
This paper is included in the Proceedings of the
20th USENIX Conference on File and Storage Technologies.

February 22–24, 2022 • Santa Clara, CA, USA
978-1-939133-26-7

Open access to the Proceedings
of the 20th USENIX Conference on

File and Storage Technologies
is sponsored by USENIX.

CacheSifter: Sifting Cache Files for Boosted
Mobile Performance and Lifetime

Yu Liang, Department of Computer Science, City University of Hong Kong and School of Cyber Science and
Technology, Zhejiang University; Riwei Pan, Tianyu Ren, and Yufei Cui, Department of Computer Science,
City University of Hong Kong; Rachata Ausavarungnirun, TGGS, King Mongkut’s University of Technology

North Bangkok; Xianzhang Chen, College of Computer Science, Chongqing University; Changlong Li, School
of Computer Science and Technology, East China Normal University; Tei-Wei Kuo, Department of Computer

Science, City University of Hong Kong, Department of Computer Science and Information Engineering,
National Taiwan University, and NTU High Performance and Scientific Computing Center, National Taiwan

Univesity; Chun Jason Xue, Department of Computer Science, City University of Hong Kong

https://www.usenix.org/conference/fast22/presentation/liang

CacheSifter: Sifting Cache Files for Boosted Mobile Performance and Lifetime

Yu Liang12, Riwei Pan1,Tianyu Ren1, Yufei Cui1, Rachata Ausavarungnirun3, Xianzhang Chen4∗,
Changlong Li5∗, Tei-Wei Kuo167, and Chun Jason Xue1

1 Department of Computer Science, City University of Hong Kong
2 School of Cyber Science and Technology, Zhejiang University

3 TGGS, King Mongkut’s University of Technology North Bangkok
4 College of Computer Science, Chongqing University

5 School of Computer Science and Technology, East China Normal University
6 Department of Computer Science and Information Engineering, National Taiwan University

7 NTU High Performance and Scientific Computing Center, National Taiwan University

Abstract
Mobile applications often maintain downloaded data as

cache files in local storage for a better user experience. These
cache files occupy a large portion of writes to mobile flash
storage and have a significant impact on the performance and
lifetime of mobile devices. Different from current practice,
this paper proposes a novel framework, named CacheSifter,
to differentiate cache files and treat cache files based on their
reuse behaviors and main-memory/storage usages. Specifi-
cally, CacheSifter classifies cache files into three categories
online and greatly reduces the number of writebacks on flash
by dropping cache files that most likely will not be reused. We
implement CacheSifter on real Android devices and evaluate
it over representative applications. Experimental results show
that CacheSifter reduces the writebacks of cache files by an
average of 62% and 59.5% depending on the ML models, and
the I/O intensive write performance of mobile devices could
be improved by an average of 18.4% and 25.5%, compared
to treating cache files equally.

1 Introduction
Mobile devices are now dominant in people’s daily lives [23,
39]. Almost all mobile applications need to download files or
data from networks because of the dynamic nature of appli-
cations and overall system optimization. Even with the high
bandwidth of modern communication networks (e.g., WiFi
and 5G), many applications still rely heavily on data cached
on mobile devices to avoid re-downloading data through the
network and meet their execution latency demands. Current
mobile devices store cache files in the main memory first
and then write them back to flash storage. These applications’
cached data are usually managed as cache files and can be re-
accessed quickly [9,41]. However, the number and the size of
applications’ cache files have grown exponentially in recent
years, as applications demand increasing amounts of data. For
example, Facebook can generate 1.2GB of cache files on a

∗Corresponding authors: Changlong Li, Email: clli@cs.ecnu.edu.cn; Xi-
anzhang Chen, Email: xzchen@cqu.edu.cn.

mobile device in two hours [27]. In addition to performance
degradation, most cache files are eventually written to the
flash storage of a mobile device, increasing writes and thus
decreasing the lifetime of flash devices [2, 45].

A number of research studies on mobile systems have been
performed in recent years [11, 12, 16, 18, 20, 23, 26, 27, 32,
37, 38]. These techniques include optimization of memory
management [23, 26], defragmentation [11], storing cache
files in memory [32, 38], re-designing the directory cache of
mobile systems [37], an application-aware swapping mecha-
nism [20], and I/O management [12, 16, 18]. Unfortunately,
little work exists that has differentiated cache files in manage-
ment. Although Liang et al. [27] elucidate differences among
cache files, a solution was not proposed. Since the total size
of cache files has increased dramatically, improper writebacks
of cache files to flash storage will markedly reduce the life-
time of the flash storage of a mobile device. It is also worth
noting that some cache files are used only once throughout
their lifetime while others may be re-accessed multiple times
before deletion. In current practice, however, cache files are
treated equally.

Android operating systems store cache files in local stor-
age in consideration of performance and latency [9]. How-
ever, cached data on a mobile device can significantly re-
duce the lifetime of its flash storage, as the replacement cy-
cle of smartphones increases [40]. Recent works propose to
store cached data in DRAM to reduce writebacks, and thus
can improve both system performance and lifetime [32, 38].
These techniques suffer from two major problems as appli-
cations increase their demand for cached files. First, cached
data vary greatly in frequency of access, lifetime, and size.
Treating them equally leads to inefficiency. Second, the avail-
able memory is insufficient in mobile devices, maintaining
useless cache files could degrade the overall system perfor-
mance because of memory competition. The goal in this work
is to improve both system performance and the lifetime of
flash storage by managing cache files according to their reuse
behaviors.

The proposed novel cache file management framework,

USENIX Association 20th USENIX Conference on File and Storage Technologies 445

named CacheSifter, dynamically categorizes cache files into
different categories using a light-weighted machine learn-
ing (ML) algorithm and dynamically places the cache files
of different categories in DRAM or flash storage based on
their data access patterns. Three cache-file categories are
proposed based on their revisiting possibility: Burn-After-
Reading (BAR) files, Transient files, and Long-living files. A
quasi-in-memory file system is proposed for better manage-
ment of Transient files in DRAM and to avoid the operating
system from accidentally evicting them out of DRAM. A
cache-file eviction mechanism is also developed to utilize
DRAM more effectively in keeping cache files.

CacheSifter adheres to the semantics of the Android cache
file management and does not produce new safety vulnera-
bility. Experimental results over popular applications show
that CacheSifter reduces the writebacks of cache files by an
average of 62% and 59.5% depending on the ML models,
and the I/O intensive write performance of mobile devices
could be improved by an average of 18.4% and 25.5%. 1

2 Cache Files in Mobile Systems
Unlike servers’ applications, most mobile applications fre-
quently download fresh data such as news and videos from
networks. Mobile systems generally store the downloaded
data as cache files in local storage temporarily to reduce redun-
dant data downloads. For example, Android systems maintain
temporary cache files in the main memory for a period of time
(30 seconds by default) and then write them back to flash stor-
age [9, 41]. This is similar in spirit to how Linux manages its
files, which treats all files equally. Writing all of the cache
files back into flash storage will significantly degrade sys-
tem performance [8], reduce the lifetime of flash storage [2],
and occupy large storage space, which is markedly limited
in mobile devices. With the exponential growth of mobile
applications’ cache files induced by high-speed networks in
recent years, optimization of their management has become
urgent.

While previous works [32, 38] aim to maintain all cache
files of targeted applications in the main memory to accel-
erate cache files’ accesses, the total size of cache files for
an application can occupy a significant portion of the main
memory, which could substantially degrade the performance
of the other running applications via memory contention. This
paper, however, aims to manage cache files according to their
access patterns and thus only necessary cache files will be
stored in main memory or storage.

2.1 Required Space and Writes of Cache Files
This section aims to quantify cache file usages in current
Android systems via both static and dynamic methods.

1Note that the reduction of writebacks can substantially improve the
lifetime of flash-memory storage and notably benefit I/O-intensive phases in
application execution, application launch, and application installation, which
are crucial to the mobile user experience [3].

Required space for cache files. The storage occupation of
cache files is determined by taking snapshots of cache files
in storage. We survey 60 volunteers2 with real mobile device
usage, including 42 models of 5 vendors, for one week. We
collect the snapshots of cache files for the commonly-used
applications (4-15 applications according to volunteers’ us-
age behaviors) once per day on 50 of the mobile devices. On
the other ten mobile devices, data are collected three times
per day. Table 1 presents the total size of cache files of each
mobile device and different applications. We choose the most-
commonly-used application for each type on each smartphone.
Some smartphones might be missing certain types of applica-
tions due to different user behaviors.

Table 1: Cache files’ sizes of different devices or applications.

Group by Code name No. of devices Average (GB) Max (GB)

Vendors

Huawei 30 0.4 1.79
Oppo 6 4.11 8.82
Vivo 6 1.58 1.85

Xiaomi 17 2.17 4.55
Meizu 1 1.68 1.7

Apps

Social media 60 0.35 2.73
Video 57 0.22 2.23

Website 60 0.26 5.25
Game 11 0.18 1.33

The collected data shows that cached file size varies greatly
between vendors and applications. Based on the data col-
lected from these mobile devices, it is found that some mobile
systems or third-party software delete cache files. Moreover,
some users habitually delete cache files to alleviate the short-
age of storage space. However, even though these cache data
are deleted after writes, their damage to the performance and
lifetime of flash storage has already occurred. As a conse-
quence, it is critical to evaluate the actual writes of cache files
during run-time.
Write behaviors. The writes of cache files are now profiled
from two perspectives: user behaviors and representative ap-
plications. We first collect the write size of cache files under
volunteers’ usage behaviors by instrumenting the source code
of Linux in the experimental mobile devices to collect every
write of cache files to flash storage. Five volunteers used the
experimental mobile devices for three days.

The collected data reveals that the writes of cache files can
reach 500MB per day, even for users that spend less than three
hours per day on their mobile devices. Data from a mobile
device vendor (top-five) shows that the total writes of their
testing users is about 10GB on average and up to 30GB per
day. Cache file writes is approximately 6.4GB on average per
day and up to 19.2GB because cache file writes represent an
average of 64% of total writes to storage for mobile devices
based on experimental results, as shown in Figure 1.

The writes of cache files of the top-20 representative ap-
plications are collected, including social media, map, game,
video, and browser. In this experiment, the volunteers used
each application continuously for two hours. The ratio of

2The volunteers are 18-60 years old.

446 20th USENIX Conference on File and Storage Technologies USENIX Association

cache file writes to total writes for the twenty applications
is presented in Figure 1. The write count ratio is the ratio of
the number of writes of cache files to the number of writes
of total files. It is found that most applications write a large
amount of cache files. For example, the write count ratio of
Facebook is up to 92.6%, and the write size ratio of YouTube
is as high as 95.7%. In contrast, CandyCrush is a stand-alone
game that does not need to download much data from the
network.

Figure 1: Write count/size of representative applications in
two hours.

Existing applications write many cache files into flash stor-
age during run-time. Even though many cache files are deleted
by the system or applications, the cache files still occupy
large storage space. Notably, the write and delete operations
of cache files not only increase I/O contention, which could
degrade I/O performance, but also shorten the lifetime of
flash devices [10, 21]. In addition, the problem will become
increasingly severe with the continual increase of network
speed, growing usage of applications, and use of newer flash
chips (e.g., TLC, QLC, and 3D-NAND flash) with shorter
endurance [13, 17, 44].

2.2 Differences among Cache Files
As mentioned above, existing Android systems treat all cache
files as normal files that always require persistent storage.
Cache files are time-sensitive data, however, and it is often
unnecessary for them to be persistently stored. Based on ob-
servations at the block layer, Liang et al. [27] proposed to
classify all cache files into three categories, i.e., Burn-After-
Reading (BAR), Transient, and Long-living, according to the
distinctly varied access patterns of cache files in flash storage.

After defining the categories of files, numerous questions
arise regarding how files are categorized and how categories
are managed in a practical system, none of which offer
straightforward answers. However, all of these questions are
addressed in this paper. Furthermore, paper [27] demonstrates
differences between cache files at the block layer. This paper
finds that access information at the VFS layer is more suitable
for categorizing cache files because the cache files should be

Timestamp (Sec)

Map

Earth

Youtube

Facebook

Tiktok

Firefox

Chrome

Twitter

Zombie

Candycrush

Figure 2: Access patterns of the top-10 accessed cache files
of ten representative applications.

handled prior to the block level. Therefore, this paper reuses
the name of three types of files in paper [27] but with different
definitions.

Burn-After-Reading (BAR) represents cache files that
only have tiny re-accesses that take place at the beginning
of their lifetime. For many typical mobile applications, most
cache files are rarely re-accessed, which is similar to the con-
clusion reached in a previous study [4]. In particular, some
cache files in the flash storage were deleted without being
re-accessed at all. Consequently, there is no need to write
such cache files to storage.

Transient refers to cache files that have a large re-access
count as well as a short active period. Figure 2 shows the
access patterns of the top-10 accessed cache files (denoted
by ten colors) of ten representative applications. The size
of a circle indicates the access count of the corresponding
cache file within 100 seconds. The access patterns of the
cache files vary greatly. Moreover, some of these files have a
short active period and a large access count. For example, the
third cache file (labeled in green) of Map is only re-accessed
within a short time after it is created. Accordingly, we deem
such cache files as Transient files, since the applications only
re-access them in the near future.

Long-living represents the rest of cache files, especially
the files that are re-accessed frequently over a long period of
time.

2.3 Challenges in Cache File Management
Even though Liang et al. [27] proposed to manage cache files
following their access patterns, they did not explore classi-
fication or management methods of cache files. Two major
challenges exist in the management of cache files. First, cache
files’ behaviors change over time. For this reason, it is im-

USENIX Association 20th USENIX Conference on File and Storage Technologies 447

portant that management should be adaptive to the run-time
behavior of cache files. Second, existing systems store cache
files according to the same routine. It is necessary, however,
to manage dissimilar types of cache files by different poli-
cies. The main goal of this paper is to improve both system
performance and storage lifetime. We will explore the access
patterns of applications’ cache files and consider the character-
istics of DRAM-based main memory and flash-based storage
of mobile devices in terms of performance and endurance.

3 CacheSifter Design
We propose CacheSifter to categorize cache files and manage
them by exploiting their access patterns.

3.1 Overview of CacheSifter
3.1.1 Design Principles
We discuss five design principles for categorizing and manag-
ing cache files in mobile systems.
User application transparency. CacheSifter should have an
insignificant impact on user experience. CacheSifter should
also be compatible with the semantics of existing mobile
systems requiring zero changes in existing user applications.
Online Categorization. While offline profiling simplifies the
categorization process, an offline classifier cannot adapt to the
dynamic system status and the configuration of users during
usage of the mobile device. As a result, CacheSifter needs
to be able to categorize cache files online while avoiding the
extra overhead of storing BAR files and Transient files.
Adaptive memory management. CacheSifter always at-
tempts to maintain the cache files that will be used in the
main memory to achieve high file access performance. How-
ever, using too much memory for the cache files may degrade
system performance. In this case, CacheSifter should adap-
tively adjust its memory usage along with different active
applications.
Adapt to changes in user behavior. CacheSifter should
adapt to changes in user behaviors. A categorized file may
need to be re-categorized. For example, a file is categorized
as a BAR file because it is only used once immediately af-
ter it is downloaded. When user behavior changes, and it is
used many time repeatedly, it should be re-categorized into a
Transient or Long-living file to avoid frequent re-download.
Ensure safety when deleting cache files. CacheSifter should
not produce any new vulnerabilities as compared to existing
mobile systems. Since CacheSifter may discard BAR files
and Transient files during execution of applications, it is crit-
ical that discarding data by CacheSifter will not cause an
application crash or user data loss.

3.1.2 CacheSifter Framework
Following these principles, we design CacheSifter to cate-
gorize cache files and manage them in DRAM/flash stor-
age according to their reuse patterns to avoid unnecessary

writing back. Figure 3 shows the framework of CacheSifter.
CacheSifter lives in the kernel rather than in an intermediate
or less-privileged layer. CacheSifter can directly categorize
cache files on the page cache without additional memory con-
sumption and data copy. CacheSifter also does not require
any changes in existing user applications, i.e., it is transparent
to user applications.

Figure 3: Framework of CacheSifter.

All newly downloaded cache files are first maintained in
the main memory and wait for categorization. 1© CacheSifter
adopts a lightweight machine-learning-based categorization
engine (See Section 3.2.1) to divide the newly downloaded
cache files into three types, i.e., BAR, Transient, and Long-
living in two stages online. 2© To better utilize memory and
storage, CacheSifter discards all BAR files because they are
typically not reused. 3© For Transient files, CacheSifter keeps
them in DRAM by using a quasi-in-memory file system,
which is designed to avoid an accidental swap-out of Tran-
sient files. CacheSifter discards Transient files when there is
insufficient DRAM space using an LRU-like file eviction pol-
icy (See Section 3.2.2). 4© For Long-living files, CacheSifter
writes them to the flash storage by exploiting the default LRU-
based eviction scheme of the Android system. Moreover,
CacheSifter deletes the cache files from their correspond-
ing storage when they are invalidated by applications. 5©
The deleted files will be re-downloaded from the network
when they are accessed in the future, which provides an op-
portunity to change the categorization of cache files accord-
ing to changes in user behavior (See Section 3.3). Finally,
CacheSifter exploits a safe list mechanism to maintain known
potential paths of cache files that are important to users, or in
cases in which their deletion could threaten system stability
(See Section 3.4).

CacheSifter provides three key benefits. First, CacheSifter
avoids pushing-out the BAR and Transient files to flash stor-
age, which reduces write contention, extends the lifetime of
the flash storage, improves overall system performance, and
conserves storage space. Second, Transient files are accessed
directly from DRAM, improving the access latency of this
type of cache files. Third, CacheSifter significantly optimizes
the management of cache files with a lightweight machine-
learning-based engine in the kernel, which not only has negli-
gible overhead but is also transparent to user applications.

448 20th USENIX Conference on File and Storage Technologies USENIX Association

3.2 Feature-based Cache Files Management
The effectiveness of CacheSifter relies highly on the accuracy
of the categorization engine. The overhead of the categoriza-
tion engine and the cache file management mechanism of
cache files should be as small as possible to minimize the
impact on system performance. In this section, we describe
the design of these two key components.

3.2.1 Lightweight Categorization of Cache Files
Machine learning based categorization. According to the
design principles, categorization should be both lightweight
and conducted online. Based on our observations, we know
the categorization of each cache file by observing its reuse
patterns. However, to avoid writebacks of BAR and Transient
files, this method requires storing all cache files and their
access information in main memory for a long time period for
categorization, which imposes a high cost. Heuristic-based
methods, such as suffix based methods [14, 24], can catego-
rize files with a small cost. However, they do not consider
the access patterns of cached files, and thus cannot be used
to recognize BAR, Transient, and Long-living files. For ex-
ample, a video (.exo) file could be any type of cache file
according to user behaviors. Moreover, since the users’ be-
havior and access pattern of cache files are different across
different applications, we expect non-ML approaches to be
less flexible and generalized. Thus, the categorization engine
in CacheSifter utilizes machine-learning-based schemes to
automatically perform categorization based on features within
a short period of time and observation-based labels.

This paper chooses a lightweight neural network method
(MLP [5]) in the experiments because of its performance and
low cost.3 To further reduce cost, categorization is divided into
two phases (BAR/non-BAR and Transient/Long-living) by
exploiting two MLP models because we find that Long-living
cache files cannot be recognized by short-time information.
We train these two MLP models offline and use them for
online categorization, and thus this method needs to retrain the
models after a period of time to adapt to applications’ changes.
Certainly, one can also choose a lightweight reinforcement
learning method [35] to avoid retraining, which is beyond the
scope of this paper.
Metrics for analyzing prediction models. Three metrics are
used to evaluate our categorization models. First, we use
Accuracy to reflect how correctly the model predicts the cate-
gories of files, as shown in Equation 1:

Accuracy = (T P+T N)/Total_Instances (1)

Where TP is an outcome in which the model correctly pre-
dicts the positive class; a true negative TN is an outcome in
which the model correctly predicts the negative class. Con-
sidering the penalty of misclassification, positive class is non-
BAR in the first phase of categorization in which the negative

3We compare the performance of MLP, Random Forest, Linear Regression
and Logistic Regression and find MLP to be the most effective.

class is BAR. In the second phase of categorization, Long-
living is denoted as the positive class, while Transient is the
negative class. Based on our observation, the data of each cat-
egory is highly unbalanced. Therefore, the above Accuracy
cannot represent the accuracy of each type of file. Accord-
ingly, we introduce another metric, Recall, in Equation 2:

Recall = T P/(T P+T N). (2)

In the high-recall model, we care more about the predicted
accuracy of files with high mis-predicted overhead, such as
long-living files. If a long-living file is incorrectly predicted as
a BAR or Transient file, it could induce redownload overhead.
Finally, to visualize the results, we also use the third metric,
PR curve, which is simply a graph with Precision values on
the y-axis and Recall values on the x-axis. A good PR curve
has a large area under curve (AUC).

Based on these three metrics, we train high-recall and
high-accuracy models with a high PR curve. The high-recall
model aims to reduce writebacks of cache files and minimize
re-download overhead; whereas, the high-accuracy model
aims to reduce writebacks of cache files with minimum mis-
categorization.

3.2.2 Cache File Management Mechanism
To better utilize memory/storage to reduce writebacks of
cache files and minimize re-download penalty, cache files
are processed according to their categorization.
BAR file. BAR files are deleted immediately after categoriza-
tion because these files are not likely to be reused.
Transient file. Since the usage of Transient files in mobile ap-
plications exhibits both strong locality and time sensitivity in
a certain period of time, CacheSifter always attempts to main-
tain the Transient files in the main memory during their active
period to achieve higher file access performance. At first, we
try to exploit an existing file system, such as tmpfs or ramfs,
to manage Transient files. However, to avoid writeback opera-
tions prior to the categorization of cache files, each cache file
will have two inodes, i.e., one in F2FS and tmpfs/ramfs each,
which complicates the implementation and brings additional
overhead. As a consequence, a quasi-in-memory file system
(QMFS) is proposed to manage Transient files in the main
memory during their active period.

QMFS is implemented by two LRU-like lists (an active list
and an inactive list), as shown in Figure 4. The active list is
designed to ensure that files will not be deleted within their
active period. The inactive list is used to balance memory
pressure and file performance. Specifically, when memory
is sufficient, files will be maintained in memory for a longer
time to reduce the penalty of mis-classifications. In the default
memory management, the LRU list of page cache is page-
granularity since the pages of files cached in the main memory
will be written back to storage. If a page of a Transient cache
file is deleted, however, this means that the whole cache file

USENIX Association 20th USENIX Conference on File and Storage Technologies 449

in QMFS is invalid. Therefore, the LRU-like lists of QMFS
in CacheSifter are maintained in file-granularity.

Figure 4: Eviction scheme of LRU-like lists in QMFS.
In QMFS, a cache file is put into the active list after catego-

rization. Subsequently, the file in the active list may be moved
into the inactive list, depending on the size of free memory
and its existing time in the active list. If the existing time of
a file is longer than its active period (a threshold), it will be
moved to the inactive list to wait for deletion. Insufficient
memory also triggers the movement action. If a file in the
inactive list is referenced before it is deleted, it will be moved
back to the active list. If a file is deleted, it will be deleted
from the corresponding lists. If a file is truncated, CacheSifter
works in the same manner as the default Android system.
Specifically, the file’s pages will be deallocated whereas the
inode number will be still maintained in the LRU-like lists.

When the active period of Transient files ends, the Tran-
sient files generally will not be used again. For this reason,
the longest-lived Transient files should have the highest prior-
ity to be evicted. Furthermore, to improve the performance
of foreground applications, the cache files generated by a
background application should also have a higher priority
for eviction. We use UID to identify the files of background
applications, as previously described [12]. After file eviction,
memory space will be reclaimed. The parameters for reclaim
are established in Section 5.2.
Long-living file management. Unlike the eviction schemes
of BAR and Transient files, Long-living files are managed
by the default page-based eviction scheme of the page cache
in Android systems. Long-living files are maintained in the
default LRU-based lists of the page cache. When a page of a
Long-living file is unused for a long period of time, it will be
evicted from the page cache and written back into the flash
storage if it is dirty. Consequently, Long-living files will be
stored in storage infinitely unless the applications delete them.

3.3 User Behavior Adaptation
Even if the feature-based cache file management worked
well, user behaviors could change. Therefore, CacheSifter
should be able to re-categorize cache files when user behavior
changes to avoid frequent re-downloads. There are four types
of state changes, as listed in Table 2. BR, TR, and LL repre-
sent the BAR category, the Transient category, and the Long-
living category, respectively. Thus, “BR-> TR, LL” means
that a BAR file shifts to a Transient file or a Long-living file.

Table 2 shows actions that trigger state changes of cache
files, and the corresponding benefit or cost. When user behav-
ior changes, CacheSifter only updates the category of cache
files after re-download since CacheSifter performs categoriza-
tion only when a file is newly-downloaded from the network.

Table 2: Actions based on state changes.

Types State changes Action Benefit/Cost
(1) BR-> TR, LL Re-categorize files after re-download None
(2) TR -> BR Do nothing and wait for discard Memory space
(3) TR -> LL Re-categorize files after re-download High performance
(4) LL -> BR, TR Do nothing Flash space

CacheSifter treats and re-categorizes the re-downloaded file
as a new file, and thus CacheSifter can adapt to stage change
types (1) and (3) in Table 2. When type (2) stage change
occurs, CacheSifter does not need to do anything, since Tran-
sient files will be discarded just like BAR files. Compared
with BAR files, Transient files will remain in the main mem-
ory for a longer period of time and consume memory space.
Type (4) is similar to type (2). Therefore, CacheSifter also
does nothing, which consumes flash storage for a short time.

3.4 Safety Mechanism
CacheSifter discards the BAR and Transient files eventually.
To make these operations safe for user data and applications,
CacheSifter exploits a safe_list approach for cache file direc-
tories. It is not difficult to track and manage safe_list paths.
In fact, Android now exploits these paths, which can be seen
through the cache-delete button in the Android setting [6].
CacheSifter uses the same paths of the cache-delete button as
the safe_list paths. Moreover, the safe_list can be managed of-
fline. If vendors wish to optimize certain specific application,
such as YouTube, they can obtain the cache paths of YouTube
in advance and put them into the safe_list.

4 CacheSifter in Android
We implement CacheSifter in the Android system as a case
study for mobile systems. In our implementation, CacheSifter
categorizes cache files by using a dedicated thread. In this
section, we first present the details of MLP-based catego-
rization. We then show how the categorized cache files are
managed by the flash file system, F2FS [24], and the proposed
QMFS. Finally, we discuss implementation considerations of
CacheSifter.

4.1 MLP-based Cache File Categorization
Categorization features and labels. In order to avoid unnec-
essary writes of cache files, categorization should be com-
pleted as rapidly as possible by using as few features as pos-
sible. The challenge here is that the Long-living files cannot
be recognized by short-time features easily. To accurately
categorize cache files, we first perform a fast categorization
to detect BAR files and then dedicate additional time for the
second pass to further separate Transient and Long-living files.
Importantly, the memory space overhead is not large because
there are not many Long-living files. In addition, categoriza-
tion should also adapt to changes in user behaviors. Therefore,
the objective of feature design is to characterize the access
patterns and attributes of each file with a low memory cost.

450 20th USENIX Conference on File and Storage Technologies USENIX Association

To achieve this goal, the access patterns (read, write, and I/O
size) and attributes of files (file size and active period) are
selected as the features for machine-learning methods. The
designed features are shown in Figure 5.

Figure 5: Features for learning.
In general, the system maintains K+6 features for each data

point. The first K dimensions of a data point are sequential
data that correspond to access information within the first K
time units after creating a file, where each value represents the
sum of access I/O size within one time unit. The following 4
features are read amount, read count, write amount, and write
count within K time units, while the last 2 features are file
size and active period. File size is the maximum size of each
file within the K time units. The active period is calculated by
the last access time minus the first access time within the K
time units. If a file is accessed only once within this period,
the last access time is set to be K time units. To achieve
high accuracy and low memory cost, the value of K of the
first phase of categorization (BAR or other) is smaller than
the second phase of categorization (Transient or Long-living).
When a new cache file is created, its access information during
time K (e.g., 30s) will be recorded.

In addition to the features, the labels of cache files can be
used to train the categorization model. Although we cannot
use the observation-based categorization online due to its
high overhead, the labels for the cache files in the training
dataset can be obtained based on the observations of the reuse
patterns throughout their lifetime. Specifically, we label a file
as a BAR file (“1”), or a Transient file (“2”) or a Long-living
file (“3”) according to their active period.
Dataset Collection. We instrument the source code of the
Android kernel and use the Android Debug Bridge (adb)
tool [7] to collect the access information and file size of
cache files at the VFS layer in fs/read_write.c. Based on the
collected data4, the labels and features are obtained to train
our machine learning models.

To make the model as general as possible, many data are
collected. Our collected data includes four parts: (1) infor-
mation from ten representative applications gathered over 20
hours; (2) information of the same applications by different
users, in order to include more user behaviors; (3) information
of the same applications after three months for checking the
retraining period; and (4) information of different applications
in order to assess the prediction accuracy of untrained applica-
tions. This case study aims to optimize these ten applications.
Categorization methods. With sufficient data with features
x and labels y collected, the subsequent step is to find a proper

4Released in https://github.com/yliang323/CacheSifter.

machine learning model that learns the mapping f (·) : x→ y.
In this work, we compare some simple machine learning
methods and choose to use the popular Multi-Layer Percep-
tron (MLP) as it theoretically approximates any function if
given sufficient capacity, according to the universal approx-
imation theorem [5]. We choose to use a lightweight MLP
layer that takes the features as input and outputs the cate-
gorization results. A large network capacity (size) causes
great CPU and memory consumption while reducing the net-
work capacity might decrease the performance. We use a grid
search to find the best network capacity. We start from an over-
parameterized neural network and evaluate its classification
accuracy on the validation set. The network size is gradually
decreased by re-training the network until its performance on
accuracy starts decreasing. The same strategy is applied to
other network hyper-parameters, which will be elaborated in
Section 5.1.

We first train the categorization models and evaluate them
offline (on a PC), which can assist tuning the parameters to
identify the best models for cache file categorization. Then,
the trained models will be used in the Linux kernel for dy-
namic categorization. When the optimized applications are
upgraded, the models could need to be retrained. Based on
our dataset (3), the model can still accurately predict the new
data that are generated after at least three months. Therefore,
the period of retraining could be longer than three months
in our case. In this case, we also provide a fuse mechanism,
CheckStop, to stop CacheSifter once the prediction accuracy
is lower than a threshold. To avoid retraining, one can choose
a lightweight reinforcement learning model for the catego-
rization.

4.2 Management of Categorized Cache files
The management of categorized cache files mainly includes
two parts: handling data pages and managing inodes. All
of these pages and inodes are managed and maintained by
several lists.

There are three lists in CacheSifter for inode management:
temp_list, category_list1, category_list2. The categorization
engine, which is a dedicated thread, wakes up periodically to
scan these lists and control the migration of inodes among
them. prior to categorization, the inodes of all cache files are
maintained in temp_list after creation and their data pages are
managed in the unevictable_list in the page cache layer to
avoid accidental eviction caused by the Android system.

Two-phase Categorization. For categorization, the inodes
in temp_list are moved to category_list1 periodically to im-
prove concurrency. In the first phase, the categorization engine
scans category_list1 and determines whether an inode is BAR.
Then, the BAR inodes are deleted, and the remaining inodes
in category_list1 are migrated to category_list2. After the sec-
ond phase of categorization, the data pages of Transient files
remain in the unevictable_list, while the inodes of Transient

USENIX Association 20th USENIX Conference on File and Storage Technologies 451

files are stored in our LRU-like lists of the QMFS. The data
pages and the inodes of Long-living files are moved to the
default LRU lists (inactive file list) of the page cache layer,
and they are set as dirty. They are then written back into flash
storage by the default Android system.

4.3 Implementation Discussions
Adaptation of CacheSifter. Vendors train models by using
the dataset of targeted applications. When CacheSifter is de-
ployed on different mobile devices, the machine learning
model does not need to be retrained because it is based on
the behaviors of applications. A large training dataset can
cover extensive user behavior with a small implementation
overhead under the selected machine learning method.
Stop CacheSifter in unforeseen cases. To handle some rare
cases, we design a lightweight prediction checking mecha-
nism, named CheckStop, to determine if CacheSifter should
be stopped. The main idea here is to calculate the re-download
rate by recording the hash values of downloaded files and
deleted files in a time window. If the rate is larger than a
threshold, CacheSifter is suspended. To minimize overhead,
CheckStop only works when CacheSifter detects abnormal
signals such as a significant change in the number of write-
backs or file creations with the same hash value.
CacheSifter in the future. CacheSifter could be more useful
for future generations of mobile devices for the following
three reasons. First, with a faster network, more data could
be accessed and cached per time unit, and thus the amount
of cache files could be increased. Second, with the usage of
new flash chips(e.g., TLC, QLC), storage lifetime is becom-
ing increasingly crucial since the endurance of many new
flash devices have become smaller. Third, the memory ca-
pacity of mobile devices is growing, which can support more
in-memory cache files and better machine-learning-based cat-
egorization methods. Additionally, CacheSifter can be used in
other Internet of Things (IoT) systems or automotive systems.

5 Evaluation Methodology
We implement and evaluate CacheSifter on real mobile de-
vices with two different categorization models.

5.1 Categorization Models
In current Android systems, cache files are maintained in the
main memory for 30 seconds by default and then written back
to the flash storage. For this reason, in the evaluation, we
label a file as a BAR file (“1”) if its active period is shorter
than 30 seconds to avoid extra memory usage. Rather than
writing BAR files back to flash storage, CacheSifter deletes
them after their categorization. If the active period of a file is
longer than 30 seconds but smaller than 90 seconds, it will be
labeled as a Transient file (“2”). Otherwise, it is labeled as a
Long-living file (“3”). According to the active period of a set
of cache shown in Figure 6, the majority of cache files (93%)

in this dataset are BAR files. Consequently, a large number
of writebacks of cache files can be avoid.

Figure 6: Active period of cache files.

To avoid using too much main memory, CacheSifter cat-
egorizes all of the cache files within 30 seconds. We utilize
MLP as we found the mechanism to be the most accurate out
of all other simple machine learning methods (random forest,
linear regression and logistic regression). We test different
parameters and present the results in Table 3.

Table 3: Categorization results by using different features.

Total time Time unit K High Recall High Accuracy
Recall Accuracy Recall Accuracy

1s 0.01s 100 0.92 0.56 0.45 0.89
1s 0.05s 20 0.82 0.56 0 0.90
5s 0.25s 20 0.89 0.56 0 0.90
10s 0.5s 20 0.88 0.59 0 0.90
20s 1s 20 0.80 0.65 0.56 0.86
40s 1s 40 0.94 0.85 0.94 0.85
60s 1s 60 0.95 0.88 0.95 0.88
80s 1s 80 0.94 0.89 0.94 0.89

Our goal is to achieve enough accuracy or recall with small
memory usage (smaller K). Therefore, we choose 20 and 60 as
K1 and K2 for the first and second phases, respectively. Based
on the feature within 20s, we can only choose high accuracy or
high recall, and thus we use two models for different purposes.
Training models. The collected data are grouped by appli-
cations for training. We divide our datasets (1) and (2) (See
Section 4.1) into 80% training and 20% testing instances. We
use the training dataset to train a MLP network and exploit its
“Accuracy” and “Recall” by evaluating the trained model on
the testing dataset. We gradually decrease the neural network
size by re-training the network until its accuracy performance
starts to decrease. The same strategy is applied to other net-
work hyper-parameters. All of the hyper-parameters are listed
in Table 4.

The trained/re-trained model can be deployed to users’ mo-
bile devices as a system update. It is used for online catego-
rization, which includes three parts: online feature collection,
implementation of the trained MLP models, and the model-
based categorization. First, we collect features of every new
file for 20 seconds and maintain them in the main memory. A
dedicated thread periodically wakes up to check the features
and categorize the files. CacheSifter deletes BAR files after
categorization and continues collecting features for files in
other categories for an additional 40 seconds.
Categorization results of MLP models. We evaluate the

452 20th USENIX Conference on File and Storage Technologies USENIX Association

Table 4: Summary of hyper-parameters.

Hyper-parameters For the first phase For the second phase
number of hidden layers 4 4

hidden layer size [512, 200, 2] [512, 200, 2]
activation function 1 Tanh Tanh
activation function 2 ReLU ReLU

The function of output layer Softmax Softmax
loss_function Focal loss function Focal loss function
learning rate 0.1+MultiStepLR 0.1+MultiStepLR

optimizer SGD + momentum = 0.5 SGD + momentum = 0.5
weight decay 1.00E-04 1.00E-05

sampler WeightedRandomSampler WeightedRandomSampler
batch size 200 200

trained models by ten representative applications and their
random combinations. For the combinations, we use the first
two letters to identify the application’s name, and the results
of which are shown in Figure 7. Some values are missed
because the testing dataset may have just one type of cache
files. For example, there are no non-BAR files in the testing
dataset of Earth, and all of its data are predicted as the BAR
class. Thus, it AUC is N/A, Recall is N/A, and Accuracy is
1. The results show that as long as an application has been
trained, the model can classify its files well, irrespective of
with what applications it is combined.

5.2 Evaluation Setup
We evaluate all of the experiments on two smartphones: (1)
P9 equipped with an ARM Cortex-A72 CPU, 32GB inter-
nal flash memory and 3GB DRAM running Android 7.0
with Linux kernel version 4.1.18, and (2) Mate30 equipped
with an ARM Cortex-A76 CPU, 128GB internal flash mem-
ory and 8GB DRAM running Android 10 with Linux ker-
nel version 4.14.116. Ten representative applications, includ-
ing social media, map, game, video, and browser, are used
to collect features of cache files and evaluate CacheSifter.
Their workload profiles (i.e., cache file ratio and data ac-
cess patterns of their cache files) are presented in Figure 1
and Figure 2. We revise the kernel to print the access in-
formation of each file and the file attribute in functions
new_sync_read() and new_sync_write() in fs/read_write.c.
We filter the cache files by using the specific cache path of
applications (/data/<packagename>/cache/).

We compare CacheSifter with the management scheme of
cache files in default Android systems. The parameters of
CacheSifter applied in the evaluation are listed in Table 5.
To make a fair comparison, both the user and activities are
the same for each comparison. For each testing, we follow
the same sequence of actions: 1) we close all apps and clean
their cache files prior to reboot to eliminate the impact of old
cache files; 2) after reboot, we clean the cache to eliminate
the impact of potentially buffered data; 3) we use the same
application, login with the same user account, and conduct
the same sequence of activities; and 4) We attempt our best to
make each test the same, and we also conduct each test more
than five times to eliminate possible nuances.

The parameters are selected based only on the targeted
applications and independently of the experimental platform.
The two smartphones run the same version of applications
and use the same parameters.

Table 5: Summary of parameters used by CacheSifter.

Symbols Semantics Setting
K1 The time for the first phase of categorization 20 seconds
K2 The time for the second phase of categorization 60 seconds
T1 The period of time for waking up the thread 10 seconds
E1 Period of time to inactive 20 seconds
S1 Size of each background reclaim To W1

T2 The period of time for background reclaim 20 seconds

MS Maximum RAM size for Transient files 20MB
W1 Low watermark for background reclaim 50%*20MB
W2 High watermark for foreground reclaim 90%*20MB
S2 Size of each foreground reclaim 10%*20MB

Parameter configurations. K1 and K2 are the time to collect
features of cache files for corresponding phases of categoriza-
tion. Their values are determined as discussed in Section 5.1.
T1 is relative to CPU and memory consumption. If it is too
small, the dedicated thread would run frequently and thus
consume CPU time. On the other hand, if it is too large, the
cache files will stay in the main memory for a long period
of time to wait for categorization even if they already have
enough features. Since we find the features within 20 sec-
onds to be sufficient for the first phase of categorization, we
choose 10 seconds to make sure the first phase can be finished
within the default 30 seconds to avoid extra memory usage
and frequent wake up. E1 is the time that Transient files can
be deleted. Since the active period of Transient files is 90
seconds in our evaluation, E1 is 20 seconds (90-K2-T 1). S1
is the reclaim space that to prepare for future usage, and it
is related to W1. T2 does not need to be frequent because the
reclaimed memory is enough for the next usage of Transient
file within K2. Therefore, we set it as 20 seconds according
to our experience to reduce the CPU consumption. It is also
not sensitive to the performance. These parameters do not
need to be modified for different models of mobile devices
if they use the same version of applications. If the versions
of targeted applications are updated, the parameters MS, W1,
W2, and S2 may need to be changed due to workload changes.
To show how to select these three parameters, we first present
the cache file’s size that was produced within 60 seconds in
Figure 8.

Based on the data from Figure 8, we find that the maximum
size of cache files of targeted applications is 21MB. Because
not all files are transient, we configure MS, which is the upper
bound of memory usage of the Transient files of targeted ap-
plications within K2, to 20MB. This allows more memory to
be used for other purposes. W1 and W2 are the watermarks of
reclaims. Overall, the larger are their values, the more space
will be used by Transient files; Thus, the re-access perfor-
mance of Transient files is better but the performance of other
applications could be worse because of memory contention.
W1 should be the maximum value of memory usage of the

USENIX Association 20th USENIX Conference on File and Storage Technologies 453

(a) High accuracy model for the first phase. (b) High recall model for the first phase. (c) Model for the second phase.

Figure 7: Predict results of two MLP models for different applications and their combinations. For the combinations, the first two
letters are used to identify the application’s name. “ChFaTi” represents the combination of Chrome, Facebook, and TikTok.

Figure 8: Cache files produced by applications within 60s.
Transient files of targeted applications within K2, and 10MB
(50% of MS) is enough for our case. W2 and S2 should be
the minimum value that is just enough for the Transient files
of targeted applications within K2, and 2MB (10% of MS) is
enough for our case. These parameters can be changed later
for different platforms and manufacturers.

6 Evaluations

We evaluate CacheSifter’s performance using two key metrics:
(1) the reduction in writebacks of cache files and extension
in lifetime of mobile flash storage; and (2) the improvement
in read and write performance under intensive I/Os. We show
the writeback reduction on two platforms while only show
the other results on one platform since they are similar on
different platforms and we do not have enough space for them.

6.1 Lifetime Improvement

Reduction in writebacks of cache files. We compare the
writebacks of cache files and the number of block I/Os of
CacheSifter against the default system. Since the results can
vary under different user behaviors, each test is conducted
ten times, the average results of which are shown in Figure 9.
We evaluate both the high-recall model and the high-accuracy
model.

The results reveal that writebacks of cache files vary for dif-
ferent applications. The reduction in writebacks when using
the high-recall model is similar to that of the high-accuracy
model in this experiment. Theoretically, the high-recall model
constitutes a conservative-delete scheme that tends to keep
cache files in the mobile device to reduce the penalty of re-

download. In contrast, the high-accuracy model is a radical-
delete scheme to pursue higher overall predict accuracy.

On P9, the writebacks of cache files are reduced by the
high-recall model and the high-accuracy model by an average
of 62% and 59.5%, respectively. The number of total I/Os is
also significantly decreased by both models, i.e., an average
of 29.7% and 31.2%, respectively. The high-accuracy model
treats all of the three classes with the same priority. The high-
recall model attempts to minimize incorrect predictions in
the two cases (LL->BAR and LL->Transient) to reduce the
re-download penalty. Since the long-living files are a small
part of all cache files (less than 5%), as shown in Figure 6,
the write reduction is similar under these two models.

On Mate30, the writebacks of cache files are reduced even
more by both models, i.e., an average of 88.3% and 85.5%,
respectively. The number of I/Os is also decreased more by
both models, i.e., an average of 47.7% and 46.6%, respec-
tively. The results on Mate30 show that the models trained by
the data collected from P9 also work well on Mate30 because
CacheSifter is platform-independent. There are two main rea-
sons for the difference between the results on P9 and Mate30:
different user behaviors, and the default system management
schemes.

Based on Figure 6, 93% of the cache files are BAR in that
dataset, but writebacks are not reduced as much in this case
primarily because 1) the directory of cache files must be writ-
ten back to flash storage to maintain consistency because there
are some Long-living files that uses the directory information;
2) different user behaviors; and 3) the predict accuracy is not
100%.
Sensitivity Study. To evaluate the sensitivity of CacheSifter,
we use the same parameters and the same models on P9
and Mate 30. The write reduction shown in Figure 9 indi-
cates that both P9 and Mate 30 achieve similar benefits from
CacheSifter. Moreover, we conduct a sensitivity study for the
parameters in Table 5. The write reduction results on Mate30
with different MS are presented in Table 6. The sensitivity
results show that the total writes could be affected by the
value of MS due to different memory usage.
Boosted lifetime of mobile flash storage. Cai et al. [2]
present the following method to compute the lifetime im-

454 20th USENIX Conference on File and Storage Technologies USENIX Association

0
20
40
60
80

100

Fa
ce

bo
ok

Tw
itt

er

Fi
re

fo
x

Ea
rt

h

Ti
kT

ok

Ch
ro

m
e

Yo
ut

ub
e

Ca
nd

yc
ru

sh

Zo
m

bi
e

Ch
Fa

Ti

Fi
Tw

Yo

Fa
Tw

Yo

Ch
Fa

Ti
Tw

Fi
Tw

Yo
Fa

Ea

Fa
Tw

Zo
Yo

uC
h

AL
L

Av
er

ag
e

Re
du

ci
to

n
Ra

tio
 (%

)

high-recall model on smartphone Mate30

0
20
40
60
80

100
Fa

ce
bo

ok

Tw
itt

er

M
ap

Fi
re

fo
x

Ea
rt

h

Ti
kT

ok

Ch
ro

m
e

Yo
ut

ub
e

Ca
nd

yc
ru

sh

Zo
m

bi
e

Ch
Fa

Ti

Fi
Tw

Yo

Fa
Tw

Yo

Ch
Fa

Ti
Tw

M
a

Fi
Tw

Yo
Fa

Ea

Fa
Tw

Zo
Yo

uC
h

AL
L

Av
er

ag
e

Re
du

ci
to

n
Ra

tio
 (%

)

high-recall model on smartphone P9

total count reduction cache count reduction
total size reduction cache size reduction

0
20
40
60
80

100

Fa
ce

bo
ok

Tw
itt

er

M
ap

Fi
re

fo
x

Ea
rt

h

Ti
kT

ok

Ch
ro

m
e

Yo
ut

ub
e

Ca
nd

yc
ru

sh

Zo
m

bi
e

Ch
Fa

Ti

Fi
Tw

Yo

Fa
Tw

Yo

Ch
Fa

Ti
Tw

M
a

Fi
Tw

Yo
Fa

Ea

Fa
Tw

Zo
Yo

uC
h

AL
L

Av
er

ag
e

Re
du

ci
to

n
Ra

tio
 (%

)

high-accuracy model on smartphone P9

total count reduction cache count reduction

0
20
40
60
80

100

Fa
ce

bo
ok

Tw
itt

er

Fi
re

fo
x

Ea
rt

h

Ti
kT

ok

Ch
ro

m
e

Yo
ut

ub
e

Ca
nd

yc
ru

sh

Zo
m

bi
e

Ch
Fa

Ti

Fi
Tw

Yo

Fa
Tw

Yo

Ch
Fa

Ti
Tw

Fi
Tw

Yo
Fa

Ea

Fa
Tw

Zo
Yo

uC
h

AL
L

Av
er

ag
e

Re
du

ci
to

n
Ra

tio
 (%

)

high-accuracy model on smartphone Mate30

total size reduction cache size reduction

Figure 9: Normalized reduction ratio of cache files’ writebacks and total I/Os. We evaluate the trained models with ten
representative applications and their combinations. For the combination, we use the first two letters to identify the application’s
name. “ChFaTi” represents the combination of Chrome, Facebook, and TikTok.

Table 6: Sensitivity study with parameter MS.

MS Total count Cache count Total size Cache size
20MB 55% 83% 83% 91%
15MB 53% 77% 76% 94%
10MB 39% 72% 73% 84%
5MB 34% 76% 57% 91%

provement:

li f etime =
n

∑
i=1

PECi× (1+OPi)

365×DWPD×WAi×RCompress
(3)

In Equation 3, WAi and OPi are the write amplification
and over provisioning factor for ECCi, respectively, and PECi
is the number of P/E cycles for which ECCi is used. In our
case, other parameters are constants, and thus the lifetime is
inversely proportional to the number of full disk writes per
day (DWPD) which depends on the amount of data written.
Taking P9 as an example, we can reduce the amount of I/O
by an average of 53.2% and 54.7%, respectively by the two
models. Therefore, the lifetime can be improved by an aver-
age of 113.7% (1/(1-53.2%)-1) and 120.8% (1/(1-54.7%)-1),
respectively.

6.2 Performance Improvement
Read/write performance improvement. Reduction in write-
backs of cache files could improve read and write performance
because of the reduction in I/O contention. To quantify the
impact of writebacks of cache files on read and write perfor-
mance, especially under intensive I/O, we assess the latency
of running read/write micro-benchmarks when using a cache-
intensive application, i.e., Facebook. Since most I/O sizes on

mobile devices are in the size of 4KB [4], we sequentially
write with fsync or read 512MB in size of 4KB by using
the micro benchmarks to evaluate read/write performance.
We scroll news on Facebook for five minutes and collect the
latency of read and write in the default system (Baseline)
and in the system with CacheSifter (Recall and Accuracy).
No_cache represents the latency of read and write without
using Facebook so that there is no interference of cache files
generated by Facebook. We use memtester [34] to occupy
physical memory, so that cache files will be written back
quickly (to general the situation that memory is insufficient).
To reduce bias, we conduct the experiment five times, and the
average latency of the entire 512MB operation is presented
in Figure 10a. To show more breakdown information, the
I/O and writebacks produced by Facebook are presented in
Figure 10b.

(a) Read/write performance. (b) I/O reduction.

Figure 10: The impact of CacheSifter on read and write per-
formance under different memory pressure. The system could
occupy approximately 2GB memory in this device.

In the baseline system, writebacks of cache files generated
by Facebook degrade read and write performance by an aver-
age of 29.6% and 38%, respectively under memory pressure
(with 2GB memory). Compared to baseline, the read and

USENIX Association 20th USENIX Conference on File and Storage Technologies 455

write latency are reduced by an average of 13.9% and 18.4%,
respectively by the high-recall model, while the numbers are
14.4% and 25.5%, respectively, when using the high-accuracy
model. When there is sufficient memory (at least 2.5GB),
the impact of cache files is marginal on read and write per-
formance because few cache files will be written back to
flash storage to generate I/O contentions with the read/write
of the micro-benchmark. The performance improvement of
CacheSifter derives from the write reduction of cache files.
The benefit is significant under I/O intensive workloads or
when memory is insufficient. According to paper [26], eight
background applications are common. Memory pressure oc-
curs frequently even in mobile devices with relatively large
memory (8GB) as shown in Table 7.
Table 7: Free memory in mobile devices when running various
numbers of applications.

Devices Total memory 1 App 3 Apps 5 Apps 8 Apps 10 Apps
P9 3G 88M 80MB 90MB 82MB 80MB

Mate30 8G 1.8GB 1GB 680MB 167MB 95MB
Pixel6 8G 1.5GB 177MB 166MB 172MB 106MB

Impact of CacheSifter on framerate. Even though
CacheSifter can improve read and write performance, re-
accessing discarded cache files from networks can negatively
impact user experience. We measure the possible loss in user
experience with Frame Per Second (FPS) by PerfDog, a pop-
ular gaming benchmark [43]. Figure 11 shows the average
FPS of Twitter. We choose Twitter as a foreground applica-
tion, that is denoted as “F” because Twitter is another one of
the most cache-intensive applications that could be relatively
more affected by CacheSifter. There are various numbers
of background applications, and “3B” means that there are
three background applications. Background applications are
randomly selected from the optimized ten applications.

Figure 11: Impact of CacheSifter on application execution.
For the average FPS, the results in Figure 11 show that

neither the high-recall model nor the high-accuracy model
has a noticeable impact on FPS of the application execution.
We also obtain the two important factors that impact FPS:
CPU and peak memory. Table 8 lists the details of CPU usage
and peak memory of Twitter. The results reveal that cache
files being re-accessed by CacheSifter has a minimal impact
on CPU usage and peak memory.

6.3 Overhead Analysis
Network overhead. Similar to the state changes shown in Ta-
ble 2, there are six types of miscalssifications : “BR->TR,LL”,
“TR->BR,LL”, and “LL->BR,TR”. “BR-> TR, LL” means

Table 8: Information of the foreground application.
Factors Methods F F+3B F+5B F+7B

Peak memory
baseline 334MB 323MB 302 304MB
high recall 333MB 337MB 308MB 301MB
high accuracy 343MB 328MB 315MB 323MB

CPU
baseline 9.9% 10% 8.9% 9%
high recall 10% 10.1% 10.3% 10.7%
high accuracy 10.7% 10.9% 10.5% 11.9%

that a BAR file is misclassified as a Transient file or a Long-
living file. Notably, only three misclassifications, “TR->BR”
and “LL->BR,TR”, could induce re-download. Amount of
these three misclassifications, the “LL->TR” case has small a
possibility to be re-downloaded while other two cases have a
large possibility to be re-downloaded. Based on this, we show
the re-download upper bound and lower bound in Figure 12.

Figure 12: Re-download ratios of optimized applications.

The upper bound is equal to the total number (accurate
and misclassified cases) divided by the sum of the number
of these three cases. The lower bound is equal to the total
number divided by the sum of the number of “LL,TR->BR”
cases. The results show that the re-download penalty of high-
recall mode is smaller than high-accuracy mode because of
its goal (reducing re-download). This allows the operating
system to deploy either high-recall or high-accuracy mode
based on the users’ network and data plan.
Memory overhead. Three components of CacheSifter in-
troduce extra memory overhead: categorization, maintain-
ing Transient files, and the ML inference. For categorization,
cache files are maintained in the main memory until they are
categorized. The extra memory usage depends on the size of
Long-living files that are generated within 60 seconds because
they are usually written back to the flash storage in default
systems. The average memory overhead of this part is 492KB
in our evaluations. The Transient files are stored in our QMFS
with a maximum size of 20MB. When more than 10MB is oc-
cupied, a reclaim thread wakes up to free the memory, which
ensures that the overhead stays below 10MB. Memory is used
to run the machine learning method, specifically the inference
step. Ten matrices for each model remain continually in the
main memory for inference, which occupies approximately
2MB (0.89MB for the first model and 1.13MB for the second
model). In summary, memory overhead is usually smaller
than 12.5MB.
CPU time overhead. Training/retraining is conducted offline,
and the overhead on smartphones is only the cost of catego-
rization and eviction. We train a model for 20 applications by

456 20th USENIX Conference on File and Storage Technologies USENIX Association

using the data of 20 hours on a PC, and the training time is
approximately one day. This training cost occurs only once
over three months in our study. A dedicated thread wakes up
periodically to conduct categorization and eviction. Catego-
rization takes an average of 82ms out of 10s in our evaluation,
as the matrices are relatively small. Moreover, the eviction
scheme is used to shrink the in-memory file system. For this
part, only the list move/insert operations are needed, and the
overhead (1.9 ms out of 10s on average) is negligible. In
summary, CPU time overhead is an average of 84ms for each
iteration (10 seconds in our evaluation).

7 Related Works

Cache file optimization. User experience could be degraded
due to too many cache files. Establish guidelines [10,21] indi-
cate that deleting the cache files of browsers can improve the
overall performance of mobile devices. However, the deleted
data must be re-downloaded from the network when users re-
access them. This could degrade the performance, especially
for the frequently-used data. Previous works [32, 38] show
that keeping all of the cache files in the main memory can
improve the performance because of their fast re-accessing.
The benefits only occur when the cached files are accessed
frequently. Otherwise, additional memory consumption may
degrade the overall performance. Currently, the Android sys-
tem and the existing works treat all cache files equally. Liang
et al. [27] show that cache file vary greatly and should be man-
aged differently but do not provide a corresponding solution.
Categorization of cache files. Caching files in memory is
widely used to improve system performance. Korner et al.
[22] firstly studied a knowledge-based remote file caching
model and used multiple LRU lists to manage cache files
on a server platform. Madhyastha et al. [29] employed a
hidden Markov model to automatically classify file access
patterns and tune the policies of the file system to improve
global performance based on the observed patterns. In addi-
tion to a server platform, researchers introduced some cache
file categorization schemes on mobile platforms. For exam-
ple, Immanuel et al. [15] proposed a cache taxonomy that
can decode several Android cache formats and display the
contents in an accessible manner.
Eviction scheme. To our best knowledge, the eviction scheme
used in CacheSifter is the first file-based eviction scheme to
do so from within the kernel. Numerous page-based eviction
schemes exist, which are usually designed based on the access
locality of pages. The Linux firstly began to work on a page
eviction mechanism from Kernel 2.4 [42], also termed page
aging, which attempts to perform background scanning of the
pages and use inactive lists to manage pages which are already
idle. Liang et al. [25,28] proposed a size-tuning scheme which
can reduce pre-fetched pages in order to avoid a high page
cache eviction ratio.
Server caching. The cache not only exists in mobile devices

but also on servers. As the information provider, the caching
mechanism on the servers is different from that on mobile
devices, which are contents consumer for the most of time.
The consistency of the cache [33] on distributed servers is the
main concern. The cache used on the servers is also designed
to reduce latency of responding to clients [1, 36]. Mital et
al. [31] proposed a framework to store files across multiple
SBSs. Jiang et al. [19] introduced a new DRAM caching
techniques based on filter caches, and also presented two
filter caching techniques and specified when they should be
employed. Meng et al. [30] designed a dynamic, self-adaptive
framework, called vCacheShare, which automate server flash
space for the cache in virtual environments.

8 Conclusion

Current mobile systems treat cache files equally, storing them
in the main memory first and then writing them back into
flash storage. Mobile device performance depends heavily on
cache utilization, with the challenges of tackling variable file
patterns and flash durability. This paper proposes a cache file
management scheme, named CacheSifter, to sift cache files by
a lightweight machine-learning-based categorization engine
and manage them by a set of eviction schemes to shield flash
from ephemeral cache data writes. CacheSifter is evaluated on
two Android devices and over a collection of representative
applications. Evaluation results demonstrate that CacheSifter
can reduce writebacks of cache files by an average of 62% and
59.5%, by using different models, and the I/O intensive write
performance of mobile devices is improved by an average of
18.4% and 25.5%. We conclude that CacheSifter provides sig-
nificant benefits to both I/O performance and storage lifetime
with marginal overhead.

Acknowledgment

We would like to thank the anonymous reviewers and our shep-
herd Prof. YouJip Won for their feedbacks and guidance. This
paper was partially supported by a grant from the Research
Grants Council of the Hong Kong Special Administrative
Region, China (No.11204718) and National Natural Science
Foundation of China (No. 61772092 and 61802038).

References

[1] B. Briscoe, A. Brunstrom, A. Petlund, D. Hayes, D. Ros,
I. Tsang, S. Gjessing, G. Fairhurst, C. Griwodz, and
M. Welzl. Reducing internet latency: A survey of tech-
niques and their merits. IEEE Communications Surveys
Tutorials, 18(3):2149–2196, 2016.

[2] Y. Cai, S. Ghose, E. F. Haratsch, Y. Luo, and O. Mutlu.
Error characterization, mitigation, and recovery in flash-

USENIX Association 20th USENIX Conference on File and Storage Technologies 457

memory-based solid-state drives. Proceedings of the
IEEE, 105(9):1666–1704, 2017.

[3] David Chu, Aman Kansal, and Jie Liu. Fast app launch-
ing for mobile devices using predictive user context. In
ACM MobiSys. ACM, June 2012.

[4] J. Courville and F. Chen. Understanding storage i/o
behaviors of mobile applications. In 2016 32nd Sym-
posium on Mass Storage Systems and Technologies
(MSST), pages 1–11, May 2016.

[5] Balázs Csanád Csáji et al. Approximation with artificial
neural networks. 2001.

[6] Android Developers. Android systems delete cache
files. https://developer.android.com/training/data-
storage/app-specificjava, 2021.

[7] Engineers. Android debug bridge (adb) tool.
https://androidmtk.com/download-minimal-adb-and-
fastboot-tool, 2019.

[8] Congming Gao, Liang Shi, Mengying Zhao, Chun Jason
Xue, Kaijie Wu, and Edwin H.-M. Sha. Exploiting paral-
lelism in i/o scheduling for access conflict minimization
in flash-based solid state drives. In 30th Symposium on
Mass Storage Systems and Technologies (MSST), pages
1–11, 2014.

[9] Google. Android source tree. https://source.android
.com/setup/build/downloading, 2020.

[10] Michelle Greenlee. How to clear the cache
on your android phone to make it run faster.
https://www.businessinsider.com/how-to-clear-cache-
on-android-phone, 2019.

[11] Sangwook Shane Hahn, Sungjin Lee, Cheng Ji, Li-Pin
Chang, Inhyuk Yee, Liang Shi, Chun Jason Xue, and
Jihong Kim. Improving file system performance of mo-
bile storage systems using a decoupled defragmenter. In
2017 USENIX Annual Technical Conference (USENIX
ATC 17), pages 759–771, Santa Clara, CA, July 2017.

[12] Sangwook Shane Hahn, Sungjin Lee, Inhyuk Yee,
Donguk Ryu, and Jihong Kim. Fasttrack: Foreground
app-aware i/o management for improving user experi-
ence of android smartphones. In 2018 USENIX Annual
Technical Conference (USENIX ATC 18), pages 15–28,
2018.

[13] Kyuhwa Han, Hyunho Gwak, Dongkun Shin, and Jooy-
oung Hwang. Zns+: Advanced zoned namespace inter-
face for supporting in-storage zone compaction. In 15th
USENIX Symposium on Operating Systems Design and
Implementation (OSDI 21), pages 147–162, July 2021.

[14] Tyler Harter, Chris Dragga, Michael Vaughn, Andrea C
Arpaci-Dusseau, and Remzi H Arpaci-Dusseau. A file
is not a file: Understanding the i/o behavior of apple
desktop applications. ACM Transactions on Computer
Systems (TOCS), 30(3):1–39, 2012.

[15] Felix Immanuel, Ben Martini, and Kim-Kwang Ray-
mond Choo. Android cache taxonomy and forensic
process. In 2015 IEEE Trustcom/BigDataSE/ISPA, vol-
ume 1, pages 1094–1101. IEEE, 2015.

[16] Daeho Jeong, Youngjae Lee, and Jin-Soo Kim. Boost-
ing quasi-asynchronous i/o for better responsiveness in
mobile devices. In Proceedings of the 13th USENIX
Conference on File and Storage Technologies, pages
191–202, 2015.

[17] Jaeyong Jeong, Sangwook Shane Hahn, Sungjin Lee,
and Jihong Kim. Lifetime improvement of NAND flash-
based storage systems using dynamic program and erase
scaling. In 12th USENIX Conference on File and Stor-
age Technologies (FAST 14), pages 61–74, Santa Clara,
CA, February 2014.

[18] Sooman Jeong, Kisung Lee, Seongjin Lee, Seoungbum
Son, and Youjip Won. I/o stack optimization for smart-
phones. In Proceedings of USENIX Annual Technical
Conference (ATC), pages 309–320, 2013.

[19] X. Jiang, N. Madan, L. Zhao, M. Upton, R. Iyer, S. Maki-
neni, D. Newell, Y. Solihin, and R. Balasubramonian.
Chop: Adaptive filter-based dram caching for cmp server
platforms. In HPCA - 16 2010 The Sixteenth Inter-
national Symposium on High-Performance Computer
Architecture, pages 1–12, 2010.

[20] Sang-Hoon Kim, Jinkyu Jeong, and Jin-Soo Kim.
Application-aware swapping for mobile systems. ACM
Trans. Embed. Comput. Syst., 16(5s):182:1–182:19,
September 2017.

[21] Adrian Kingsley-Hughes. Hidden android tricks to
speed up your smartphone. https://www.lifehacker.com.
au/2019/11/android-smartphone-running-slow-try-
deleting-the-app-cache/, 2019.

[22] Kim Korner. Intelligent caching for remote file ser-
vice. In Proceedings., 10th International Conference on
Distributed Computing Systems, pages 220–221. IEEE
Computer Society, 1990.

[23] Niel Lebeck, Arvind Krishnamurthy, Henry M. Levy,
and Irene Zhang. End the senseless killing: Improving
memory management for mobile operating systems. In
2020 USENIX Annual Technical Conference (USENIX
ATC 20), pages 873–887, July 2020.

458 20th USENIX Conference on File and Storage Technologies USENIX Association

[24] Changman Lee, Dongho Sim, Jooyoung Hwang, and
Sangyeun Cho. F2fs: A new file system for flash stor-
age. In 13th USENIX Conference on File and Storage
Technologies (FAST 15), pages 273–286, 2015.

[25] Yu Liang, Yajuan Du, Chenchen Fu, Riwei Pan, Liang
Shi, and Chun Jason Xue. Boosting read-ahead effi-
ciency for improved user experience on mobile devices.
ACM SIGBED Review, 16(3):75–80, 2019.

[26] Yu Liang, Jinheng Li, Rachata Ausavarungnirun, Ri-
wei Pan, Liang Shi, Tei-Wei Kuo, and Chun Jason Xue.
Acclaim: Adaptive memory reclaim to improve user
experience in android systems. In 2020 USENIX An-
nual Technical Conference (USENIX ATC 20), pages
897–910, July 2020.

[27] Yu Liang, Jinheng Li, Xianzhang Chen, Rachata
Ausavarungnirun, Riwei Pan, Tei-Wei Kuo, and Chun Ja-
son Xue. Differentiating cache files for fine-grain man-
agement to improve mobile performance and lifetime.
In 12th USENIX Workshop on Hot Topics in Storage
and File Systems (HotStorage 20), July 2020.

[28] Yu Liang, Riwei Pan, Yajuan Du, Chenchen Fu, Liang
Shi, Tei-Wei Kuo, and Chun Jason Xue. Read-ahead effi-
ciency on mobile devices: Observation, characterization,
and optimization. IEEE Transactions on Computers,
2020.

[29] Tara M Madhyastha and Daniel A Reed. Exploiting
global input output access pattern classification. In
SC’97: Proceedings of the 1997 ACM/IEEE Conference
on Supercomputing, pages 9–9. IEEE, 1997.

[30] Fei Meng, Li Zhou, Xiaosong Ma, Sandeep Uttamchan-
dani, and Deng Liu. vcacheshare: Automated server
flash cache space management in a virtualization envi-
ronment. In 2014 USENIX Annual Technical Confer-
ence (USENIX ATC 14), pages 133–144, Philadelphia,
PA, June 2014.

[31] N. Mital, D. Gündüz, and C. Ling. Coded caching in a
multi-server system with random topology. IEEE Trans-
actions on Communications, 68(8):4620–4631, 2020.

[32] Ngoan Nguyn. Ram disk: an app to mount a
folder directly into the ram. https://apkpure.com/ram-
disk/com.yz.ramdisk, 2019.

[33] Pei Cao and Chengjie Liu. Maintaining strong cache
consistency in the world wide web. IEEE Transactions
on Computers, 47(4):445–457, 1998.

[34] pyropus technology. Memory test tool memtester.
http://pyropus.ca/software/memtester/, 2017.

[35] Liana V. Rodriguez, Farzana Yusuf, Steven Lyons,
Eysler Paz, Raju Rangaswami, Jason Liu, Ming Zhao,
and Giri Narasimhan. Learning cache replacement
with CACHEUS. In 19th USENIX Conference on File
and Storage Technologies (FAST 21), pages 341–354.
USENIX Association, February 2021.

[36] S. P. Shariatpanahi, S. A. Motahari, and B. H. Khalaj.
Multi-server coded caching. IEEE Transactions on In-
formation Theory, 62(12):7253–7271, 2016.

[37] Z. Shen, L. Han, R. Chen, C. Ma, Z. Jia, and Z. Shao.
An efficient directory entry lookup cache with prefix-
awareness for mobile devices. IEEE Transactions on
Computer-Aided Design of Integrated Circuits and Sys-
tems, pages 1–1, 2020.

[38] SoftPerfect. How to improve your computer
performance and ssd life span with a ram disk.
https://www.softperfect.com/articles/how-to-boost-
computer-performance-with-ramdisk/, 2020.

[39] Statista. Number of smartphone users worldwide from
2016 to 2021. https://www.statista.com/statistics/3306
95/number-of-smartphone-users-worldwide/, 2020.

[40] Statista. Replacement cycle length of smartphones
worldwide. https://www.statista.com/statistics/786876
/replacement-cycle-length-of-smartphones-
worldwide/, 2020.

[41] Linus Torvalds and thousands of collaborators. The
linux kernel archives. https://www.kernel.org/, 2020.

[42] Rik Van Riel. Page replacement in linux 2.4 memory
management. 2001.

[43] Wetest. Fps test tool perfdog. https://perfdog.wetest.net/,
2020.

[44] Sangjin Yoo and Dongkun Shin. Reinforcement
learning-based SLC cache technique for enhancing SSD
write performance. In 12th USENIX Workshop on Hot
Topics in Storage and File Systems (HotStorage 20), July
2020.

[45] Tao Zhang, Aviad Zuck, Donald E. Porter, and Dan
Tsafrir. Apps can quickly destroy your mobile’s flash
- why they don’t, and how to keep it that way (poster).
Proceedings of the 17th Annual International Confer-
ence on Mobile Systems, Applications, and Services,
page 207–221, 2019.

USENIX Association 20th USENIX Conference on File and Storage Technologies 459

	Introduction
	Cache Files in Mobile Systems
	Required Space and Writes of Cache Files
	Differences among Cache Files
	Challenges in Cache File Management

	CacheSifter Design
	Overview of CacheSifter
	Design Principles
	CacheSifter Framework

	Feature-based Cache Files Management
	blackLightweight Categorization of Cache Files
	Cache File Management Mechanism

	User Behavior blackAdaptation
	Safety Mechanism

	CacheSifter in Android
	MLP-based Cache File Categorization
	Management of Categorized Cache files
	Implementation Discussions

	Evaluation Methodology
	Categorization Models
	Evaluation Setup

	Evaluations
	Lifetime Improvement
	Performance Improvement
	Overhead Analysis

	Related Works
	Conclusion

