
This paper is included in the Proceedings of the 
20th USENIX Conference on File and Storage Technologies.

February 22–24, 2022 • Santa Clara, CA, USA
978-1-939133-26-7

Open access to the Proceedings  
of the 20th USENIX Conference on  

File and Storage Technologies  
is sponsored by USENIX.

Hydra : Resilient and Highly  
Available Remote Memory

Youngmoon Lee, Hanyang University; Hasan Al Maruf and  
Mosharaf Chowdhury, University of Michigan; Asaf Cidon, Columbia University; 

Kang G. Shin, University of Michigan
https://www.usenix.org/conference/fast22/presentation/lee



Hydra : Resilient and Highly Available Remote Memory

Youngmoon Lee∗1, Hasan Al Maruf∗2, Mosharaf Chowdhury2, Asaf Cidon3, and Kang G. Shin2

1Hanyang University, 2University of Michigan, 3Columbia University

Abstract
We present Hydra, a low-latency, low-overhead, and highly

available resilience mechanism for remote memory. Hy-
dra can access erasure-coded remote memory within a
single-digit µs read/write latency, significantly improving the
performance-efficiency tradeoff over the state-of-the-art – it
performs similar to in-memory replication with 1.6× lower
memory overhead. We also propose CodingSets, a novel cod-
ing group placement algorithm for erasure-coded data, that
provides load balancing while reducing the probability of data
loss under correlated failures by an order of magnitude. With
Hydra, even when only 50% memory is local, unmodified
memory-intensive applications achieve performance close to
that of the fully in-memory case in the presence of remote
failures and outperforms the state-of-the-art remote-memory
solutions by up to 4.35×.

1 Introduction
Modern datacenters are embracing a paradigm shift toward
disaggregation, where each resource is decoupled and con-
nected through a high-speed network fabric [4, 9, 13, 35–
37, 58, 61, 62, 81]. In such disaggregated datacenters, each
server node is specialized for specific purposes – some are
specialized for computing, while others for memory, stor-
age, and so on. Memory, being the prime resource for high-
performance services, is becoming an attractive target for
disaggregation [18, 19, 22, 32, 39, 47, 50, 58, 61].

Recent remote-memory frameworks allow an unmodified
application to access remote memory in an implicit man-
ner via well-known abstractions such as distributed virtual
file system (VFS) and distributed virtual memory manager
(VMM) [18, 47,50, 58, 65,81, 87]. With the advent of RDMA,
remote-memory solutions are now close to meeting the single-
digit µs latency required to support acceptable application-
level performance [47, 58]. However, realizing remote mem-
ory for heterogeneous workloads running in a large-scale
cluster faces considerable challenges [19, 24] stemming from
two root causes:
1. Expanded failure domains: As applications rely on mem-

ory across multiple machines in a remote-memory clus-
ter, they become susceptible to a wide variety of failure

*These authors contributed equally to this work

scenarios. Potential failures include independent and cor-
related failures of remote machines, evictions from and
corruptions of remote memory, and network partitions.

2. Tail at scale: Applications also suffer from stragglers or
late-arriving remote responses. Stragglers can arise from
many sources including latency variabilities in a large
network due to congestion and background traffic [41].

While one leads to catastrophic failures and the other mani-
fests as service-level objective (SLO) violations, both are un-
acceptable in production [58,68]. Existing solutions take three
primary approaches to address them: (i) local disk backup
[50, 81], (ii) remote in-memory replication [30, 42, 46, 64],
and (iii) remote in-memory erasure coding [76, 80, 84, 86]
and compression [58]. Unfortunately, they suffer from some
combinations of the following problems.

High latency: Disk backup has no additional memory over-
head, but the access latency is intolerably high under any
correlated failures. Systems that take the third approach do
not meet the single-digit µs latency requirement of remote
memory even when paired with RDMA (Figure 1).

High cost: Replication has low latency, but it doubles mem-
ory consumption and network bandwidth requirements. Disk
backup and replication represent the two extreme points in
the performance-vs-efficiency tradeoff space (Figure 1).

Low availability: All three approaches lose availability
to low latency memory when even a very small number of
servers become unavailable. With the first approach, if a sin-
gle server fails its data needs to be reconstituted from disk,
which is a slow process. In the second and third approach,
when even a small number of servers (e.g., three) fail simulta-
neously, some users will lose access to data. This is due to the
fact that replication and erasure coding assign replicas and
coding groups to random servers. Random data placement is
susceptible to data loss when a small number of servers fail
at the same time [27, 28] (Figure 2).

In this paper, we consider how to mitigate these problems
and present Hydra, a low-latency, low-overhead, and highly
available resilience mechanism for remote memory. While
erasure codes are known for reducing storage overhead and
for better load balancing, it is challenging for remote memory
with µs-scale access requirements (preferably, 3-5µs) [47]. We
demonstrate how to achieve resilient erasure-coded cluster

USENIX Association 20th USENIX Conference on File and Storage Technologies    181



1

10

100

1000

1 1.5 2 2.5 3

M
ed

ia
n 

4K
B 

Pa
ge

 R
ea

d 
La

te
nc

y 
(μ

s)
 

Memory Overhead

High
Latency

Infiniswap (NSDI’17)

FaRM (NSDI’14)
2-way Replication

Hydra FaSST (OSDI’16)
3-way Replication

EC-Cache (OSDI’16)

Better

Infiniswap w/ 
Local SSD Backup

EC-Cache 
w/ RDMA

Compressed Far Memory (ASPLOS’19)

LegoOS (OSDI’ 18) 
w/ SSD Backup

High 
Memory Overhead

Figure 1: Performance-vs-efficiency tradeoff in the resilient clus-
ter memory design space. Here, the Y-axis is in log scale.

memory with single-digit µs latency even under simultaneous
failures at a reduced data amplification overhead.

We explore the challenges and tradeoffs for resilient remote
memory without sacrificing application-level performance or
incurring high overhead in the presence of correlated failures
(§2). We also explore the trade-off between load balancing
and high availability in the presence of simultaneous server
failures. Our solution, Hydra, is a configurable resilience
mechanism that applies online erasure coding to individual
remote memory pages while maintaining high availability
(§3). Hydra’s carefully designed data path enables it to access
remote memory pages within a single-digit µs median and tail
latency (§4). Furthermore, we develop CodingSets, a novel
coding group placement algorithm for erasure codes that pro-
vides load balancing while reducing the probability of data
loss under correlated failures (§5).

We develop Hydra as a drop-in resilience mechanism that
can be applied to existing remote memory frameworks [18,
22,50,65,81]. We integrate Hydra with the two major remote
memory approaches widely embraced today: disaggregated
VMM (used by Infiniswap [50], and Leap [65]) and disaggre-
gated VFS (used by Remote Regions [18]) (§6). Our evalua-
tion using production workloads shows that Hydra achieves
the best of both worlds (§7). Hydra closely matches the perfor-
mance of replication-based resilience with 1.6× lower mem-
ory overhead with or without the presence of failures. At the
same time, it improves latency and throughput of the bench-
mark applications by up to 64.78× and 20.61×, respectively,
over SSD backup-based resilience with only 1.25× higher
memory overhead. While providing resiliency, Hydra also
improves the application-level performance by up to 4.35×
over its counterparts. CodingSets reduces the probability of
data loss under simultaneous server failures by about 10×.
Hydra is available at https://github.com/SymbioticLab/hydra.

In this paper, we make the following contributions:

• Hydra is the first in-memory erasure coding scheme that
achieves single-digit µs tail memory access latency.

• Novel analysis of load balancing and availability trade-off
for distributed erasure codes.
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Figure 2: Availability-vs-efficiency tradeoff considering 1% simul-
taneous server failures in a 1000-machine cluster.

• CodingSets is a new data placement scheme that balances
availability and load balancing, while reducing probability
of data loss by an order of magnitude during failures.

2 Background and Motivation
2.1 Remote Memory

Remote memory exposes memory available in remote ma-
chines as a pool of memory shared by many machines. It is
often implemented logically by leveraging stranded memory
in remote machines via well-known abstractions, such as the
file abstraction [18], remote memory paging [22,47,50,59,65],
and virtual memory management for distributed OS [81]. In
the past, specialized memory appliances for physical memory
disaggregation were proposed as well [61, 63].

All existing remote-memory solutions use the 4KB page
granularity. While some applications use huge pages for per-
formance enhancement [57], the Linux kernel still performs
paging at the basic 4KB level by splitting individual huge
pages because huge pages can result in high amplification
for dirty data tracking [23]. Existing remote-memory systems
use disk backup [50, 81] and in-memory replication [46, 64]
to provide availability during failures.

2.2 Failures in Remote Memory

The probability of failure or temporary unavailability is higher
in a large remote-memory cluster, since memory is being
accessed remotely. To illustrate possible performance penal-
ties in the presence of such unpredictable events, we con-
sider a resilience solution from the existing literature [50],
where each page is asynchronously backed up to a local SSD.
We run transaction processing benchmark TPC-C [16] on an
in-memory database system, VoltDB [17]. We set VoltDB’s
available memory to 50% of its peak memory to force remote
paging for up to 50% of its working set.

1. Remote Failures and Evictions Machine failures are
the norm in large-scale clusters where thousands of machines
crash over a year due to a variety of reasons, including soft-
ware and hardware failures [31,33,38,88]. Concurrent failures
within a rack or network segments are quite common and typ-
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Figure 3: TPC-C throughput over time on VoltDB when 50% of the working set fits in memory. Arrows point to uncertainty injection time.

ically occur dozens of times a year. Even cluster-wide power
outage is not uncommon – occurs once or twice per year in a
given data center. For example, during a recent cluster-wide
power outage in Google Cloud, around 23% of the machines
were unavailable for hours [6].

Without redundancy, applications relying on remote mem-
ory may fail when a remote machine fails or remote memory
pages are evicted. As disk operations are significantly slower
than the latency requirement of remote memory, disk-based
fault-tolerance is far from being practical. In the presence of
a remote failure, VoltDB experiences almost 90% throughput
loss (Figure 3a); throughput recovery takes a long time after
the failure happens.

2. Background Network Load Network load throughout
a large cluster can experience significant fluctuations [41, 53],
which can inflate RDMA latency and application-level strag-
glers, causing unpredictable performance issues [40, 89]. In
the presence of an induced bandwidth-intensive background
load, VoltDB throughput drops by about 50% (Figure 3b).

3. Request Bursts Applications can have bursty memory
access patterns. Existing solutions maintain an in-memory
buffer to absorb temporary bursts [18, 50, 74]. However, as
the buffer ties remote access latency to disk latency when it is
full, the buffer can become the bottleneck when a workload
experiences a prolonged burst. While a page read from remote
memory is still fast, backup page writes to the local disk
become the bottleneck after the 100th second in Figure 3c. As
a result, throughput drops by about 60%.

4. Memory Corruption During remote memory access, if
any one of the remote servers experiences a corruption, or
if the memory gets corrupted over the network a memory
corruption event will occur. In such case, disk access causes
failure-like performance loss (Figure 3d).

Performance vs. Efficiency Tradeoff for Resilience In
all of these scenarios, the obvious alternative – in-memory
2× or 3× replication [46, 64] – is effective in mitigating a
small-scale failure, such as the loss of a single server (Fig-
ure 3a). When an in-memory copy becomes unavailable, we
can switch to an alternative. Unfortunately, replication in-
curs high memory overhead in proportion to the number of
replicas. This defeats the purpose of remote memory. Hedg-
ing requests to avoid stragglers [41] in a replicated system
doubles its bandwidth requirement as well.

This leads to an impasse: one has to either settle for high
latency in the presence of a failure or incur high memory

overhead. Figure 1 depicts this performance-vs-efficiency
tradeoff under failures and memory usage overhead to provide
resilience. Beyond the two extremes in the tradeoff space,
there are two primary alternatives to achieve high resilience
with low overhead. The first is replicating pages to remote
memory after compressing them (e.g., using zswap) [58],
which improves the tradeoff in both dimensions. However,
its latency can be more than 10µs when data is in remote
memory. Especially, during resource scarcity, the presence of
a prolonged burst in accessing remote compressed pages can
even lead to orders of magnitude higher latency due to the
demand spike in both CPU and local DRAM consumption for
decompression. Besides, this approach faces similar issues as
replication such as latency inflation due to stragglers.

The alternative is erasure coding, which has recently made
its way from disk-based storage to in-memory cluster caching
to reduce storage overhead and improve load balancing [20,25,
76,83,84,86]. Typically, an object is divided into k data splits
and encoded to create r equal-sized parity splits (k > r), which
are then distributed across (k+ r) failure domains. Existing
erasure-coded memory solutions deal with large objects (e.g.,
larger than 1 MB [76]), where hundreds-of-µs latency of the
TCP/IP stack can be ignored. Simply replacing TCP with
RDMA is not enough either. For example, the EC-Cache with
RDMA (Figure 1) provides a lower storage overhead than
compression but with a latency around 20µs.

Last but not least, all of these approaches experience high
unavailability in the presence of correlated failures [28].

2.3 Challenges in Erasure-Coded Memory

High Latency Individually erasure coding 4 KB pages that
are already small lead to even smaller data chunks ( 4

k KB),
which contributes to the higher latency of erasure-coded re-
mote memory over RDMA due to following primary reasons:

1. Non-negligible coding overhead: When using erasure
codes with on-disk data or over slower networks that have
hundreds-of-µs latency, its 0.7µs encoding and 1.5µs de-
coding overheads can be ignored. However, they become
non-negligible when dealing with DRAM and RDMA.

2. Stragglers and errors: As erasure codes require k splits
before the original data can be constructed, any straggler
can slow down a remote read. To detect and correct an
error, erasure codes require additional splits; an extra read
adds another round-trip to double the overall read latency.

3. Interruption overhead: Splitting data also increases the
total number of RDMA operations for each request. Any
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context switch in between can further add to the latency.
4. Data copy overhead: In a latency-sensitive system, addi-

tional data movement can limit the lowest possible latency.
During erasure coding, additional data copy into different
buffers for data and parity splits can quickly add up.

Availability Under Simultaneous Failures Existing era-
sure coding schemes can handle a small-scale failure without
interruptions. However, when a relatively modest number of
servers fail or become unavailable at the same time (e.g., due
to a network partition or a correlated failure event), they are
highly susceptible to losing availability to some of the data.

This is due to the fact that existing erasure coding schemes
generate coding groups on random sets of servers [76]. In a
coding scheme with k data and r parity splits, an individual
coding group, will fail to decode the data if r+1 servers fail
simultaneously. Now in a large cluster with r+1 failures, the
probability that those r+1 servers will fail for a specific cod-
ing group is low. However, when coding groups are generated
randomly (i.e., each one of them compromises a random set of
k+ r servers), and there are a large number of coding groups
per server, then the probability that those r+1 servers will af-
fect any coding group in the cluster is much higher. Therefore,
state-of-the-art erasure coding schemes, such as EC-Cache,
will experience a very high probability of unavailability even
when a very small number of servers fail simultaneously.

3 Hydra Architecture

Hydra is an erasure-coded resilience mechanism for existing
remote-memory techniques to provide better performance-
efficiency tradeoff under remote failures while ensuring high
availability under simultaneous failures. It has two main com-
ponents (Figure 4): (i) Resilience Manager coordinates
erasure-coded resilience operations during remote read/write;
(ii) Resource Monitor handles the memory management in
a remote machine. Both can be present in every machine and
work together without central coordination.

k-slab address ranges

(k+r) remote slabs
for each 

address range

HYDRA Resilience Manager Address Space

1 2 3 2 3 1

Data/Parity Slab

# Slab Mapped to 
Machine#

Figure 5: Hydra’s address space is divided into fixed-size address
ranges, each of which spans (k+ r) memory slabs in remote ma-
chines; i.e., k for data and r for parity (k=2 and r=1 in this figure).

3.1 Resilience Manager

Hydra Resilience Manager provides remote memory abstrac-
tion to a client machine. When an unmodified application
accesses remote memory through different state-of-the-art
remote-memory solutions (e.g., via VFS or VMM), the Re-
silience Manager transparently handles all aspects of RDMA
communication and erasure coding. Each client has its own
Resilience Manager that handles slab placement through Cod-
ingSets, maintains remote slab-address mapping, performs
erasure-coded RDMA read/write. Resilience Manager com-
municates to Resource Monitor(s) running on remote memory
host machines, performs remote data placement, and ensures
resilience. As a client’s Resilience Manager is responsible for
the resiliency of its remote data, the Resilience Managers do
not need to coordinate with each other.

Following the typical (k,r) erasure coding construction,
the Resilience Manager divides its remote address space
into fixed-size address ranges. Each address range resides
in (k + r) remote slabs: k slabs for page data and r slabs
for parity (Figure 5). Each of the (k+ r) slabs of an address
range are distributed across (k+ r) independent failure do-
mains using CodingSets (§5). Page accesses are directed to
the designated (k + r) machines according to the address–
slab mapping. Although remote I/O happens at the page level,
the Resilience Manager coordinates with remote Resource
Monitors to manage coarse-grained memory slabs to reduce
metadata overhead and connection management complexity.

3.2 Resource Monitor

Resource Monitor manages a machine’s local memory and
exposes them to the remote Resilience Manager in terms of
fixed-size (SlabSize) memory slabs. Different slabs can be-
long to different machines’ Resilience Manager. During each
control period (ControlPeriod), the Resource Monitor tracks
the available memory in its local machine and proactively
allocates (reclaims) slabs to (from) remote mapping when
memory usage is low (high). It also performs slab regenera-
tion during remote failures or corruptions.

Fragmentation in Remote Memory During the registra-
tion of Resource Monitor(s), Resilience Manager registers the
RDMA memory regions and allocates slabs on the remote
machines based on its memory demand. Memory regions are
usually large (by default, 1GB) and the whole address space is
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homogeneously splitted. Moreover, RDMA drivers guarantee
the memory regions are generated in a contiguous physical
address space to ensure faster remote-memory access. Hydra
introduces no additional fragmentation in remote machines.

3.3 Failure Model

Assumptions In a large remote-memory cluster, (a) remote
servers may crash or networks may become partitioned; (b)
remote servers may experience memory corruption; (c) the
network may become congested due to background traffic;
and (d) workloads may have bursty access patterns. These
events can lead to catastrophic application-failures, high tail
latencies, or unpredictable performance. Hydra addresses all
of these uncertainties in its failure domain. Although Hydra
withstands a remote-network partition, as there is no local-
disk backup, it cannot handle local-network failure. In such
cases, the application is anyways inaccessible.

Single vs. Simultaneous Failure A single node failure
means the unavailability of slabs in a remote machine. In
such an event, all the data or parity allocated on the slab(s)
become unavailable. As we spread the data and parity splits
for a page across multiple remote machines (§5), during a
single node failure, we assume that only a single data or parity
split for that page is being affected.

Simultaneous host failures typically occur due to large-
scale failures, such as power or network outage that cause
multiple machines to become unreachable. In such a case, we
assume multiple data and/or parity splits for a page become
unavailable. Note that in both cases, the data is unavailable,
but not compromised. Resilience Manager can detect the un-
reachability and communicate to other available Resource
Monitor(s) on to regenerate specific slab(s).

4 Resilient Data Path
Hydra can operate on different resilient modes based on a
client’s need – (a) Failure Recovery: provides resiliency in
the presence of any remote failure or eviction; (b) Corruption
Detection: only detects the presence of corruption in remote
memory; (c) Corruption Correction: detects and corrects re-
mote memory corruption; and (d) EC-only mode: provides
erasure-coded faster remote-memory data path without any
resiliency guarantee. Note that both of the corruption modes
by default inherit the Failure Recovery mode.

Before initiating the Resilience Manager, one needs to con-
figure Hydra to a specific mode according to the resilience
requirements and memory overhead concerns (Table 1). Multi-
ple resilience modes cannot act simultaneously, and the modes
do not switch dynamically during runtime. In this section, we
present Hydra’s data path design to address the resilience
challenges mentioned in §2.3.

4.1 Hydra Remote Memory Data Path

To minimize erasure coding’s latency overheads, Resilience
Manager’s data path incorporate following design principles.

Data 
Slab 2

Data 
Slab 1

Encoding

Resilience
Manager

End IO

Parity
Slab 1

(a) Remote Write

Decoding

Resilience
Manager

End IO

Data 
Slab 2

Data 
Slab 1

Parity
Slab 1

(b) Remote Read
Figure 6: To handle failures, Hydra (a) first writes data splits,
then encodes/writes parities to hide encoding latency; (b) reads
from k+∆ slabs to avoid stragglers, finishes with first k arrivals.

4.1.1 Asynchronously Encoded Write

To hide the erasure coding latency, existing systems usually
perform batch coding where multiple pages are encoded to-
gether. The encoder waits until a certain number of pages are
available. This idle waiting time can be insignificant com-
pared to disk or slow network (e.g., TCP) access. However, to
maintain the tail latency of a remote I/O within the single-digit
µs range, this “batch waiting” time needs to be avoided.

During a remote write, Resilience Manager applies erasure
coding within each individual page by dividing it into k splits
(for a 4 KB page, each split size is 4

k KB), encodes these splits
using Reed-Solomon (RS) codes [77] to generate r parity
splits. Then, it writes these (k+ r) splits to different (k+ r)
slabs that have already been mapped to unique remote ma-
chines. Each Resilience Manager can have their own choice
of k and r. This individual page-based coding decreases la-
tency by avoiding the “batch waiting” time. Moreover, the
Resilience Manager does not have to read unnecessary pages
within the same batch during remote reads, which reduces
bandwidth overhead. Distributing remote I/O across many
remote machines increases I/O parallelism too.

Resilience Manager sends the data splits first, then it en-
codes and sends the parity splits asynchronously. Decoupling
the two hides encoding latency and subsequent write latency
for the parities without affecting the resilience guarantee. In
the absence of failure, any k successful writes of the (k+ r)
allow the page to be recovered. However, to ensure resilience
guarantee for r failures, all (k+ r) must be written. In the
failure recovery mode, a write is considered complete after
all (k+ r) have been written. In the corruption correction (de-
tection) mode, to correct (detect) ∆ corruptions, a write waits
for k+2∆+1 (k+∆) to be written. If the acknowledgement
fails to reach the Resilience Manager due to a failure in the
remote machine, the write for that split is considered failed.
Resilience Manager tries to write that specific split(s) after a
timeout period to another remote machine. Figure 6a depicts
the timeline of a page write in the failure recovery mode.

4.1.2 Late-Binding Resilient Read

During read, any k out of the k+ r splits suffice to reconstruct
a page. However, in failure recovery mode, to be resilient
in the presence of ∆ failures, during a remote read, Hydra
Resilience Manager reads from k+∆ randomly chosen splits
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Resilience Mode
# of
Errors

Minimum
# of Splits

Memory
Overhead

Failure Recovery r k 1+ r
k

Corruption Detection ∆ k+∆ 1+ ∆

k
Corruption Correction ∆ k+2∆+1 1+ 2∆+1

k
EC-only – k 1+ r

k
Table 1: Minimum number of splits needs to be written to/read
from remote machines for resilience during a remote I/O.

in parallel. A page can be decoded as soon as any k splits
arrive out of k+∆. The additional ∆ reads mitigate the impact
of stragglers on tail latency as well. Figure 6b provides an
example of a read operation in the failure recovery mode with
k = 2 and ∆ = 1, where one of the data slabs (Data Slab 2) is
a straggler. ∆ = 1 is often enough in practice.

If simply “detect and discard corrupted memory" is enough
for any application, one can configure Hydra with corruption
detection mode and avoid the extra memory overhead of cor-
ruption correction mode. In corruption detection mode, be-
fore decoding a page, the Resilience Manager waits for k+∆

splits to arrive to detect ∆ corruptions. After the detection of
a certain amount of corruptions, Resilience Manager marks
the machine(s) with corrupted splits as probable erroneous
machines, initiates a background slab recovery operation, and
avoids them during future remote I/O.

To correct the error, in corruption correction mode, when
an error is detected, it requests additional ∆+ 1 reads from
the rest of the k + r machines. Otherwise, the read com-
pletes just after the arrival of the k +∆ splits. If the error
rate for a remote machine exceeds a user-defined threshold
(ErrorCorrectionLimit), subsequent read requests involved
with that machine initiates with k+2∆+1 split requests as
there is a high probability to reach an erroneous machine.
This will reduce the wait time for additional ∆ + 1 reads.
This continues until the error rate for the involved machine
gets lower than the ErrorCorrectionLimit. If this continues
for long and/or the error rate goes beyond another threshold
(SlabRegenerationLimit), Resilience Manager initiates a slab
regeneration request for that machine.

One can configure Hydra with EC-only mode to access
erasure-coded remote memory and benefit from the fast data
path without any resiliency guarantee. In this mode, a remote
I/O completes just after writing/reading any k splits. Table 1
summarizes the minimum number of splits the Resilience
Manager requires to write/read during a remote I/O operation
to provide resiliency in different modes.

Overhead of Replication To remain operational after r fail-
ures, in-memory replication requires at least r+1 copies of an
entire 4 KB page, and hence the memory overhead is (r+1)×.
However, a remote I/O operation can complete just after the
confirmation from one of the r+1 machines. To detect and fix
∆ corruptions, replication needs ∆+1 and 2∆+1 copies of
the entire page, respectively. Thus, to provide the correctness
guarantee over ∆ corruptions, replication needs to wait until

k In-Page Data Splits r Parities in Buffer

Data Split Parity Split Page

k Data Splits in Page r Parity Splits in Buffer

Data Split

Parity SplitPage

In-place Decoding

(a) Remote Write

k In-Page Data Splits r Parities in Buffer

Data Split Parity Split Page

k Data Splits in Page r Parity Splits in Buffer

Data Split

Parity SplitPage

In-place Decoding

(b) Remote Read
Figure 7: Hydra performs in-place coding with an extra buffer of
r splits to reduce the data-copy latency.

it writes to or reads from at least 2∆+1 of the replicas along
with a memory overhead of (2∆+1)×.

4.1.3 Run-to-Completion

As Resilience Manager divides a 4 KB page into k smaller
pieces, RDMA messages become smaller. In fact, their net-
work latency decrease to the point that run-to-completion
becomes more beneficial than a context switch. Hence, to
avoid interruption-related overheads, the remote I/O request
thread waits until the RDMA operations are done.

4.1.4 In-Place Coding

To reduce the number of data copies, Hydra Resilience Man-
ager uses in-place coding with an extra buffer of r splits.
During a write, the data splits are always kept in-page while
the encoded r parities are put into the buffer (Figure 7a). Like-
wise, during a read, the data splits arrive at the page address,
and the parity splits find their way into the buffer (Figure 7b).

In the failure recovery mode, a read can complete as soon
as any k valid splits arrive. Corrupted/straggler data split(s)
can arrive late and overwrite valid page data. To address
this, as soon as Hydra detects the arrival of k valid splits, it
deregisters relevant RDMA memory regions. It then performs
decoding and directly places the decoded data in the page
destination. Because the memory region has already been
deregistered, any late data split cannot access the page. During
all remote I/O, requests are forwarded directly to RDMA
dispatch queues without additional copying.

4.2 Handling Uncertainties

Remote Failure Hydra uses reliable connections (RC) for
all RDMA communication. Hence, we consider unreachabil-
ity due to machine failures/reboots or network partition as the
primary cause of failure. When a remote machine becomes
unreachable, the Resilience Manager is notified by the RDMA
connection manager. Upon disconnection, it processes all the
in-flight requests in order first. For ongoing I/O operations,
it resends the I/O request to other available machines. Since
RDMA guarantees strict ordering, in the read-after-write case,
read requests will arrive at the same RDMA dispatch queue af-
ter write requests; hence, read requests will not be served with
stale data. Finally, Hydra marks the failed slabs and future
requests are directed to the available ones. If the Resource
Monitor in the failed machine revives and communicates later,
Hydra reconsiders the machine for further remote I/O.

Adaptive Slab Allocation/Eviction Resource Monitor al-
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locates memory slabs for Resilience Managers as well as
proactively frees/evicts them to avoid local performance im-
pacts (Figure 8). It periodically monitors local memory usage
and maintains a headroom to provide enough memory for
local applications. When the amount of free memory shrinks
below the headroom (Figure 8a), the Resource Monitor first
proactively frees/evicts slabs to ensure local applications are
unaffected. To find the eviction candidates, we avoid ran-
dom selection as it has a higher likelihood of evicting a busy
slab. Rather, we uses the decentralized batch eviction algo-
rithm [50] to select the least active slabs. To evict E slabs,
we contact (E +E ′) slabs (where E ′ ≤ E) and find the least-
frequently-accessed slabs among them. This doesn’t require
to maintain a global knowledge or search across all the slabs.

When the amount of free memory grows above the head-
room (Figure 8b), the Resource Monitor first attempts to make
the local Resilience Manager to reclaim its pages from remote
memory and unmap corresponding remote slabs. Furthermore,
it proactively allocates new, unmapped slabs that can be read-
ily mapped and used by remote Resilience Managers.

Background Slab Regeneration The Resource Monitor
also regenerates unavailable slabs – marked by the Resilience
Manager – in the background. During regeneration, writes to
the slab are disabled to prevent overwriting new pages with
stale ones; reads can still be served without interruption.

Hydra Resilience Manager uses the placement algorithm
to find a new regeneration slab in a remote Resource Monitor
with a lower memory usage. It then hands over the task of
slab regeneration to that Resource Monitor. The selected
Resource Monitor decodes the unavailable slab by directly
reading the k randomly-selected remaining valid slab for that
address region. Once regeneration completes, it contacts the
Resilience Manager to mark the slab as available. Requests
thereafter go to the regenerated slab.

5 CodingSets for High Availability
Hydra uses CodingSets, a novel coding group placement
scheme to perform load-balancing while reducing the prob-
ability of data loss. Prior works show orders-of-magnitude
more frequent data loss due to events causing multiple nodes
to fail simultaneously than data loss due to independent node
failures [27, 31]. Several scenarios can cause multiple servers
to fail or become unavailable simultaneously, such as network
partitions, partial power outages, and software bugs. For ex-
ample, a power outage can cause 0.5%-1% machines to fail or
go offline concurrently [28]. In case of Hydra, data loss will
happen if a concurrent failure kills more than r+1 of (k+ r)
machines for a particular coding group.

We are inspired by copysets, a scheme for preventing data
loss under correlated failures in replication [27, 28], which
constraints the number of replication groups, in order to re-
duce the frequency of data loss events. Using the same ter-
minology as prior work, we define each unique set of (k+ r)
servers within a coding group as a copyset. The number of
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Figure 8: Resource Monitor proactively allocates memory for re-
mote machines and frees local memory pressure.

copysets in a single coding group will be:
(k+r

r+1

)
. For exam-

ple, in an (8+2) configuration, where nodes are numbered
1,2, . . . ,10, the 3 nodes that will cause failure if they fail at
the same time (i.e., copysets) will be every 3 combinations of
10 nodes: (1,2,3),(1,2,4), . . . ,(8,9,10), and the total num-
ber of copysets will be

(10
3

)
= 120.

For a data loss event impacting exactly r+1 random nodes
simultaneously, the probability of losing data of a single spe-
cific coding group: P[Group] = Num. of Copysets in Coding Group

Total Copysets =
(k+r

r+1)
( N

r+1)
, where N is the total number of servers.

In a cluster with more than (k+ r) servers, we need to use
more than one coding group. However, if each server is a
member of a single coding group, hot spots can occur if one
or more members of that group are overloaded. Therefore, for
load-balancing purposes, a simple solution is to allow each
server to be a member of multiple coding groups, in case some
members of a particular coding group are over-loaded at the
time of online coding.

Assuming we have G disjoint coding groups, and the cor-
related failure rate is f %, the total probability of data loss is:
1− (1−P[Group] ·G)(

N· f
r+1). We define disjoint coding groups

where the groups do not share any copysets; or in other words,
they do not overlap by more than r nodes.

Strawman: Multiple Coding Groups per Server In order
to equalize load, we consider a scheme where each slab forms
a coding group with the least-loaded nodes in the cluster at
coding time. We assume the nodes that are least loaded at a
given time are distributed randomly, and the number of slabs
per server is S. When S · (r+ k)� N, the coding groups are
highly likely to be disjoint [28], and the number of groups is

equal to: G =
N ·S
k+ r

.

We call this placement strategy the EC-Cache scheme, as
it produces a random coding group placement used by the
prior state-of-the-art in-memory erasure coding system, EC-
Cache [76]. In this scheme, with even a modest number of
slabs per server, a high number of combinations of r+1 ma-
chines will be a copyset. In other words, even a small number
of simultaneous node failures in the cluster will result in data
loss. When the number of slabs per server is high, almost
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every combination of only r + 1 failures across the cluster
will cause data loss. Therefore, to reduce the probability of
data loss, we need to minimize the number of copysets, while
achieving sufficient load balancing.

CodingSets: Reducing Copysets for Erasure Coding To
this end, we propose CodingSets, a novel load-balancing
scheme, which reduces the number of copysets for distributed
erasure coding. Instead of having each node participate in
several coding groups like in EC-Cache, in our scheme, each
server belongs to a single, extended coding group. At time of
coding, (k+ r) slabs will still be considered together, but the
nodes participating in the coding group are chosen from a set
of (k+ r+ l) nodes, where l is the load-balancing factor. The
nodes chosen within the extended group are the least loaded
ones. While extending the coding group increases the number
of copysets (instead of

(k+r
r+1

)
copysets, now each extended

coding group creates
(k+r+l

r+1

)
copysets, while the number of

groups is G =
N

k+ r+ l
), it still has a significantly lower prob-

ability of data loss than having each node belong to multiple
coding groups. Hydra uses CodingSets as its load balancing
and slab placement policy. We evaluate it in Section 7.2.

Tradeoff Note that while CodingSets reduces the probabil-
ity of data loss, it does not reduce the expected amount of data
lost over time. In other words, it reduces the number of data
loss events, but each one of these events will have a propor-
tionally higher magnitude of data loss (i.e., more slabs will be
affected) [28]. Given that our goal with Hydra is high avail-
ability, we believe this is a favorable trade off. For example,
providers often provide an availability SLA, that is measured
by the service available time (e.g., the service is available
99.9999% of the time). CodingSets would optimize for such
an SLA, by minimizing the frequency of unavailability events.

6 Implementation

Resilience Manager is implemented as a loadable kernel mod-
ule for Linux kernel 4.11 or later. Kernel-level implementa-
tion facilitates its deployment as an underlying block device
for different remote-memory systems [18, 50, 81]. We inte-
grated Hydra with two remote-memory systems: Infiniswap,
a disaggregated VMM and Remote Regions, a disaggregated
VFS. All I/O operations (e.g., slab mapping, memory regis-
tration, RDMA posting/polling, erasure coding) are indepen-
dent across threads and processed without synchronization.
All RDMA operations use RC and one-sided RDMA verbs
(RDMA WRITE/READ). Each Resilience Manager main-
tains one connection for each active remote machine. For
erasure coding, we use x86 AVX instructions and the ISA
library [8] that achieves over 4 GB/s encoding throughput per
core for (8+2) configuration in our evaluation platform.

Resource Monitor is implemented as a user-space program.
It uses RDMA SEND/RECV for all control messages.

7 Evaluation

We evaluate Hydra on a 50-machine 56 Gbps InfiniBand
CloudLab cluster against Infiniswap [50], Leap [65] (disag-
gregated VMM) and Remote Regions [18] (disaggregated
VFS). Our evaluation addresses the following questions:

• Does it improve the resilience of cluster memory? (§7.1)
• Does it improve the availability? (§7.2)
• What is its overhead and sensitivity to parameters? (§7.3)
• How much TCO savings can we expect? (§7.4)
• What is its benefit over a persistent memory setup? (§7.5)

Methodology Unless otherwise specified, we use k=8, r=2,
and ∆=1, targeting 1.25× memory and bandwidth overhead.
We select r=2 because late binding is still possible even
when one of the remote slab fails. The additional read ∆=1
incurs 1.125× bandwidth overhead during reads. We use
1GB SlabSize, The additional number of choices for eviction
E ′ = 2. Free memory headroom is set to 25%, and the control
period is set to 1 second. Each machine has 64 GB of DRAM
and 2× Intel Xeon E5-2650v2 with 32 virtual cores.

We compare Hydra against the following alternatives:

• SSD Backup: Each page is backed up in a local SSD for
the minimum 1× remote memory overhead. We consider
both disaggregated VMM and VFS systems.

• Replication: We directly write each page over RDMA to
two remote machines’ memory for a 2× overhead.

• EC-Cache w/ RDMA: Implementation of the erasure cod-
ing scheme in EC-Cache [76], but implemented on RDMA.

Workload Characterization Our evaluation consists of
both micro-benchmarks and cluster-scale evaluations with
real-world applications and workload combinations.

• We use TPC-C [16] on VoltDB [17]. We perform 5 different
types of transactions to simulate an order-entry environ-
ment. We set 256 warehouses and 8 sites and run 2 million
transactions. Here, the peak memory usage is 11.5 GB.

• We use Facebook’s ETC, SYS workloads [21] on Mem-
cached [12]. First, we use 10 million SETs to populate the
Memcached server. Then we perform another 10 million
operations (for ETC: 5% SETs, 95% GETs, for SYS: 25%
SETs, 75% GETs). The key size is 16 bytes and 90% of the
values are evenly distributed between 16–512 bytes. Peak
memory usages are 9 GB for ETC and 15 GB for SYS.

• We use PageRank on PowerGraph [48] and Apache
Spark/GraphX [49] to measure the influence of Twitter
users on followers on a graph with 11 million vertices [56].
Peak memory usages are 9.5 GB and 14 GB, respectively.

7.1 Resilience Evaluation

We evaluate Hydra both in the presence and absence of fail-
ures with microbenchmarks and real-world applications.
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Figure 9: Hydra provides better latency characteristics during
both disaggregated VMM and VFS operations.
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7.1.1 Latency Characteristics

First, we measure Hydra’s latency characteristics with micro-
benchmarks in the absence of failures. Then we analyze the
impact of its design components.

Disaggregated VMM Latency We use a simple applica-
tion with its working set size set to 2GB. It is provided 1GB
memory to ensure that 50% of its memory accesses cause
paging. While using disaggregated memory for remote page-
in, Hydra improves page-in latency over Infiniswap with SSD
backup by 1.79× at median and 1.93× at the 99th percentile.
Page-out latency is improved by 1.9× and 2.2× over Infin-
iswap at median and 99th percentile, respectively. Replication
provides at most 1.1× improved latency over Hydra, while
incurring 2× memory and bandwidth overhead (Figure 9a).

Disaggregated VFS Latency We use fio [5] to generate
one million random read/write requests of 4 KB block I/O.
During reads, Hydra provides improved latency over Remote
Regions by 2.13× at median and 2.04× at the 99th percentile.
During writes, Hydra also improves the latency over Remote
Regions by 2.22× at median and 1.74× at the 99th percentile.
Replication has a minor latency gain over Hydra, improving
latency by at most 1.18× (Figure 9b).

Benefit of Data Path Components Erasure coding over
RDMA (i.e., EC-Cache with RDMA) performs worse than
disk backup due to its coding overhead. Figure 10 shows the
benefit of Hydra’s data path components to reduce the latency.
1. Run-to-completion avoids interruptions during remote

I/O, reducing the median read and write latency by 51%.
2. In-place coding saves additional time for data copying,

which substantially adds up in remote-memory systems,
reducing 28% of the read and write latency.
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Figure 12: Latency in the presence of uncertainty events.

3. Late binding specifically improves the tail latency during
remote read by 61% by avoiding stragglers. The additional
read request increases the median latency only by 6%.

4. Asynchronous encoding hides erasure coding overhead
during writes, reducing the median write latency by 38%.

Tail Latency Breakdown The latency of Hydra consists of
the time for (i) RDMA Memory Registration (MR), (ii) ac-
tual RDMA read/write, and (iii) erasure coding. Even though
decoding a page takes about 1.5µs, late binding effectively im-
proves the tail latency by 1.55× (Figure 11a). During writes,
asynchronous encoding hides encoding latency and latency
impacts of straggling splits, improving tail latency by 1.34×
w.r.t. synchronous encoding (Figure 11b). At the presence
of corruption (r = 3), accessing extra splits increases the tail
latency by 1.51× and 1.09× for reads and writes, respectively.

7.1.2 Latency Under Failures

Background Flows We generate RDMA flows on the re-
mote machine constantly sending 1 GB messages. Unlike
SSD backup and replication, Hydra ensures consistent latency
due to late binding (Figure 12a). Hydra’s latency improve-
ment over SSD backup is 1.97–2.56×. It even outperforms
replication at the tail read (write) latency by 1.33× (1.50×).

Remote Failures Both read and write latency are disk-
bound when it’s necessary to access the backup SSD (Fig-
ure 12b). Hydra reduces latency over SSD backup by 8.37–
13.6× and 4.79–7.30× during remote read and write, respec-
tively. Furthermore, it matches the performance of replication.

7.1.3 Application-Level Performance

We now focus on Hydra’s benefits for real-world memory-
intensive applications and compare it with that of SSD backup
and replication. We consider container-based application de-
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TPS/OPS
(thousands) Latency (ms)

50th 99th
HYD REP HYD REP HYD REP

VoltDB
100% 39.4 39.4 52.8 52.8 134.0 134.0
75% 36.1 35.3 56.3 56.1 142.0 143.0
50% 32.3 34.0 57.8 59.0 161.0 168.0

ETC
100% 123.0 123.0 123.0 123.0 257.0 257.0
75% 119.0 125.0 120.0 121.0 255.0 257.0
50% 119.0 119.0 118.0 122.0 254.0 264.0

SYS
100% 108.0 108.0 125.0 125.0 267.0 267.0
75% 100.0 104.0 120.0 125.0 262.0 305.0
50% 101.0 102.0 117.0 123.0 257.5 430.0

Table 2: Hydra (HYD) provides similar performance to replica-
tion (REP) for VoltDB and Memcached workloads (ETC and
SYS). Higher is better for throughput; Lower is better for latency.

Apache Spark/GraphX
Completion Time (s)

PowerGraph
Completion Time (s)

100% 75% 50% 100% 75% 50%
Hydra 77.91 105.41 191.93 73.10 66.90 68.00

Replication 77.91 91.89 195.54 73.10 73.30 73.70
Table 3: Hydra also provides similar completion time to replica-
tion for graph analytic applications.

ployment [82] and run each application in an lxc container
with a memory limit to fit 100%, 75%, 50% of the peak mem-
ory usage for each application. For 100%, applications run
completely in memory. For 75% and 50%, applications hit
their memory limits and performs remote I/O via Hydra.

We present Hydra’s application-level performance against
replication (Table 2 and Table 3) to show that it can achieve
similar performance with a lower memory overhead even in
the absence of any failures. For brevity, we omit the results for
SSD backup, which performs much worse than both Hydra
and replication – albeit with no memory overhead.

For VoltDB, when half of its data is in remote memory, Hy-
dra achieves 0.82× throughput and almost transparent latency
characteristics compared to the fully in-memory case.

For Memcached, at 50% case, Hydra achieves 0.97×
throughput with read-dominant ETC workloads and 0.93×
throughput with write-intensive SYS workloads compared to
the 100% scenario. Here, latency overhead is almost zero.

For graph analytics, Hydra could achieve almost transparent
application performance for PowerGraph; thanks to its opti-
mized heap management. However, it suffers from increased
job completion time for GraphX due to massive thrashing of
in-memory and remote memory data – the 14 GB working
set oscillates between paging-in and paging-out. This causes
bursts of RDMA reads and writes. Even then, Hydra outper-
forms Infiniswap with SSD backup by 8.1×. Replication does
not have significant gains over Hydra.

Performance with Leap Hydra’s drop-in resilience mech-
anism is orthogonal to the functionalities of remote-memory
frameworks. To observe Hydra’s benefit even with faster in-
kernel lightweight remote-memory data path, we integrate
it to Leap [65] and run VoltDB and PowerGraph with 50%
remote-memory configurations.

Leap waits for an interrupt during a 4KB remote I/O,
whereas Hydra splits a 4KB page into smaller chunks and
performs asynchronous remote I/O. Note that RDMA read
for 4KB-vs-512B is 4µs-vs-1.5µs. With self-coding and run-
to-completion, Hydra provides competitive performance guar-
antees as Leap for both VoltDB (0.99× throughput) and Pow-
erGraph (1.02× completion time) in the absence of failures.

7.1.4 Application Performance Under Failures

Now we analyze Hydra’s performance in the presence of fail-
ures and compare against the alternatives. In terms of impact
on applications, we first go back to the scenarios discussed in
Section 2.2 regarding to VoltDB running with 50% memory
constraint. Except for the corruption scenario where we set
r=3, we use Hydra’s default parameters. At a high level, we
observe that Hydra performs similar to replication with 1.6×
lower memory overhead (Figure 13).

Next, we start each benchmark application in 50% settings
and introduce one remote failure while it is running. We select
a Resource Monitor with highest slab activities and kill it. We
measure the application’s performance while the Resilience
Manager initiates the regeneration of affected slabs.

Hydra’s application-level performance is transparent to the
presence of remote failure. Figure 14 shows Hydra provides
almost similar completion times to that of replication at a
lower memory overhead in the presence of remote failure. In
comparison to SSD backup, workloads experience 1.3–5.75×
lower completion times using Hydra. Hydra provides similar
performance at the presence of memory corruption. Comple-
tion time gets improved by 1.2–4.9× w.r.t. SSD backup.

7.2 Availability Evaluation

In this section, we evaluate Hydra’s availability and load bal-
ancing characteristics in large clusters.

7.2.1 Analysis of CodingSets

We compare the availability and load balancing of Hydra with
EC-Cache and power-of-two-choices [67]. In CodingSets,
each server is attached to a disjoint coding group. During en-
coded write, the (k+ r) least loaded nodes are chosen from a
subset of the (k+r+ l) coding group at the time of replication.
EC-Cache simply assigns slabs to coding groups comprising
of random nodes. Power-of-two-choices finds two candidate
nodes at random for each slab, and picks the less loaded one.

Probability of Data Loss Under Simultaneous Failures
To evaluate the probability of data loss of Hydra under dif-
ferent scenarios in a large cluster setting, we compute the
probability of data loss under the three schemes. Note that,
in terms of data loss probability, we assume EC-Cache and
power of two choices select random servers, and are therefore
equivalent. Figure 15 compares the probabilities of loss for
different parameters on a 1000-machine cluster. Our baseline
comparison is against the best case scenario for EC-Cache
and power-of-two-choices, where the number of slabs per
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Figure 13: Hydra throughput with the same setup in Figure 3.
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Figure 14: Hydra provides transparent completions in the pres-
ence of failure. Note that the Y-axis is in log scale.
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Figure 15: Probability of data loss at different scenarios (base pa-
rameters k=8, r=2, l=2, S=16, f =1%) on a 1000-machine cluster.

server is low (1 GB slabs, with 16 GB of memory per server).
Even for a small number of slabs per server, Hydra reduces

the probability of data loss by an order of magnitude. With
a large number of slabs per server (e.g., 100) the probability
of failure for EC-Cache becomes very high during correlated
failure. Figure 15 shows that there is an inherent trade-off
between the load-balancing factor (l) and the probability of
data loss under correlated failures.

Load Balancing of CodingSets Figure 16 compares the
load balancing of the three policies. EC-Cache’s random se-
lection of (k+ r) nodes causes a higher load imbalance, since
some nodes will randomly be overloaded more than others.
As a result, CodingSets improves load balancing over EC-
Cache scheme by 1.1× even when l = 0, since CodingSets’
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Figure 16: CodingSets enhances Hydra with better load balanc-
ing across the cluster (base parameters k=8, r=2).

Latency (ms) 50th 99th
SSD HYD REP SSD HYD REP

VoltDB
100% 55 60 48 179 173 177

75% 60 57 48 217 185 225
50% 78 61 48 305 243 225

ETC
100% 138 119 118 260 245 247

75% 148 113 120 9912 240 263
50% 167 117 111 10175 244 259

SYS
100% 145 127 125 249 269 267

75% 154 119 113 17557 271 321
50% 124 111 117 22828 452 356

Table 4: VoltDB and Memcached (ETC, SYS) latencies for SSD
backup, Hydra (HYD) and replication (REP) in cluster setup.

coding groups are non-overlapping. For l = 4, CodingSets
provides with 1.5× better load balancing over EC-Cache at
1M machines. The power of two choices improves load bal-
ancing by 0%-20% compared CodingSets with l = 2, because
it has more degrees of freedom in choosing nodes, but suffers
from an order of magnitude higher failure rate (Figure 15).

7.2.2 Cluster Deployment

We run 250 containerized applications across 50 machines.
For each application and workload, we create a container and
randomly distribute it across the cluster. Here, total memory
footprint is 2.76 TB; our cluster has 3.20 TB of total memory.
Half of the containers use 100% configuration; about 30% use
the 75% configuration; and the rest use the 50% configuration.
There are at most two simultaneous failures.

Application Performance We compare application perfor-
mance in terms of completion time (Figure 17) and latency
(Table 4) that demonstrate Hydra’s performance benefits in
the presence of cluster dynamics. Hydra’s improvements in-
crease with decreasing local memory ratio. Its throughput
improvements w.r.t. SSD backup were up to 4.87× for 75%
and up to 20.61× for 50%. Its latency improvements were
up to 64.78× for 75% and up to 51.47× for 50%. Hydra’s
performance benefits are similar to replication (Figure 17c),
but with lower memory overhead.
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Figure 17: Median completion times (i.e., throughput) of 250 containers on a 50-machine cluster.
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Figure 19: Impact of page splits (k), additional reads (∆) on read
latency, and parity splits (r) on write latency.

Impact on Memory Imbalance and Stranding Figure 18
shows that Hydra reduces memory usage imbalance w.r.t.
coarser-grained memory management systems: in compari-
son to SSD backup-based (replication-based) systems, mem-
ory usage variation decreased from 18.5% (12.9%) to 5.9%
and the maximum-to-minimum utilization ratio decreased
from 6.92× (2.77×) to 1.74×. Hydra better exploits unused
memory in under-utilized machines, increasing the minimum
memory utilization of any individual machine by 46%. Hydra
incurs about 5% additional total memory usage compared to
disk backup, whereas replication incurs 20% overhead.

7.3 Sensitivity Evaluation

Impact of (k, r, ∆) Choices Figure 19a shows read latency
characteristics for varying k. Increasing from k=1 to k=2
reduces median latency by parallelizing data transfers. Further
increasing k improves space efficiency (measured as r

k+r ) and
load balancing, but latency deteriorates as well.

Figure 19b shows read latency for varying values of ∆. Al-
though just one additional read (from ∆=0 to ∆=1) helps tail
latency, more additional reads have diminishing returns; in-
stead, it hurts latency due to proportionally increasing commu-
nication overheads. Figure 19c shows write latency variations
for different r values. Increasing r does not affect the median
write latency. However, the tail latency increases from r = 3
due to the increase in overall communication overheads.

Monthly Pricing Google Amazon Microsoft
Standard machine $1,553 $2,304 $1,572
1% memory $5.18 $9.21 $5.92
Hydra 6.3% 8.4% 7.3%
Replication 3.3% 4.8% 3.9%
PM Backup 3.5% 7.6% 4.9%

Table 5: Revenue model and TCO savings over three years for
each machine with 30% unused memory on average.

Resource Overhead We measure average CPU utilization
of Hydra components during remote I/O. Resilience Manager
uses event-driven I/O and consumes only 0.001% CPU cycles
in each core. Erasure coding causes 0.09% extra CPU usage
per core. As Hydra uses one-sided RDMA, remote Resource
Monitors do not have CPU overhead in the data path.

In cluster deployment, Hydra increases CPU utilization
by 2.2% on average and generates 291 Mbps RDMA traffic
per machine, which is only 0.5% of its 56 Gbps bandwidth.
Replication has negligible CPU usage but generates more
than 1 Gbps traffic per machine.

Background Slab Regeneration To observe the overall
latency to regenerate a slab, we manually evict one of the
remote slabs. When it is evicted, Resilience Manager places
a new slab and provides the evicted slab information to the
corresponding Resource Monitor, which takes 54 ms. Then
the Resource Monitor randomly selects k out of remaining
remote slabs and read the page data, which takes 170 ms for
a 1 GB slab. Finally, it decodes the page data to the local
memory slab within 50 ms. Therefore, the total regeneration
time for a 1 GB size slab is 274 ms, as opposed to taking
several minutes to restart a server after failure.

To observe the impact of slab regeneration on disaggregated
VMM, we run the micro-benchmark mentioned in §7.1. At
the half-way of the application’s runtime, we evict one of the
remote slabs. Background slab regeneration has a minimal
impact on the remote read – remote read latency increases
by 1.09×. However, as remote writes to the victim slab halts
until it gets regenerated, write latency increases by 1.31×.

7.4 TCO Savings

We limit our TCO analysis only to memory provisioning. The
TCO savings of Hydra is the revenue from leveraged unused
memory after deducting the TCO of RDMA hardware. We
consider capital expenditure (CAPEX) of acquiring RDMA
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System Year Deployability Fault Tolerance Load Balancing Latency Tolerance

Memory Blade [61] ’09 HW Change Reprovision None None
RamCloud [73] ’10 App. Change Remote Disks Power of Choices None

FaRM [42] ’14 App. Change Replication Central Coordinator None
EC-Cache [76] ’16 App. Change Erasure Coding Multiple Coding Groups Late Binding
Infiniswap [50] ’17 Unmodified Local Disk Power of Choices None

Remote Regions [18] ’18 App. Change None Central Manager None
LegoOS [81] ’18 OS Change Remote Disk None None

Compressed Far Memory [58] ’19 OS Change None None None
Leap [65] ’20 OS Change None None None
Kona [22] ’21 HW Change Replication None None

Hydra Unmodified Erasure Coding CodingSets Late Binding
Table 6: Selected proposals on remote memory in recent years.

hardware and operational expenditure (OPEX) including their
power usage over 3 years. An RDMA adapter costs $600 [10],
RDMA switch costs $318 [11] per machine, and the operating
cost is $52 over 3 years [50] – overall, the 3-year TCO is
$970 for each machine. We consider the standard machine
configuration and pricing from Google Cloud Compute [7],
Amazon EC2 [2], and Microsoft Azure [2] to build revenue
models and calculate the TCO savings for 30% of leveraged
memory for each machine (Table 5). For example, in Google,
the savings of disaggregation over 3 years using Hydra is
(($5.18*30*36)/1.25-$970)/($1553*36)*100% = 6.3%.

7.5 Disaggregation with Persistent Memory Backup

To observe the impact of persistent memory (PM), we run all
the micro-benchmarks and real-world applications mentioned
earlier over Infiniswap with local PM backup. Unfortunately,
at the time of writing, we cannot get hold of a real Intel Op-
tane DC. We emulate PM using DRAM with the latency
characteristics mentioned in prior work [34].

Replacing SSD with local PM can significantly improve
Infiniswap’s performance in a disaggregated cluster. However,
for the micro-benchmark mentioned in §7.1, Hydra still pro-
vides 1.06× and 1.09× better 99th percentile latency over
Infiniswap with PM backup during page-in and page-out,
respectively. Even for real-world applications mentioned in
§7.1.3, Hydra almost matches the performance of local PM
backup – application-level performance varies within 0.94–
1.09× of that with PM backup. Note that replacing SSD with
PM throughout the cluster does not improve the availability
guarantee in the presence of cluster-wide uncertainties. More-
over, while resiliency through unused remote DRAM is free,
PM backup costs $11.13/GB [14]. In case of Google, the addi-
tional cost of $2671.2 per machine for PM reduces the savings
of disaggregation over 3 years from 6.3% to (($5.18*30*36)-
$970-$2671.2)/($1553*36)*100% = 3.5% (Table 5).

8 Related Work
Remote-Memory Systems Many software systems tried
leveraging remote machines’ memory for paging [1,22,26,43,
45,50,58,59,64,65,71,79], global virtual memory abstraction
[15, 44, 55], and to create distributed data stores [3, 29, 30,

42, 54, 60, 73, 78]. Hardware-based remote access to memory
using PCIe interconnects [61] and extended NUMA fabric
[72] are also proposed. Table 6 compares a selected few.

Cluster Memory Solutions With the advent of RDMA,
there has been a renewed interest in cluster memory solutions.
The primary way of leveraging cluster memory is through
key-value interfaces [42, 52, 66, 73], distributed shared mem-
ory [70,75], or distributed lock [85]. However, these solutions
are either limited by their interface or replication overheads.
Hydra, on the contrary, is a transparent, memory-efficient, and
load-balanced mechanism for resilient remote memory.

Erasure Coding in Storage Erasure coding has been
widely employed in RAID systems to achieve space-efficient
fault tolerance [80, 90]. Recent large-scale clusters leverage
erasure coding for storing cold data in a space-efficient man-
ner to achieve fault-tolerance [51,69,83]. EC-Cache [76] is an
erasure-coded in-memory cache for 1MB or larger objects, but
it is highly susceptible to data loss under correlated failures,
and its scalability is limited due to communication overhead.
In contrast, Hydra achieves resilient erasure-coded remote
memory with single-digit µs page access latency.

9 Conclusion
Hydra leverages online erasure coding to achieve single-digit
µs latency under failures, while judiciously placing erasure-
coded data using CodingSets to improve availability and load
balancing. It matches the resilience of replication with 1.6×
lower memory overhead and significantly improves latency
and throughput of real-world memory-intensive applications
over SSD backup-based resilience. Furthermore, CodingSets
allows Hydra to reduce the probability of data loss under
simultaneous failures by about 10×. Overall, Hydra makes
resilient remote memory practical.
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