
constraint types.

1. All Variables are Boolean: x f st ,cbst ,dbv ∈ {0,1}
2. A file can be remapped to at most one volume: for every

file f in volume s, ∑t∈V x f st ≤ 1.
3. A block can only be deleted or copied from a volume

it was originally stored in: for every two volumes s, t; if
b /∈ s then cbst = dbs = 0.

4. A block can be deleted from a volume only if all the files
containing it are remapped to other volumes: for every
volume s and for every file f such that f ∈ s, dbs ≤ ∑t x f st .

5. A block can be deleted from a volume only if no file
containing it is remapped to this volume: for every two
volumes s, t, every file f such that f ∈ s and f /∈ t, and
every block b such that (b, f ,s) ∈ IS, dbt ≤ 1− x f st .

6. View all the blocks in the volume intersections as having
been copied: for every two volumes s, t and for every
block b ∈ Intersectst , cist = 1.

7. When a file is remapped, all its blocks are either copied
to the target volume, or are initially there (as part of the
intersection): for every two volumes s, t and every block
b and file f such as (b, f ,s) ∈ IS, x f st ≤ Σv∈V cbvt .

8. A block can be copied to a target volume only from
one source volume: for every block b and volume t,
Σs such that b/∈Intersectst cbst ≤ 1.

9. A block must be deleted if there are no files containing
it on the volume: for every two volumes s,v and all files
fs ∈ s, fv ∈ v and all blocks b where b ∈ fs and b ∈ fv,
dbs ≥ 1−{Σ fs(1−Σvx fssv)+Σ f v(x fvvs)}.

10. A block cannot be copied to a target volume if no file will
contain it there: For every volume t and every block b /∈ t,
Σscbst ≤ ΣsΣ f∈s∧b∈ f x f st

11. A file cannot be migrated to its initial volume: for every
file f and volume v, x f vv = 0

12. Traffic constraint: the size of all the copied blocks
is not larger than the maximum allowed traffic:
∑s∈V ∑t∈V ∑b/∈Intersectst cbst × size(b)≤ Tmax.

13. Load balancing constraint: for each volume v,
(wv − µ) × Size(S′) ≤ Size(v′) ≤ (wv + µ) × Size(S′),
where Size(v′) is the volume size after migration,
i.e., the sum of its non-deleted blocks and blocks
copied to it: Size(v′) = ∑b∈v(1 − dbv) × Size(b) +
∑s∈V,∑b /∈Intersectsv cbsv×Size(b). Size(S′) is the size of the
system after migration: Size(S′) = ∑v∈V Size(v′).

▶ Objective: maximize the sum of sizes of all blocks
that are deleted minus all blocks that are copied. This
is equivalent to minimizing the overall system size:
Max

(
∑b∈B Size(b)×∑s∈V

[
dbs −∑t∈V,b/∈Intersectst cbst

])
.

280 20th USENIX Conference on File and Storage Technologies USENIX Association

	Introduction
	Background and related work
	Motivation and problem statement
	Greedy
	ILP
	Clustering
	Evaluation
	Experimental Setup
	Basic comparison between algorithms
	Sensitivity to problem parameters

	Conclusions and Future Challenges

