é} usenix
4 THE ADVANCED

COMPUTING SYSTEMS
ASSOCIATION

exF2FS: Transaction Support
in Log-Structured Filesystem
Joontaek Oh, Sion Ji, Yongjin Kim, and Youjip Won, KAIST

https://www.usenix.org/conference/fast22/presentation/oh

This paper is included in the Proceedings of the
20th USENIX Conference on File and Storage Technologies.
February 22-24, 2022 « Santa Clara, CA, USA
978-1-939133-26-7

Open access to the Proceedings
of the 20th USENIX Conference on
File and Storage Technologies
is sponsored by USENIX.

exF2FS: Transaction Support in Log-Structured Filesystem

Joontaek Oh Sion Ji

Yongjin Kim

Youjip Won

Department of Electrical Engineering, KAIST

Abstract

In this work, we present exF2FS, a transactional log-
structured filesystem. The proposed filesystem consists of
three key components: Membership-Oriented Transaction,
Stealing-Enabled Transaction, and Shadow Garbage Collec-
tion. Membership-Oriented Transaction allows the transaction
to span multiple files where the application can explicitly spec-
ify the files associated with a transaction. Stealing-Enabled
Transaction allows the application to execute the transaction
with a small amount of memory and to encapsulate many
updates, e.g., hundreds of files with tens of GBs in total size,
with a single transaction. Shadow Garbage Collection allows
the log-structured filesystem to perform garbage collection
without affecting the failure-atomicity of ongoing transac-
tions. The transaction support in exF2FS is carefully trimmed
to meet the critical needs of the application while minimizing
the code complexity and avoiding any performance side ef-
fects. With exF2FS, SQLite multi-file transaction throughput
increases by 24 x against the multi-file transaction of stock
SQLite. RocksDB throughput increases by 87% when it im-
plements the compaction as a filesystem transaction.

1 Introduction

Modern applications strive to protect their data in a crash-
consistent manner which is often split over multiple file
abstractions. In the absence of proper transaction support
from the underlying filesystem, the application employs
complicated protocols to ensure the transactional updates
that span multiple files, yielding long sequence of writes
and fsync()’s. Text editors, such as vim and emacs, use
atomic rename() to save the updated file atomically [1].
For a transaction that updates the multiple database files, the
library-based embedded DBMS, SQLite, maintains the sepa-
rate journal file for each database file [69], yielding excessive
fdatasync() calls and a large write amplification [31]. Com-
paction operation of the modern LSM-based key-value store,
such as RocksDB [22], maintains the state of the merge-sort
at a separate journal file known as the manifest file. For the
failure-atomicity of the compaction operation, the key-value
storage engine flushes the output files separately and also
flushes the global state of the compaction to the manifest file.
With the transaction support from the filesystem, the appli-
cation can replace the multiple £sync()’s for each output

files and the manifest file with a single filesystem transaction,
rendering higher performance by eliminating redundant 10’s.

Despite the clear benefits of supporting transactions, it re-
mains a challenge for the operating system and filesystem.
To successfully deploy the transaction enabled system, the
right balance must be found among the four requirements:
easy to use, code complexity, degree of ACID support and
performance. Unfortunately, achieving one of these is often
at the cost of another. The system level supports for trans-
action can largely be categorized into four: native operating
system support [57,61, 61, 75], kernel level filesystem [14,
26,27,46,55,66,72,78], user level filesystem [24, 48, 54]
and transactional block device [12,28, 32,52, 58, 65]. Sup-
porting transaction as the first-class citizen of the operating
system is ideal; however, it requires substantial change in the
operating system. Transaction support from the user level
filesystem exploits the user level DBMS to provide full ACID
transaction [24,48, 54]. ACID support comes at the cost of
the performance. The transaction support from the kernel
level filesystem can further be categorized with respect to the
degree of ACID support: full ACID semantics [27,66], ACD
without isolation support [55,72] or even AC without isola-
tion and durability support [34]. An F2FS transaction [34]
supports only the atomicity, neither isolation nor durability.
The transaction in F2FS cannot span multiple files. Ironically,
despite its barest minimum support for the transaction, F2FS
is the only filesystem that successfully deploys its transaction
support to the public. F2FS’s transaction support has a specific
target application: SQLite. With atomic write of F2FS, SQLite
can implement the transaction without the rollback journal
file and can eliminate the excessive flush overhead [31, 64].

In this work, we revisit the issue of providing the filesystem-
level transaction support. In particular, we focus the domain of
interests to the log-structured filesystem. Most of the preced-
ing works on the transactional filesystems use the journaling
filesystem as a baseline filesystem [27,66,72]. These works
exploit the journaling layer of the filesystem to provide the
transaction capability. F2FS, the log-structured filesystem de-
signed for flash storage, recently gained wide popularity on
smartphone platforms [56] and is beginning to expand into
cloud platforms [6]. Few works have dealt with the transac-
tion support in the log-structured filesystem. Seltzer et al. [62]
is the nearest effort; however, their work is limited in terms
of the transaction support. Their study does not support multi-

USENIX Association

20th USENIX Conference on File and Storage Technologies 345

file transaction, stealing in the transaction, nor the conflict
handling between a transaction and the garbage collection.

In this study, we present transaction support in the log-
structured filesystem with three design objectives; (i) the
transaction should be able to span multiple files, including the
directory, (ii) the transaction should be able to handle large
amounts of updates and (iii) the transaction should not be
affected by the execution of garbage collection. Each of these
requirements looks plain and essential from the application’s
point of view. Unfortunately, developing the transactional log-
structured filesystem which satisfies these simple and plain
requirements is a non-trivial exercise which calls for substan-
tial changes in the underlying filesystem from the aspect of
design as well as implementation; developing a new trans-
action model, redesigning the filesystem’s page reclamation
procedure and redesigning the garbage collection procedure.
We find that few modern transactional filesystems address
any of these essential requirements in its transaction manage-
ment with sufficient maturity. To allow the transaction to span
multiple files, we develop Membership-Oriented Transaction
Model. To allow the transaction to handle large size transac-
tions which may consist of hundreds of files with tens of GBs
of data, we develop Stealing for the filesystem transaction.
To prohibit the garbage collection from interfering with the
ongoing transaction, we develop Shadow Garbage Collection.
The main contributions of this work are as follows.

o Membership-Oriented Transaction. In Membership-
Oriented Transaction, the filesystem maintains a kernel
object, Transaction File Group that specifies the set of files,
including directories, associated with the transaction. With
Membership-Oriented Transaction, the application can ex-
plicitly specify the files that are subject to the transaction.

e Stealing. We allow dirty pages of uncommitted transac-
tions to be evicted and yet guarantee the atomicity of the
transaction. We develop Delayed Invalidation and Reloca-
tion Record to realize Stealing in the filesystem transaction.
Delayed Invalidation prohibits the old disk locations of
evicted pages from being garbage-collected until the trans-
action commits. Relocation Record maintains undo and
redo information to abort and commit evicted pages, re-
spectively.

e Shadow Garbage Collection. We develop Shadow
Garbage Collection to prohibit the garbage collection mod-
ule from making the dirty page of the uncommitted transac-
tion prematurely durable and recoverable. Shadow Garbage
Collection allows the filesystem to perform garbage collec-
tion transparently to the ongoing transactions.

We implement these features in F2FS. We call the newly devel-
oped filesystem extended F2FS (exF2FS). exF2FS improves
the SQLite performance by 24 x against stock SQLite and
reduces the write volume to 1/6 compared to the PERSIST
journal mode of SQLite. It improves RocksDB performance

by 87% in the YCSB workload-A [13]. Special care has been
taken not to change any on-disk structure of the existing F2FS
so that exF2FS can mount the existing F2FS partition.

2 Background and Motivation
2.1 Multi-file Transaction

Multi-file transaction is an essential part of the modern soft-
ware. The followings are a few examples of multi-file trans-
action method currently being used.

Maintaining the browsing history in the web browser.
The Chrome browser maintains user browsing activity, such
as visited URL’s, the list of downloaded files, an access history
for each URL and the list of the most frequently visited URL’s.
Chrome maintains each of these in a separate file and updates
these files in failure-atomic fashion. For failure-atomicity,
Chrome uses SQLite in updating these files [50] which ren-
ders excessive 10. The inefficiency of SQLite transactions
will be explained later in this study.

Compaction in LSM-based key-value Store. Compaction
is a process of merge-sorting several SSTables with over-
lapping intervals into a sequence of the output files with
non-overlapping intervals [21]. The failure-atomicity of the
compaction operation invokes £sync()’s for each output file
and the parent directory and flushes the global state of the
transaction to a special file called the manifest file [5,23,33].
In "load" workload of YCSB [13], a single compaction of
RocksDB can create as many as 198 output files (over 200
fsync()’s) for a total of 13.3 GB.

Software Installation. Updating or installing a new software
involves downloading and modifying hundreds of files and
updating the associated directory in a failure-atomic manner.
The partial completion of installation or update often leads to
an unstable system [15,42,45,73].

Mail client. MATLDIR IMAP format maintains the mailbox
and the message as a directory and a file in the directory, re-
spectively [2, 16,20]. The email client updates the message
files and the associated directory in transactional fashion. In
the absence of transaction support from the underlying filesys-
tem, mail clients use the expensive atomic rename to manage
the mailbox and the message in transactional fashion [9, 70].

2.2 Multi-file Transaction and SQLite

SQLite is serverless embedded DBMS widely used in various
applications: mobile applications such as Android Mail and
Facebook App, desktop applications such as Gmail and Apple
iWork [25,27] and distributed filesystems such as Lustre [8]
and Ceph [74]. These applications use SQLite to persistently
manage the updates on the multiple files in failure-atomic
fashion. To understand how the SQLite can benefit from the
transaction support of the underlying filesystem, we instru-
ment the IO behavior of the SQLite’s multi-file transaction.

346 20th USENIX Conference on File and Storage Technologies

USENIX Association

+ *db X *journal X *mj

O dir m CP

fd(jrnl1)
fd(db3) fd(jrnl2)
fd(mj) fd(dir) fd(jrnl1) fd(jrnl1) fd(db1) fd(jrnl2) fd(jrnl2) fd(db2) fd(jrni3) fd(jrni3) l fd(dir) fd(jrnI3)
732 T | e [, ‘}' e ‘l.............}......;....‘: lymm e y $ A
g 4 HE) 14 '8 s 14 8 w12 ‘4 18 4w i~
730 a0 HERS X T+ mx2 X -+ Hip X+ i HE S
78| B in 1 HRE
& H HE , ! o | i Lg hogtn i HENES
= E 12 s 4 4 4 w4 4 4 5 4 4 4 wd 4 4. 2 |3
= 726 i X X pX | oAr i X X A B X PX L+ XX Xi§ s
3] 4 HE | : i b R S ik
— 724 m i : : i : Bl PR N -1 B R 2
dl T o i |) [} 4 0 A
4 N | l H 1 i YT : =
H 8 4 ‘ | ! HE | H ! N 4m 2l
2 i o W E il :Olnsertﬂ gt 9In§ert2 i © nsert3 | i 8|5
H 113@ Persist directory ;1 ! ! g i W | | i ! v
......................... Y emmmmmmssssmssssssssshsssmasess ememmsdessssasssssssssssssssssssss? e PO L gt A eany
0 10 20 30 40 / 50
@ Initialize master journal file Time (msec) @ Delete master journal file & Persist directory

Figure 1: A multi-file transaction with three insert()’s in F2FS. Record size = 100 Byte, PERSIST mode. The number in each
mark represents the number of KB written, Device: Samsung 850 PRO, fd: fdatasync(), mj: master journal file, dir: parent

directory, jrnl: journal file, db: database file, cp: checkpoint

While the application can become simpler when using
SQLite to persistently manage the data, it suffers from signifi-
cant write amplification and excessive flush due to the page
granularity physical logging and the file-backed journaling
of SQLite [31,64]. A single insert () of SQLite incurs five
fdatasync()’s with 40 KB of write() [76]. A few studies
have been dedicated to improving the extreme 1O inefficiency
of SQLite transaction [27,31,34,36,40,53]. All these efforts
are limited to improve the IO overhead in the transaction with
a single database file.

SQLite constructs the multi-file transaction as a collection
of the single file transactions and a few flushes to record the
global state of the multi-file transaction at the master journal
file. SQLite implements the multi-file transaction in the four
steps listed below. Step 1 and Step 3 are for updating the
master journal file. Step 2 and Step 4 are for executing the
series of the single file transactions. Fig | shows how each
of these steps is associated with the IO behavior through the
physical experiment. Here, a transaction consists of three
inserts to three different database files.

1. Initializing the master journal file. SQLite records the
name of the journal files in the master journal file. Then, it
flushes the master journal file (@ in Fig. 1) and the updated
directory to the disk (@ in Fig. 1).

2. Logging and Database Updates. SQLite logs the undo
records at the journal files and updates the database files.
Each file is updated in the same way as in the single
database transaction (@ in Fig. 1). There are three @’s
in Fig. 1 each of which corresponds to a single insert ().

3. Deleting the master journal file. Asa mark of successful
commit, SQLite deletes the master journal file and makes
the associated directory durable (@ in Fig. 1).

4. Reset Logs. SQLite resets the journal files and flushes
them (@ in Fig. 1).

In the Fig. 1, the X-axis and Y-axis denote the time and
LBA, respectively. Here, we explicitly specify three regions
of F2FS: the metadata area, data region of the main area,
and node region of the main area. When SQLite flushes the
dirty file block through fdatasync(), the underlying F2FS
flushes not only data blocks but also the associated node
block to the data region and the node region, respectively.
In (@), flushing the master journal file (fd(mj)) renders two
separate 4 KB IO’s to the disk: one for flushing the data block
and the other for flushing the node block. The data block
and the associated node block need to be made durable in
order for guaranteeing the integrity of the filesystem. Each
insert() has three fdatasync()’s (@); the first and the
second fdatasync() are for flushing the rollback journal file.
The third one is for flushing the database file. In (@), SQLite
deletes the master journal file and persists the parent directory.
When unlinking the master journal file becomes durable, the
transaction is committed. In (@), SQLite resets the rollback
journal files of the transaction.

As in Fig. 1, the IO overhead of SQLite multi-file transac-
tion is somewhat disastrous; inserting three 100 Byte records
renders fifteen fdatasync()’s and 180 KBs write to the disk.

2.3 Log-structured Filesystem, F2FS and

Atomic Write

We use F2FS [39] as a baseline log-structured filesystem.
F2FS has a number of key design features that differentiate
itself from the original log-structured filesystem designs [38,
60, 63]. Among them, the two features that we focus on in
this work are block allocation bitmap and dual log partition
layout. To realize Stealing and Shadow Garbage Collection,
the way in which F2FS manipulates and updates the block
allocation bitmap and the two logs must be overhauled.

The first is block allocation bitmap. In the original log-
structured filesystem design [60, 63], there is no explicit data

USENIX Association

20th USENIX Conference on File and Storage Technologies 347

structure that specifies whether a given block in the filesystem
partition is allocated or not. The filesystem determines that a
block in the filesystem partition is allocated if it is reachable
through the file mapping. F2FS maintains the block allocation
bitmap to denote whether a given block in the filesystem is
valid or not. The second is dual log partition layout. Legacy
log-structured filesystems treat the filesystem partition as a
single log. They cluster the data block and the associated
filemap' together and flush them in a single unit. F2FS orga-
nizes the filesystem partition with two separate logs: the data
region and the node region. F2FS places the data block and
the node block at the associated regions, respectively. Unlike
the legacy log-structured filesystems, F2FS writes the data
blocks and node blocks separately. To preserve the filesystem
integrity against a system crash, F2FS ensures that the data
blocks are made durable before the associated node blocks.
Due to this ordering mechanism in F2FS, the block trace for
writing the data block appears before the block trace for writ-
ing the node block in each pair of writes for the data block
and the node block, as shown in Fig. 1.

F2FS provides the atomic write feature [34]; an application
can write multiple blocks for a single file in a failure-atomic
manner. This feature is primarily for addressing the excessive
10 overhead of the SQLite’s single file transaction.

start_atomic_write(£fd) ;
write(fd, blockl) ;
write(£fd, block2) ;
commit_atomic_write(fd) ;

For atomic write, F2FS maintains the list of the dirty pages
in the inode. When the transaction updates a file block, it
inserts the dirty page to the per-inode dirty page list and pins
the dirty page in memory. When the transaction commits,
the filesystem unpins the dirty pages in the per-inode dirty
page list and flushes the dirty pages and the associated node
blocks that hold the updated file mapping to the disk. Since the
atomic write pins the dirty pages in memory until it commits,
F2FS, by design, cannot support Stealing in its atomic write
transaction. When the transaction commits, F2FS sets the
FSYNC_BIT flag at the node block. If more than one node
blocks are flushed, atomic write places FSYNC_BIT flag at the
last node block. F2FS sets the FSYNC_BIT flag at the node
block to mark itself subject to the roll-forward recovery.

The log-structured filesystem periodically checkpoints its
state, e.g. the updated file mapping, the updated bitmap (only
for F2FS), and the disk location of the last block of each log.
When the filesystem crashes, the recovery module recovers
the state of the filesystem with respect to the most recent
checkpoint information. After rollback recovery, the recovery
module scans the logs from the last location, finds the node
block with FSYNC_BIT, i.e. the transaction which has finished
successfully after the most recent checkpoint, and recovers
the associated file.

'F2FS calls blocks holding the file mapping information as a node block.

3 Design

We define three constraints which the transactional log-
structured filesystem should satisfy: (i) Multi-File Transac-
tion, (ii) Stealing and (iii) Transaction-aware Garbage Col-
lection. We develop a transactional log-structured filesystem,
exF2FS, that satisfies these constraints. The key technical
components of exF2FS are Membership-Oriented Transac-
tion, Stealing enabled Transaction, and Shadow Garbage Col-
lection. Each component is summarized below.

Membership-Oriented Transaction (Section 3.1): The
transaction of F2FS cannot span multiple files since it main-
tains the dirty pages of a transaction in a per-inode basis.
In this study, we develop a new transaction model, called
Membership-Oriented Transaction. In Membership-Oriented
Transaction, the filesystem defines Transaction File Group,
a set of files whose updates need to be handled as a transac-
tion and maintains the dirty pages of a transaction for each
transaction file group. In Membership-Oriented Transaction,
a transaction can span multiple files and the application can
explicitly specify the files that are subject to the transaction.

Stealing enabled Transaction (Section 4): For Stealing, the
page reclamation procedure is overhauled so that the result
of the page reclamation can be undone when the filesystem
reclaims the dirty page of the uncommitted transaction. With
Stealing enabled Transaction, the proposed filesystem can
support large size transactions, e.g. hundreds of files with tens
of GBs of data, with a small amount of memory.

Shadow Garbage Collection (Section 5): Garbage collec-
tion can make the dirty page associated with an uncommitted
transaction durable and can checkpoint the updated file map-
ping prematurely before the transaction commits. We develop
Shadow Garbage Collection to isolate the garbage collection
from the uncommitted transaction.

3.1 Membership-Oriented Transaction Model

s dirty data

O A D : Updated files page list
Transaction File Group — .. dirty nﬁde
< TXFG ID = page fist
« Transaction Membership E file ID file ID
z W? T file offset L file offset [... Relocation
T old disk location [*7old disk location f*— List
1J new disk location| | new disk location
e —

Page cache entry of tzﬁ 0; % ''''' -
Master Commit Block °
LIS O] —— -

Figure 2: Concept of a Transaction: Transaction File Group,
Dirty Page List, Relocation List and Master Commit block

In this work, we propose a new transaction model called
Membership-Oriented Transaction. In this model, we define
the new kernel entity, Transaction File Group. Transaction
File Group is a set of files whose updates need to be treated

348 20th USENIX Conference on File and Storage Technologies

USENIX Association

as a single transaction, and consists of Transaction Member-
ship (a set of inodes), dirty page list, Relocation List, and
Master Commit Block, as in Fig. 2. We use hash table for
the namespace of Transaction File Group objects, which is
widely used to organize the namespace for the kernel objects,
e.g. semaphore and pipe [19].

With Transaction File Group, the application can specify
the files that need to be included in the transaction. The dirty
page list is a set of dirty pages for the transaction member
files. There are two separate dirty page lists: the dirty data
page list and the dirty node page list. A Relocation List is
a set of Relocation Records. Relocation Record contains an
information for the evicted page: file ID, file offset, old disk
location, and new disk location. Master Commit Block holds
the disk locations of the last node blocks for each file in
the transaction membership. Transaction File Group, along
with the Master Commit Block, allows the transaction to span
multiple files. Relocation List is used for Stealing and Shadow
Garbage Collection.

3.2 Transaction API’s

id = create_tx file group();
for (i = 0; i<3; i++)

add tx file group(db[i], id);
start_tx file group(id);
write(db[0], buf, 4096);
write(db[1], buf, 4096);
write(db[2], buf, 4096);
commit tx file group(id);
delete file_group(id);

WoOoOJoULd WN PR

Figure 3: Multi-file transaction in exF2FS

The application creates a Transaction File Group with an
explicit call. When an application creates a Transaction File
Group, and ID of the Transaction File Group is returned to the
application. The application can add or remove a file to and
from the Transaction File Group. To avoid a conflict between
ongoing transactions, we forbid the application to add or to
remove a file to and from the Transaction File Group in an
ongoing transaction. When the transaction creates a file, the
newly created file inherits the membership from the parent
directory, which is called Membership Inheritance. Member-
ship Inheritance saves the file created by the transaction from
the transaction conflict since the newly created file is added
to the Transaction File Group before it becomes externally
visible. When the directory is removed from the Transaction
File Group, child files who inherited the membership are also
removed from the Transaction File Group.

The application specifies the ID of the Transaction File
Group when it starts the transaction. When the transaction
starts, the filesystem sets the flag at the inodes of the transac-
tion member files denoting that the files are associated with
the ongoing transaction. The application specifies the ID of

the Transaction File Group when it calls for the transaction
commit. exF2FS offers the API’s for transaction abort and
transaction delete. When the application calls for deleting
a Transaction File Group, the Transaction File Group and
the associated objects are deallocated if there is no ongoing
transaction for the Transaction File Group, If there is an on-
going transaction when the application calls for deleting the
transaction file group, exF2FS first aborts the transaction and
then deletes the Transaction File Group. Table | illustrates
the API’s and pseudo-code of exF2FS, respectively.

In exF2FS, a transaction can include a directory update
such as rename(), unlink(), and create(). The F2FS
transaction does not support the directory update in the trans-
action.

3.3 Commit and Abort

When the transaction updates the file in the transaction file
group, it inserts the updated page cache entry to the dirty data
page list of the Transaction File Group.

In committing a transaction, the filesystem prepares the
dirty data pages, the dirty node pages and the Master Commit
Block for transaction commit. First, the filesystem inserts the
dirty data pages in the dirty page list to the active data segment
and obtains the disk location for each dirty data page. Second,
the filesystem updates the associated node pages with the new
disk location of each data page, inserts the updated node pages
to the dirty node page list and determines the disk location
for each dirty node page. Third, the filesystem allocates the
Master Commit Block and stores the disk location of each
node page in the dirty node page list at the Master Commit
Block. The filesystem then sets FSYNC_BIT flag at the Master
Commit Block.

Once these steps are complete, exF2FS flushes the dirty
data pages, the dirty node pages and Master Commit Block. It
ensures that the Master Commit Block becomes durable only
after the data blocks and the node blocks become durable.
Master Commit Block is the key component to fabricate the
dirty pages of the multiple files into a single multi-file trans-
action. After the Master Commit Block becomes durable, the
filesystem scans the Relocation List and invalidates the old
disk locations of the Relocation Records. The details about
the Relocation Record will be explained in Section 4.3.

If the transaction aborts, all entries in the dirty page list are
discarded and the dirty page list becomes empty. When the
aborted transaction has the evicted pages, the file mapping
information is revoked to its original location based upon the
Relocation Records.

When the system crashes, the recovery module performs
rollback recovery and places the filesystem state to the most
recent checkpoint. Then, exF2FS performs roll-forward re-
covery; it scans the log starting from the last logging offset
recorded at the checkpoint. When it encounters Master Com-
mit Block, the recovery module examines it and identifies the
disk locations of the node blocks of the files in the transac-

USENIX Association

20th USENIX Conference on File and Storage Technologies 349

API | Arguments | Return value | Description

create_tx_file_group None int key Create a transaction file group

delete_tx_file_group | int key int err Deallocate a transaction file group corresponding to the key
Transaction . int fd . . .

. add_tx_file_group . int err Add a file £d to a transaction file group corresponding to the key
File Group int key
. int fd . . .
remove_tx_file_group int key int err Remove a file £d from a transaction file group corresponding to the key
start_tx_file_group int key int err Start a transaction corresponding to the key

Transaction | commit_tx_file_group | int key int err Commit a transaction corresponding to the key

abort_tx_file_group int key int err Abort a transaction corresponding to the key

Table 1: API’s in exF2FS

tion. Then, the recovery module of exF2FS uses roll-forward
recovery routine of stock F2FS to recover the file associated
with each node block. If the system crashes before the Master
Commit Block becomes durable, the transient state of the
transaction that was in-memory is completely lost. Through
this recovery mechanism, exF2FS guarantees the atomicity
and the durability of the transaction.

3.4 Concurrency Control and Isolation

Not being a full-fledged DBMS, we use coarse file-granularity
concurrency control; a file can belong to only one Transaction
File Group at a time. When adding a file to the Transaction
File Group, the application checks if it is already in another
Transaction File Group. If the file is already in another Trans-
action File Group, add_tx_file_group returns an error.

We leave the isolation support to the application as the
other transactional filesystems do [11,47,72]. As the general
purpose filesystem, it is difficult to meet all different levels of
isolation requirements from a wide variety of applications at
the same time. We carefully consider that the limited support
of the filesystem for the isolation becomes redundant at best,
unless the isolation level supported by the filesystem is well
aligned with the isolation level required by the application.
Text editor, application installer, git and the compaction of
LSM-based key value store do not require the isolation [10].
SQLite and MySQL implement the multiple levels of isola-
tion by themselves [49, 68]. In these applications, the limited
support of filesystems for the isolation cannot be of much help.
TxFS supports the isolation of "Repeatable Read" [4,27]. It
is overly strong for Text editor, and is too relaxed for some
applications, such as "Serializable Read" in SQLite. SQLite
must implement isolation of "Serializable Read" in its own
database layer using the shared lock [67] even when using
TxFS as the underlying filesystem. Filesystem support for the
isolation has a cost. According to our experiments, the isola-
tion support of TxFS renders 10% performance overhead due
to the overhead of creating the shadow copies of the updated
pages in the transaction. However, one limitation resulting
from the absence of isolation support is that other processes
cannot concurrently add, delete, or rename files in a directory
that is included in another process’s transaction. Supporting
concurrent directory modifications is left for future work.

4 Stealing in the Filesystem Transaction

Stealing denotes the buffer management policy that allows the
eviction of dirty pages of the uncommitted transaction [59].
The Steal policy in DBMS and the page reclamation of the
Operating System (or the filesystem) [41] are the different
manifestations of the same essential behavior: evicting a dirty
page to the disk and freeing up the physical memory. While
the two share the essential behavior, the two lie at the other end
of extreme. For Stealing in the database transaction, DBMS
prohibits the evicted dirty page from being externally visible
(isolation) and/or undoes the Steal in case of transaction abort
(atomicity). When the OS reclaims the file-backed dirty page,
the result of the page eviction becomes externally visible and
cannot be undone. In the journaling filesystem, the old file
block is overwritten with the evicted page and in the log-
structured filesystem, the old file block of the evicted page
becomes unreachable due to the file mapping update.

4.1 Stealing and the Filesystem

The support for Stealing in the existing transactional filesys-
tems bears substantial room for improvement. None of the
TxFS [27], F2FS [34], Isotope [65], and Libnvmmio [11] sup-
port Stealing in the transaction. TXFS cannot support Stealing
in a transaction due to its fundamental design limit. TxFS’s
support for transaction is built on top of EXT4 journaling.
EXT4 journaling pins the log blocks in memory until the jour-
nal transaction commits. EXT4 limits the size of the journal
transaction (256 MB by default). When the size of a journal
transaction reaches its limit, the EXT4 journaling module
commits the journal transaction. In EXT4, the dirty pages as-
sociated with a single system call can be split into two or more
journal commits. TxFS must prohibit this from happening
since it can make the transient state of the transaction durable
prematurely, compromising the atomicity of the transaction.
For atomicity guarantee, TXFS simply aborts the transaction
when the transaction size exceeds its limit. F2FS pins the
dirty pages of a transaction in memory until it commits. F2FS
aborts all outstanding transactions [35] when the dirty pages
of an uncommitted transaction exceeds a certain threshold
(15% of the total physical page frames by default). CFS sup-
ports stealing [47]. However, CFS relies on a non-existent

350 20th USENIX Conference on File and Storage Technologies

USENIX Association

transactional block device [32] for its support for Stealing.
AdVFES [72] supports Stealing with the commodity hardware.
AdvFS uses the writable file clone for the transactional up-
dates. When the transaction commits, the filemap is updated
to refer to the updated file blocks that are written in out-of-
place manner. This nature allows AdVFS to freely support
Stealing. However, a transaction in AdvFS can fragment the
file since the filesystem deletes the old file blocks each time
the transaction commits. The file defragmentation overhead
of AdVFS is yet-to-be known. Our analysis on the AdvFS is
limited since AdVFS is proprietary filesystem and the source
code of its transaction module is not publicly available.

4.2 Delayed Invalidation and Node Page Pin-
ning

In this study, we enable Stealing in the filesystem transaction.
The log-structured filesystems [39,60,63] evict the dirty pages
as follows: the evicted page is written to the new disk location,
the old disk location of the evicted page is invalidated and the
file mapping (node page in F2FS) is updated to refer to the
new location of the associated file block. This page eviction
routine cannot be used with Stealing for two critical reasons.
First is the invalidation of the old disk location. Being invali-
dated, the old file block can be garbage collected and can be
recycled before the transaction commits. If the old file block
is recycled before the transaction commits, the transaction
cannot be revoked when the transaction aborts. Second is the
premature checkpoint of the updated node page. When the
dirty page is evicted, the updated node page which contains
the updated file mapping can be checkpointed if the filesystem
runs the periodic checkpoint operation before the transaction
commits. Then, the updated node page checkpointed to the
disk refers to the new disk location of the evicted page of
the uncommitted transaction. If the filesystem crashes before
the transaction commits, the recovery module can recover the
evicted page of the uncommitted transaction with respect to
the most recent file mapping found on the disk. Subsequently,
the filesystem can be recovered to the incorrect state.

There are two key issues that need to be addressed for sup-
porting Stealing-enabled Transaction in the log-structured
filesystem: (i) prohibit the old disk location from being
garbage collected until the transaction commits and (ii) pro-
hibit evicted pages of uncommitted transactions from being
recovered after the system crash. To address the first issue,
we propose Delayed Invalidation. In Delayed Invalidation, af-
ter evicting the dirty page from the uncommitted transaction,
the filesystem postpones invalidating the old disk location
until the transaction commits. To address the second issue,
we propose Node Page Pinning. In Node Page Pinning, the
filesystem pins the updated node page until the transaction
commits to prohibit the updated node page from being check-
pointed prematurely.

For Delayed Invalidation and Node Page Pinning, we intro-

duce a new in-memory object, Relocation Record. Relocation
Record holds the information associated with the page evic-
tion. Relocation Record contains the file block ID (inode
number and file offset), the old disk location, and the new
disk location of the file block of the evicted page. With Relo-
cation Record, the filesystem invalidates the old disk location
asynchronously, not when it evicts dirty page but when it
commits the transaction. Each transaction file group main-
tains a set of Relocation Records called the Relocation List.
The filesystem creates the Relocation Record and appends
it to the Relocation List when it evicts the dirty page in the
transaction.

Relocation List:

Relocation List:

i Relocation List:

file block: A
old: 1

Storage: |

new: 8
Bitmap: Bitmap: i Bitmap:
LBA 1: in-use LBA 1: in-use LBA 1: free
LBA 8: free LBA 8: in-use LBA 8: in-use
Node Page: Eviction - Node Page: Commit Node Page:
A->1 1 A->8 i A8
Memory: 3 Memory: E Memory:
L Oa Ji [g] [fa]

Storage: E Storage: |

Figure 4: Delayed Invalidation: LBA 1 is invalidated not when
the page is evicted but when the transaction commits.

Fig. 4 illustrates an example of stealing in exF2FS. The
dirty page of the file block A is mapped to LBA 1 at the
beginning. File block A is evicted to LBA 8. The node page
in memory is updated to map file block A to LBA 8. The block
bitmap for LBA 8 is set. The block bitmap for LBA 1 is not
invalidated at the time of eviction due to Delayed Invalidation.
The filesystem creates the Relocation Record and inserts the
newly created record to the Relocation List. The newly created
Relocation Record contains the file block ID (file block A),
the old (LBA 1) and the new location (LBA 8) of the evicted
block. Since LBA 1 is evicted to the disk, it is removed from
the dirty page list of the associated Transaction File Group.
When the transaction commits, LBA is invalidated and the
updated node page is made durable.

4.3 Commit and Abort in Stealing

When the transaction commits, the filesystem makes the old
location of the evicted page no longer reachable. Before it
starts flushing the dirty pages, the filesystem scans the Relo-
cation List in chronological order and invalidates the old disk
locations of the evicted blocks (Delayed Invalidation). Once
this finishes, it flushes the dirty data pages of the transaction.
After the dirty pages become durable, the filesystem unpins
the node page that has been updated in eviction and inserts
it to the dirty node page list. Then, the filesystem flushes the

USENIX Association

20th USENIX Conference on File and Storage Technologies 351

Dirty pages
List
Relocation
List

Memory @ 5 @

{8,C,0} ' {8,C.0}

{A[1,8],E[10,29],F[11,32]} {A[1,8],E[10,29],F[11,32]}

Node Page

Storage

Tx Start Time

Tx Abort

Figure 5: Stealing and Transaction Abort

dirty node pages. The transaction commits successfully if and
only if the Master Commit Block becomes durable.

When the filesystem aborts the transaction, the filesystem
scans the Relocation List in reverse chronological order. For
each Relocation Record, the filesystem invalidates the new
disk location and reverts the node page in memory to map
the file block to the old disk location. After the node page is
reverted, it is unpinned. Fig. 5 illustrates an example. At the
time of abort, three pages have been evicted: A, E and F. The
old location and the new location of page A corresponds to 1
and 8, respectively. In abort, the filesystem reverts the node
pages for A, E and F to refer to page 1, 10 and 11, respectively,
based upon the Relocation List. It also, invalidates the bitmap
for the new disk locations, LBA 8, LBA 29 and LBA 32.

When the system crashes, Delayed Invalidation may leave
the allocated but unreachable filesystem block. Delayed In-
validation temporarily leaves both the old and the new disk
locations valid, from when the page is evicted until when the
transaction commits. If the system crashes during this period,
the filesystem can be recovered to the state where both old
and new disk locations are valid but where only the old disk
location is mapped to the file. If this happens, the new disk
location needs to be collected through fsck [44] (offline) or
through its online variant [17].

5 Transaction-aware Garbage Collection

We say that the garbage collection conflicts with the trans-
action if the garbage collection module selects a disk block
which is associated with the dirty page of the uncommitted
transaction as a victim for migration.

In this study, we develope a transaction-aware garbage col-
lection technique called Shadow Garbage Collection. The
Shadow Garbage Collection transparently migrates the victim
block associated with the uncommitted transaction without
any side effect to the transaction. F2FS performs the garbage
collection in a transaction-aware manner but with substantial
room for improvement; F2FS aborts all outstanding transac-
tions when the garbage collection conflicts with any of the
uncommitted transactions in the system [79].

5.1 Garbage Collection and the Transaction

The log-structured filesystem performs the garbage collection
either in the foreground or in the background. Background
garbage collection cannot conflict with the transactions since
it runs only when the filesystem is idle. Here, the garbage
collection implicitly denotes foreground garbage collection
unless noted otherwise. The log-structured filesystem per-
forms the garbage collection as follows. (i) First, the filesys-
tem checkpoints the filesystem state (pre-GC checkpoint).
(i) The garbage collection module then selects the victim
segment. (iii) Next, the garbage collection module migrates
the valid blocks in the victim segment to the destination seg-
ment. This updates the associated file mapping to refer to the
new disk location of the victim block. (iv) Finally, the filesys-
tem checkpoints the updated state of the filesystem (post-GC
checkpoint). The garbage collection module repeats step (ii)
and step (iii) until it reclaims enough free segments. Pre-GC
and post-GC checkpoints are essential in any log-structured
filesystem to maintain its consistency against an unexpected
filesystem failure.

In F2FS and a few other log-structured filesystems [38, 39,
77], the garbage collection module uses the page cache to mi-
grate the victim disk block to the new location. In migrating
the victim block, the garbage collection module first checks
if the victim block exists in the page cache. There can be only
one page cache entry for a single disk block. It is not possible
to fetch the old data block into the page cache entry if the asso-
ciated disk block already exists in the page cache. If the page
cache entry for the victim block exists, the garbage collection
module blindly writes the existing page cache entry to the
destination without fetching the victim block from the disk.
In this course, the garbage collection module may write the
dirty page cache entry of the uncommitted transaction to the
destination. After the garbage collection module migrates the
victim disk block to the destination, the associated file map-
ping in the memory is updated to refer to the new disk location.
Once the migration finishes, the garbage collection performs
a checkpoint to make the state of the filesystem durable. As
a result, the updated file mapping that refers to the new disk
location of the victim block (dirty pages of the uncommitted
transaction) becomes durable before the transaction commits.
If the system crashes after the garbage collection finishes but
before the transaction commits, the recovery module recovers
the dirty pages of the uncommitted transaction. The atomicity
of the transaction is then compromised.

5.2 Shadow Garbage Collection

In Shadow Garbage Collection, we reserve a set of page cache
entries for garbage collection. We call this region Shadow
Page Cache. When a victim block is associated with the un-
committed transaction, the garbage collection module uses
Shadow Page Cache instead of generic page cache, to migrate

352 20th USENIX Conference on File and Storage Technologies

USENIX Association

Page cache

File A FileB

Shadow page cache

Ay|Az| B

Active segment

A X 42 X B1

Victim segment

Figure 6: Shadow Garbage Collection: migrating A, A, and
B. All are modified in memory to A}, A} and B], respectively.
Aj and A; are associated with an uncommitted transaction.

the victim block and the associated node block to the destina-
tion. Using the Shadow Page Cache in migrating the victim
block to the destination, the filesystem prohibits the garbage
collection from prematurely persisting the dirty pages of the
uncommitted transaction. Fig. 6 illustrates an example of
Shadow Garbage Collection. The disk block A, A, and B;
are updated in the page cache to A}, A}, and B, respectively.
A1 and A, are being modified by the transaction. The garbage
collection module selects the disk block A, A and B; as
victims. In Shadow Garbage Collection, for migrating A and
A», the garbage collection module fetches A1 and A, (the orig-
inal version before the update) to Shadow Page Cache and
flushes them to the destination. For migrating B, the garbage
collection module uses the generic page cache since it is not
associated with the transaction. Subsequently, it writes B]
(the updated version of By) to the destination segment.

The garbage collection can conflict with the uncommitted
transaction in two ways; (i) the victim block can be associated
with the evicted page by Stealing (type E, Evicted) and (ii) the
victim block can be associated with the cached page (type C,
Cached). When the victim block is associated with the evicted
page, it can correspond to either the original file block before
the update (type EO, Evicted and Old) or the updated file
block (type EN, Evicted and New). When the victim block is
associated with the cached page, the victim block corresponds
to the original file block before the update (type CO, Cached
and Old). Note that the victim block of type CN (Cached,
New) cannot exist.

For each type of victim block, the Shadow Garbage Collec-
tion elaborately applies a different mechanism in migrating
the victim block and the associated node block.

Type CO. When the victim block corresponds to old (O) ver-
sion of the cached block (C) of the uncommitted transaction,
we use the Shadow Page Cache in migrating the victim block
and in storing the updated node block to the new disk location.
In updating and storing the associated node block, the Shadow
Garbage Collection updates the node block read from the disk,
not the node block which has already been in the page cache.
The node block in the page cache may have been updated
since it is read from the disk and may contain transient file

mapping that should not be made durable. After the garbage
collection module finishes migrating both the victim block
and the updated node block, it updates the node page in the
page cache with the new file mapping. When the transaction
aborts or the system crashes, the victim block at the migrated
location can be recovered using the updated node block stored
on the disk. An example of this can be seen in Fig. 7(a). File
block A has been in LBA 1 and is updated in memory to A’.
The disk block LBA 1 is selected as the victim. It is migrated
to LBA 8 with shadow page caching. The associated node
block is read into the Shadow Page Cache and is updated to
map to LBA 8. Then, the updated node page is flushed to
the disk. After both the victim block and the node block are
flushed, the in-memory node block of file block A is updated
to map to LBA 8.

Type EO. When the victim block corresponds to the old
(O) version of the evicted page (E), we use the Shadow Page
Cache in migrating the victim block and in storing the updated
node block to the new disk location. Recall that the evicted
page does not have the associated page cache entry (data
page) and the associated node page is pinned in memory
until the transaction commits due to Node Page Pinning. In
migrating the victim block of type EO, the filesystem migrates
the victim block using the Shadow Page Cache. For the node
block update, we use the on-disk version of the node block as
in the case of migrating the type EO victim block. After the
Shadow Garbage Collection module finishes migrating the
node block to the destination, it updates the node block pinned
in memory with the updated file mapping. An example of this
is illustrated in Fig. 7(b). The dirty page of the uncommitted
transaction was evicted to LBA 4. File block A is migrated
from LBA 1 to LBA 8. Shadow Page Cache is used to migrate
the victim block and the associated node block. The node
block that maps A is updated from "A:1" to "A:8" and flushed
to the disk. The node page that maps the location of the dirty
file block (A’) of the evicted page remains unchanged in the
page cache (A’:4) and is pinned in memory.

Type EN. When the victim block corresponds to the new
(N) version of the evicted page (E), we use the generic page
cache in migrating the victim block to the new disk location.
We can use the generic page cache, not Shadow Page Cache,
in migrating the victim block since the victim block holds
the most recent copy of the file block. The garbage collection
module updates the node page in the page cache with the
new file mapping after it migrates the victim block to the new
location. An example is shown in Fig. 7(c). The updated file
block of the evicted page A’ is migrated from LBA 4 to LBA
8. Here, generic page cache (not Shadow Page Cache) is used
to migrate the victim block. After the migration completes,
the garbage collection module updates the associated node
page in the page cache from "A’:4" to "A’:8".

When the garbage collection migrates the disk block asso-
ciated with the evicted page, the garbage collection updates

USENIX Association

20th USENIX Conference on File and Storage Technologies 353

Memory: Memory: Memory:
Bata pages 2 Node pages Data pages 2 Node pages Data pages Noge pages
AT P A oA A N A" 8]
Al iA: 8l [A] [&] A} iA: 8l AR
LBA 1 8 LBA1 4 8 LBA 1 4 8
Data blocks Node blocks Data blocks Node blocks Data blocks Node blocks

(a) CO (LBA: 1—=8)

(b) EO (LBA: 1=8)

(c) EN (LBA: 4—38)

Figure 7: Shadow Garbage Collection, A: original file block, A”: updated file block. A rectangle with light grey background

denotes the Shadow Page Cache.

the Relocation Record after the migration finishes. When the
victim block is associated with the old disk location and the
new disk location of the evicted page, it updates the old disk
location field and new disk location field of the Relocation
Record, respectively.

In implementing the Shadow Garbage Collection, we use
an existing META_MAPPING object in Linux as the Shadow Page
Cache. META_MAPPING is a special purpose address_space ob-
ject, which is dedicated to cache the filesystem metadata [18].
Exploiting the existing META_MAPPING object as Shadow Page
Cache, Shadow Garbage Collection does not require any
new data structure for Shadow Page Cache in the kernel.
Garbage collection of exF2FS (and also F2FS) reclaims the
free blocks in a segment-granularity. Memory overhead for
Shadow Garbage Collection corresponds to the size of a single
segment, 2MB.

6 Applications with exF2FS

In this section, we explain how applications can exploit the
transactional support from the underlying filesystem.

SQLite : Fig. 8(a) illustrates the implementation of the multi-
file transaction in stock SQLite and in modified SQLite ported
for exF2FS. In the stock SQLite’s multidatabase transaction,
the SQLite separately logs the updates to individual journal
files and logs the global state of the transaction at the master
journal file. In exF2FS, SQLite can implement its multi-file
transaction with a single filesystem transaction eliminating the
need for separately logging the individual database updates
to the journal files.

Compaction in RocksDB: Fig. 8(b) illustrates the com-
paction in stock RocksDB and the compaction in RocksDB
ported for exF2FS. In exF2FS, RocksDB can replace the mul-
tiple flushes of a compaction with a single filesystem transac-
tion. In exF2FS, RocksDB can selectively exclude the LOG file
from compaction transaction. It saves RocksDB from flushing
the updates of the LOG file in making the result of compaction
durable. The LOG file contains debugging information which
is not an essential part of the compaction [21].

// without transaction support
write(/d/mj) ;

// with transaction support

fdatasync (/d/mj) ;
fdatasync (/d) ;
while (/d/db[@]) {

while (/d/db[@])
add_tx_file_ group (tfg,
/d/db[e]) ;

write(/d/log[@]) ;
fdatasync (/d/log[@]) ;
write(/dir/log[@]) ;
fdatasync(/dir/log[@]) ;
write(/dir/db[@]) ;
fdatasync(/dir/db[@]) ; }

start_tx file_ group(tfg);
while (/d/db[@]) {
write(/d/db[@]) ;

}
unlink (/d/mj) ;
fdatasync (/d) ;

commit_tx_file_group(tfg);

(a) Multi-database transaction in SQLite

// without transaction support

write(/d/LOG) ;

while (/d/sst[@]) {
open (/d/newsst[Q]) ;
write(/d/newsst[@]);
fsync(/d/newsst[€]) ;
close(/d/sst [@]); create (/d/newsst [@]);
write (/d/LOG) ; write (/d/newsst[@]);

} write (/d/LOG) ;

fsync (/4) ; }

write (/d/MANIFEST) ;

fsync (/d/MANIFEST) ;

write (/d/LOG) ;

// with transaction support
write (/d/LOG) ;

add_tx_ file_group(tfg,/d);
start_tx file group(tfg);

while (/d/sst[@]) {

commit_tx_file group(tfg);
write (/d/LOG) ;

(b) Compaction in RocksDB

Figure 8: SQLite and RocksDB: with transaction support
from the filesystem

7 Evaluation

Here, we evaluate the transaction feature of exF2FS. We
implement exF2FS in Linux kernel 4.18. exF2FS is com-
pared to three other filesystems: EXT4, F2FS, and TxFS [27].
TxFS [27] is the most recently published transactional filesys-
tem based upon EXT4. TxFS was developed in Linux 3.18.22
and is not stable. For fair comparison, we re-implement only
the atomicity and durability feature of TxFS on Linux 4.18.

Two storage devices were used in our experiment: Samsung
850 PRO [51] and Intel Optane 900P [29]. The 850 PRO and
the Optane renders 1-2 msec and sub 10 usec flush latency,
respectively. We used a machine with an Intel CPU i7-9700K
(3.60GHz, 4 core) and 64GB memory.

354 20th USENIX Conference on File and Storage Technologies

USENIX Association

7.1 SQLite

+*db X *journal ¥ *mj O dir mCP
736 ——— 733
732 12 12481248 732 24
44 481243 data segment
M XXFXKE X x4 731 |+ < 9
272814 12444444 44443 2 730
s KT XXAXKE X4 %K <
< 724 1 04 04 o 729
728 node segment
al 12 4
t Smy 727 | + MCB >+
0 ; R 726) ‘ ‘ ‘
0 10 20 30 40 50 60 0 04 08 12 16 2

Time (msec)

(b) SQLite Transaction in exF2FS

Time (msec)

(a) SQLite Transaction in F2FS

Figure 9: IO trace: A multi-file transaction with three
insert()’s in SQLite: F2FS vs. exF2FS. Record size: 100
Bytes. The number in each mark represents the number of
KB written, Device: Samsung 850 PRO

Block level 10: We examine the raw IO behavior of the
multi-file transaction in vanilla SQLite over F2FS and in
SQLite with a multi-file transaction of exF2FS. Fig. 9(a) is the
IO trace in vanilla SQLite over F2FS. A multi-file transaction
consists of three insert ()’s to three different database files.
In vanilla SQLite, fifteen fdatasync () calls, two filesystem
level checkpoints and a total of 32 write requests to the storage
occur, taking 55 msec to complete a transaction. Fig. 9(b)
illustrates the IO trace of SQLite’s multi-file transaction when
built with the multi-file transaction of exF2FS. There are three
writes: one for the data blocks, one for the node blocks, and
one for the master commit block, and takes 1.6 msec for a
transaction. exF2FS resolves the excessive flush call problem.

EXT4 PERSIST T3 EXT4LS-MVBT E& F2FSPERSIST = F2FSLS-MVBT TXFS exF2FS O
360]
300 -

g 240

< 180

=120
60

0

N D OO
T

K Tx/sec

850 PRO Optane

Figure 10: Transaction Throughput (Mobibench [3]-SQLite,
insert operation), # of databases in a transaction =3, 5,7, 9

Throughput : We test the SQLite performance under the dif-
ferent SQLite journal modes and under different filesystems.
For SQLite journal modes, we use PERSIST mode, and LS-
MVBT [37]. PERSIST mode is the most popular journaling
mode in SQLite. LS-MVBT [37] is the fastest SQLite jour-
naling scheme known to the public. For the filesystem, F2FS,
EXT4, exF2FS and TxFS are used, and Mobibench is used to
generate the workload [3]. We port SQLite to use the transac-
tion of exF2FS and TxFS. The results are shown in Fig. 10.
In insert performance, exF2FS improves the throughput by
as much as 24 x against stock SQLite with PERSIST mode
in F2FS (nine database files in a transaction, 850 PRO).

FS Tput #of | #of | compaction latency (sec)
(KIOPS) | fsync() | cpt'n | Mean | 99.9% [99.99%

F2FS 21.8 6135 | 892 18 153 373
exF2FS 40.8 622 | 622 7 50 51
EXT4 32.9 5873 | 862 9 48 88

Table 2: Throughput, total number of £sync()’s, total number
of compactions, and compaction latency. cpt’n: Compaction

Let us compare the transaction performance of exF2FS
against TxFS. As the storage gets faster, the performance ben-
efit of exF2FS becomes more substantial than that of TXFS. In
850 PRO, SQLite exhibits 10% better performance in exF2FS
than TxFS. In Optane, SQLite exhibits 100% better perfor-
mance in exF2FS. The difference between exF2FS and TxFS
are further elaborated in Section 7.4.

EXT4 PERSIST &G EXT4 LS-MVBT &8 F2FS PERSIST m F2FS LS-MVBT TxFS exF2FSs O
800

600

400

200

Write Vol./Tx(KB)

0

of Files
Figure 11: Write volume per transaction (insert operation),

Number of database files in a transaction = 3,5,7,9

Write Volume: In all six transaction support methods,
exF2FS creates the smallest amount of write (Fig. 11). Com-
pared to F2FS with SQLite with PERSIST mode journaling,
exF2FS with SQLite on the multi-file transaction generates
1/6 of the writes.

7.2 RocksDB Compaction

We found that using the transaction of exF2FS in RocksDB
compaction produces two significant benefits: the perfor-
mance improvement and the ability to handle the large size
transaction. The YCSB benchmark (workload-A) is run for
RocksDB. In this workload, a single compaction of RocksDB
can create up to 13.3 GB of dirty pages with 198 SSTable
files. Filesystems that pin the updated pages of the transaction
in memory cannot perform RocksDB compaction as a trans-
action [27,39,65]. Here, the performance of transaction based
RocksDB over exF2FS is compared with vanilla RocksDB
over stock F2FS. The size of the memtable and the maximum
size of the SSTable are both 64 MB. Key and value size are 23
Bytes and 1KB, respectively. Initially, RocksDB is populated
with 50 M operations (55 GB). Then, YCSB-A is run with 50
M operations.

The performance results are summarized in Table 2.
exF2FS improves YCSB performance by 87% against F2FS:
40.8 KIOPS vs. 21.8 KIOPS. On average, the compaction
latency in exF2FS is 40% of the compaction latency in F2FS:
7 sec vs. 18 sec. The root cause for the performance and the
latency difference is the number of £sync () calls. In F2FS, a
single compaction creates seven £sync()’s on average, while

USENIX Association

20th USENIX Conference on File and Storage Technologies 355

in exF2FS, a single compaction is executed with a single
transaction which is equivalent to one fsync().

- N
D O
o O

—

n

o
T

IS
o o
T

Throughput (Kops/sec)
[os]
o

0 10M 20M 30M 40M 50M
Operations

Figure 12: RocksDB Throughput in exF2FS vs. F2FS, YCSB
workload A, a total of 50 M operations (read:write = 1:1),
window size: 1 sec

We examine the throughput of RocksDB in exF2FS and
F2FS (Fig. 12). The throughput is collected at one second
intervals. Fig. 12 clearly shows that in RocksDB, exF2FS
renders superior throughput behavior to F2FS. In this work-
load, 12% of the compactions are executed with stealing. On
average, each compaction creates 100K dirty pages (400 MB)
and 6K pages (24 MB) are evicted.

7.3 Garbage Collection

400 —— 1 T T T T T

1
» 300 P oo " I i
& 200 F Foreground ﬁ 7 Foreground 7
e 4~ GC starts. X 5 4~ GC starts. 7
fal e
100 - 41 X 3 q
0 1 1 1 1 1t 1 1 1 I I |
10 20 30 40 50 0 20 40 60 80 100 120
Time (min) Time (sec)
(a) 850 PRO (b) Optane

Figure 13: Throughput of multi-file transaction under fore-
ground garbage collection in action (Mobibench [3]-SQLite,
three inserts per transaction, record size = 100Byte)

In F2FS, the transaction aborts when the garbage collec-
tion module selects one of its blocks as a victim block. In
exF2FS, the transaction does not abort. However, the transac-
tion is suspended until the garbage collection finishes when
it encounters foreground garbage collection. Here, we exam-
ine how the garbage collection of exF2FS interferes with the
throughput and latency of the foreground application. We also
examine the throughput of the multi-file transaction (three
inserts). The results are presented in Fig. 13. First, we mark
the time when the foreground garbage collection is triggered.
From then, the foreground garbage collection is triggered
once every hundred transactions on average. With foreground
garbage collection, the performance decreases by about 5%.
Each foreground garbage collection reclaims a single free seg-
ment. With the foreground garbage collection, the tail latency
(@99.9%) of the multi-file transaction has increased from
300 usec to 470 usec in Optane.

7.4 exF2FS vs. TxFS

We examine the detailed behavior of the transaction in exF2FS
and TxFS. We use Mobibench [3] and generate the multi-file
transaction in SQLite (insert()’s to three databases per
transaction, record size: 100 Byte). While far from being
complete, the analysis here provides a useful clue on how the
log-structured filesystem and the journaling filesystem can
fundamentally differ in supporting the transaction.

7.4.1 Convoy and Context Switch Overhead

In this section, we examine the latency of committing a trans-
action in exF2FS and TxFS. In 850 PRO and Optane, the
commit latencies in exF2FS are 80% and 40% of those in
TxFS, respectively. The latency difference between exF2FS
and TxFS becomes more significant as the storage speed in-
creases.

o ~Toonvoy T Thusn S 1 Toonvoy T3 Thiush
g 4 Toma &8 Tepg mm é Toma &8 Tepg mm

> >

o o

c f=

L 2

© 51

- -

TxFS TxFS

(a) Samsung 850 PRO (b) Intel Optane

Figure 14: Latency of multi-file transaction: exF2FS vs. TxFS
(Teonvoy: prepare for the commit, 7y,,,: time to transfer the
blocks in the transaction, Ty,: time to make the blocks
durable, 7,,4: wrap up the commit)

The latency to commit a transaction is partitioned into
four components for detailed analysis: (i) prepare for commit
(Teonvoy), (ii) DMA transfer (Tppa), (iii) flush (T7,,1,) and (iv)
wrap up (7,,4). The details of these are illustrated in Fig. 14.
In exF2FS, the time for preparing a commit (7¢opy0y) includes
preparing the Master Commit Block, constructing the IO com-
mands and dispatching them to the storage. In TxFS, the time
for preparing a commit (7;yuy0y) includes not only the time
for preparing the journal descriptor block, constructing the IO
commands and dispatching them to the storage, but also the
time for writing the unrelated data blocks to the disk, the con-
voy [7]. Teonvoy Overhead is substantial in TXFS accounting for
as much as 50% of the total commit latency (Optane). On the
other hand, it is almost non-existent in exF2FS. This is due
to the compound journaling of EXT4 [71]. EXT4 merges the
updated metadata from multiple file operations into a single
running transaction to increase the throughput of the filesys-
tem journaling. Due to compound journaling, EXT4 can flush
a large amount of unrelated dirty pages in an £sync() [30].

When the transaction is executed with the other metadata
intensive applications, the convoy overhead of compound
journaling becomes far more severe. Here, we examine the

356 20th USENIX Conference on File and Storage Technologies

USENIX Association

40 40
£30 £30
320 320
g g
® 10 L k<t 10

bttt dis b L mw‘\ Ll

25 40 60 80 100 6 20 40 60 80 100
Transactions (KTx) Transactions (KTx)

(a) exF2FS, u=169 usec (b) TxFS, u=5.7 msec

Figure 15: SQLite: Latency of transaction with three inserts in
SQLite, ten varmail threads [43] in the background, Optane,
L average latency

[Filesystems | Write Size [4KB [8KB | 16KB [32KB |

TxFS Write 12GB | 6GB | 2.5GB | 2.5GB
exF2FS Volume 3GB | 2GB | 1.5GB | 1.1GB

Table 3: Write Amplification of Transactional Write: Total
Write Volume in writing 1 GB to a file (allocating write)

transaction latency of exF2FS and TxFS with a metadata
intensive application, varmail benchmark [43], running in the
background. Fig. 15 shows the result. The average transaction
latency of TxFS is 34 x that of exF2FS: 5.7 msec vs. 169usec.

In exF2FS (or in F2FS), the filesystem commits the transac-
tion in its own context. In TXFS (or in EXT4), the filesystem
delegates the journal commit to the JBD thread, and the over-
head of registering the committed blocks for the checkpoint
and the context switch overhead, Ty, is non-negligible. T4
accounts for as much as 10% of the commit latency in TxFS
while it does not exist in exF2FS. Due to the overhead of con-
voy and the context switch inherent in EXT4, exF2FS renders
better transaction performance than TxFS.

7.4.2 Double Write and journal metadata overhead

We examine the write amplification of exF2FS and TxFS. The
transactional write size varies from 4 KB to 32 KB and the
total write volume is examined. Table 3 summarizes the result.
In writing 1 GB with 4 KB atomic write, exF2FS writes 3
GB to the storage while TxFS creates 12 GB. In exF2FS,
a 4 KB transactional write accompanies a 4 KB write for
the node block and a 4 KB write for the Master Commit
Block. In TxFS, a 4 KB transactional write (allocating write)
journals four log blocks (superblock, inode table, data block,
block bitmap), all of which are later checkpointed to their
original locations. A double write overhead compound by the
overhead of page granularity journaling renders a 12x write
amplification in a 4 KB allocating write of TxFS. In exF2FS,
the write amplification is 3 x under the same workload. When
the transaction size is 32 KB, exF2FS and TxFS render 1.1 x
and 2.5 write amplification, respectively. In this experiment,
exF2FS does not perform any garbage collection. If it were
included, it may render a larger write amplification. Unless
the garbage collection amplifies the write volume by more
than 2 x, exF2FS renders less write volume than TxFS.

8 Related Work

Transaction support can be implemented in different layers
of the software stack. TxOS [57] and QuickSilver [61] imple-
ment transaction support as a native kernel service. A trans-
actional filesystem can readily be built using the interface
offered by TxOS [26]. There are several kernel level filesys-
tems that support transaction, such as AdvFS [72], TxFS [27],
Valor [66], Transactional NTFS from Microsoft (TxF) [46],
Failure-atomic msync() [55], and BTRFS [14]. OdeFS [24]
and Inversion [54] are built as a user level filesystem and they
rely on existing DBMS to realize an ACID property of the
filesystem operation. CFS [47]’s crash consistency support
is built on top of the transactional block device, X-FTL [32].
BVSSD [28], MARS [12], TxFlash [58], and Isotope [65]
offer block device level transaction support. Libnvmmio [11]
uses a user level log for its transaction support.

The degree of ACID support comes at the cost of the imple-
mentation complexity. Some works support full ACID (Atom-
icity, Consistency, Isolation and Durability) property [14,27,
46,66]. Some filesystems drop isolation support and support
only ACD [47,55,72]. F2FS drops the durability and supports
only AC in its atomic write [34]. By leaving the isolation
support to the application, exF2FS limits the code changes
to the local filesystem. TxOS requires a few 100K LOC [57].
Limiting the transaction support to the filesystem, TxFS re-
duces the required code changes to one tenth, SK LOC. By
exploiting the atomic write feature of F2FS and excluding
the isolation support, exF2FS achieves its transaction support
with 1.5K LOC.

9 Conclusion

In this work, we successfully address the three major issues
of transaction support in log-structured filesystems: multi-file
support, stealing and garbage collection. With the transac-
tional log-structured filesystem proposed in this work, we
can greatly simplify the application programming and can
substantially improve the application performance in many
popular applications including SQLite, RocksDB, and appli-
cation installation.

Acknowledgements We are deeply indebted to our shepherd,
Peter Macko, for helping shape the final version of this paper.
We are also grateful to the anonymous reviewers for their com-
ments that have greatly improved this paper. We also thank
Seungyong Cheon, Jinsoo Yoo, Sundoo Kim, and Wonjong
Lee for discussions and comments on earlier iterations of this
work. This work was supported by IITP, Korea (grant No.
2018-0-00549 and No. 2018-0-00503), NRF, Korea (grant
No. NRF-2020R1A2C3008525), and Samsung Electronics
(10201209-07867-01).

USENIX Association

20th USENIX Conference on File and Storage Technologies 357

References

(1]

(2]

(3]

(4]

(5]

[6

[}

(7]

(8]

[9

—

[10]

[11]

[12]

http://vimdoc. sourceforge.net/htmldoc/
recover.html.

The manual of maildir. https://web.archive.org/
web/19971012032244/http://www.gmail.org/
gmail-manual-html/man5/maildir.html.

Mobibench.
Mobibench.

https://github.com/ESOS-Lab/

Atul Adya, Barbara Liskov, and Patrick O’Neil. Gen-
eralized isolation level definitions. In Proc. of 16th
International Conference on Data Engineering (ICDE),
2000.

Oana Balmau, Florin Dinu, Willy Zwaenepoel, Karan
Gupta, Ravishankar Chandhiramoorthi, and Diego Di-
dona. SILK: Preventing Latency Spikes in Log-
Structured Merge Key-Value Stores. In Proc. of USENIX
Annual Technical Conference (ATC), 2019.

Matias Bjgrling, Abutalib Aghayev, Hans Holmberg,
Aravind Ramesh, DL Moal, G Ganger, and George
Amvrosiadis. ZNS: Avoiding the Block Interface Tax
for Flash-based SSDs. In Proc. of the 2021 USENIX
Annual Technical Conference (ATC), 2021.

Mike Blasgen, Jim Gray, Mike Mitoma, and Tom Price.
The convoy phenomenon. ACM SIGOPS Operating
Systems Review, 13(2):20-25, 1979.

Jakob Blomer, Carlos Aguado-Sanchez, Predrag Bun-
cic, and Artem Harutyunyan. Distributing LHC ap-
plication software and conditions databases using the
CernVM file system. Journal of Physics: Conference
Series, 331(4), 2011.

Tej Chajed, Frans Kaashoek, Butler Lampson, and Nick-
olai Zeldovich. Verifying concurrent software using
movers in CSPEC. In [3th USENIX Symposium on
Operating Systems Design and Implementation (OSDI),
2018.

Deka Ganesh Chandra. BASE analysis of NoSQL
database. Future Generation Computer Systems, 52:13—
21, 2015.

Jungsik Choi, Jaewan Hong, Youngjin Kwon, and Hwan-
soo Han. Libnvmmio: Reconstructing Software IO Path
with Failure-Atomic Memory-Mapped Interface. In
Proc. of USENIX Annual Technical Conference (ATC),
2020.

Joel Coburn, Trevor Bunker, Meir Schwarz, Rajesh
Gupta, and Steven Swanson. From ARIES to MARS:
Transaction support for next-generation, solid-state

[13]

[14]

[15]

[16]

(17]

(18]

[19]

(20]

(21]

(22]

(23]

[24]

[25]

drives. In Proc. of 24th ACM Symposium on Operating
Systems Principles (SOSP), 2013.

Brian F Cooper, Adam Silberstein, Erwin Tam, Raghu
Ramakrishnan, and Russell Sears. Benchmarking cloud
serving systems with YCSB. In Proc. of the 1st ACM
Symposium On Cloud Computing (SOCC), 2010.

Jonathan Corbet.
November 2009.
361457/.

Supporting transactions in btrfs,
https://lwn.net/Articles/

Anton Kuijsten Cristiano Giuffrida, Calin Iorgulescu
and Andrew S. Tanenbaum. Back to the Future: Fault-
tolerant Live Update with Time-traveling State Transfer.
In Proc. of 27th Large Installation System Administra-
tion Conference (LISA), 2013.

Pia Malkani Daniel Ellard, Jonathan Ledlie and Margo
Seltzer. Passive NFS tracing of email and research work-
loads. In Proc. of the USENIX Conference on File and
Storage Technologies (FAST), 2003.

David Domingo and Sudarsun Kannan. pFSCK: Accel-
erating File System Checking and Repair for Modern
Storage. In Proc. of 19th USENIX Conference on File
and Storage Technologies (FAST "21).

elixir.bootlin.com. Definition of META_MAPPING.
https://elixir.bootlin.com/linux/v4.18/
source/fs/f2fs/f2fs.h#1.1476.

elixir.bootlin.com. ipc/util.c. https://elixir.
bootlin.com/linux/latest/source/ipc/util.
c#L171.

Nick Elprin and Bryan Parno. An Analysis of Database-
Driven Mail Servers. In Proc. of 17th Large Installation
System Administration Conference (LISA), 2003.

Facebook. Rocksdb Compaction. https://github.
com/facebook/rocksdb/wiki/Compaction.

Facebook. RocksDB homepage. http://rocksdb.
org/.

Facebook. Rocksdb MANIFEST. https://github.
com/facebook/rocksdb/wiki/MANIFEST.

Narain H Gehani, Hosagrahar V Jagadish, and
William D Roome. Odefs: A file system interface to an
object-oriented database. In Proc. of 20th International
Conference on Very Large Data Bases (VLDB), 1994.

Tyler Harter, Chris Dragga, Michael Vaughn, Andrea C.
Arpaci-Dusseau, and Remzi H. Arpaci-Dusseau. A file
is not a file: Understanding the I/O behavior of apple
desktop applications. Transactions on Computer Sys-
tems (TOCS), 30(3):10:1-10:39, August 2012.

358 20th USENIX Conference on File and Storage Technologies

USENIX Association

http://vimdoc.sourceforge.net/htmldoc/recover.html
http://vimdoc.sourceforge.net/htmldoc/recover.html
https://web.archive.org/web/19971012032244/http://www.qmail.org/qmail-manual-html/man5/maildir.html
https://web.archive.org/web/19971012032244/http://www.qmail.org/qmail-manual-html/man5/maildir.html
https://web.archive.org/web/19971012032244/http://www.qmail.org/qmail-manual-html/man5/maildir.html
https://github.com/ESOS-Lab/Mobibench
https://github.com/ESOS-Lab/Mobibench
https://lwn.net/Articles/361457/
https://lwn.net/Articles/361457/
https://elixir.bootlin.com/linux/v4.18/source/fs/f2fs/f2fs.h#L1476
https://elixir.bootlin.com/linux/v4.18/source/fs/f2fs/f2fs.h#L1476
https://elixir.bootlin.com/linux/latest/source/ipc/util.c#L171
https://elixir.bootlin.com/linux/latest/source/ipc/util.c#L171
https://elixir.bootlin.com/linux/latest/source/ipc/util.c#L171
https://github.com/facebook/rocksdb/wiki/Compaction
https://github.com/facebook/rocksdb/wiki/Compaction
http://rocksdb.org/
http://rocksdb.org/
https://github.com/facebook/rocksdb/wiki/MANIFEST
https://github.com/facebook/rocksdb/wiki/MANIFEST

[26] Yige Hu, Youngjin Kwon, Vijay Chidambaram, and Em-
mett Witchel. From Crash Consistency to Transactions.
In Proc. of ACM HotOS, 2017.

[27] Yige Hu, Zhiting Zhu, Ian Neal, Youngjin Kwon, Tianyu
Cheng, Vijay Chidambaram, and Emmett Witchel. TxFS
: Leveraging File-System Crash Consistency to Provide
ACID Transactions. In Proc. of USENIX Annual Techni-
cal Conference (ATC), 2018.

[28] Ping Huang, Ke Zhou, Hua Wang, and Chun Hua Li.
BVSSD: Build built-in versioning flash-based solid state
drives. In Proc. of the 5th Annual International Systems
and Storage Conference (SYSTOR), 2012.

[29] intel.com. Intel optane ssd 900p series.
https://www.intel.com/content/www/us/
en/products/memory-storage/solid-state-
drives/consumer-ssds/optane-ssd-9-series/
optane-ssd-900p-series.html.

[30] Daeho Jeong, Youngjae Lee, and Jinsoo Kim. Boosting
Quasi-asynchronous I/O for Better Responsiveness in
Mobile Devices. In Proc. of 13th USENIX Conference
on File and Storage Technologies (FAST), 2015.

[31] Sooman Jeong, Kisung Lee, Seongjin Lee, Seoungbum
Son, and Youjip Won. I/O Stack Optimization for Smart-
phones. In Proc. of USENIX Annual Technical Confer-
ence (ATC), 2013.

[32] Woon-Hak Kang, Sang-Won Lee, Bongki Moon, Gi-
Hwan Oh, and Changwoo Min. X-FTL: transactional
FTL for SQLite databases. In Proc. of ACM SIGMOD
International Conference on Management of Data (SIG-
MOD), 2013.

[33] Dongui Kim, Chanyeol Park, Sang-Won Lee, and Beom-
seok Nam. BoLT: Barrier-optimized LSM-Tree. In
Proc. of the 21st International Middleware Conference
(MIDDLEWARE), 2020.

[34] Jaegeuk Kim. F2FS: support atomic_write feature
for database. https://1kml.org/lkml/2014/9/26/
19.

[35] Jaeguek Kim. f2fs: limit # of inmemory pages.
https://patchwork.kernel.org/project/
linux- fsdevel/patch/20171019021516.65627-
1-jaegeuk@kernel.org/#21076797.

[36] Wook-Hee Kim, Jinwoong Kim, Woongki Baek, Beom-
seok Nam, and Youjip Won. NVWAL: Exploiting
NVRAM in Write-Ahead Logging. In Proc. of 21th
ACM International Conference on Architectural Sup-
port for Programming Languages and Operating Sys-
tems (ASPLOS), 2016.

[37] Wook-Hee Kim, Beomseo Nam, Dongil Park, and You-
jip Won. Resolving Journaling of Journal Anomaly in
Android I/O: Multi-Version B-tree with Lazy Split. In
Proc. of 12th USENIX Conference on File and Storage
Technologies (FAST), 2014.

[38] Ryusuke Konishi, Yoshiji Amagai, Koji Sato, Hisashi Hi-
fumi, Seiji Kihara, and Satoshi Moriai. The Linux imple-
mentation of a log-structured file system. ACM SIGOPS
Operating Systems Review, 40(3):102—-107, 2006.

[39] Changman Lee, Dongho Sim, Jooyoung Hwang, and
Sangyeun Cho. F2FS: A new file system for flash stor-
age. In Proc. of 13th USENIX Conference on File and
Storage Technologies (FAST), 2015.

[40] Wongun Lee, Keonwoo Lee, Hankeun Son, Wookhee
Kim, Beomseok Nam, and Youjip Won. WALDIO: Elim-
inating the Filesystem Journaling in Resolving the Jour-
naling of Journal Anomaly. In Proc. of USENIX Annual
Technical Conference (ATC), 2015.

[41] Henry M Levy and Peter H Lipman. Virtual memory
management in the VAX/VMS operating system. Com-
puter, 15(03):35-41, 1982.

[42] Paul McDougall. Microsoft pulls buggy windows vista
spl files. Information Week, 2008. https://www.
informationweek.com/software/microsoft-
pulls-buggy-windows-vista-spl-files.

[43] Richard McDougall and Jim Mauro. Filebench, 2005.

[44] Marshall Kirk McKusick, Willian N Joy, Samuel J Lef-
fler, and Robert S Fabry. Fsck-The UNIX File System
Check Program. Unix System Manager’s Manual-4.3
BSD Virtual VAX-11 Version, 1986.

[45] Rémy Evard Michail Gomberg and Craig Stacey. A
Comparison of Large-Scale Software Installation Meth-
ods on NT and UNIX. In Proc. of the Large Installa-
tion System Administration of Windows NT Conference,
1998.

[46] Frederic Miller and Agnes Vandome. NTFS. Alpha
Press, 2009.

[47] Changwoo Min, Woon-Hak Kang, Taesoo Kim, Sang-
Won Lee, and Young Ik Eom. Lightweight Application-
Level Crash Consistency on Transactional Flash Stor-
age. In Proc. of USENIX Annual Technical Conference
(ATC), 2015.

[48] Nick Murphy, Mark Tonkelowitz, and Mike Vernal. The
design and implementation of the database file system,
2002.

USENIX Association

20th USENIX Conference on File and Storage Technologies 359

https://www.intel.com/content/www/us/en/products/memory-storage/solid-state-drives/consumer-ssds/optane-ssd-9-series/optane-ssd-900p-series.html
https://www.intel.com/content/www/us/en/products/memory-storage/solid-state-drives/consumer-ssds/optane-ssd-9-series/optane-ssd-900p-series.html
https://www.intel.com/content/www/us/en/products/memory-storage/solid-state-drives/consumer-ssds/optane-ssd-9-series/optane-ssd-900p-series.html
https://www.intel.com/content/www/us/en/products/memory-storage/solid-state-drives/consumer-ssds/optane-ssd-9-series/optane-ssd-900p-series.html
https://lkml.org/lkml/2014/9/26/19
https://lkml.org/lkml/2014/9/26/19
https://patchwork.kernel.org/project/linux-fsdevel/patch/20171019021516.65627-1-jaegeuk@kernel.org/#21076797
https://patchwork.kernel.org/project/linux-fsdevel/patch/20171019021516.65627-1-jaegeuk@kernel.org/#21076797
https://patchwork.kernel.org/project/linux-fsdevel/patch/20171019021516.65627-1-jaegeuk@kernel.org/#21076797
https://www.informationweek.com/software/microsoft-pulls-buggy-windows-vista-sp1-files
https://www.informationweek.com/software/microsoft-pulls-buggy-windows-vista-sp1-files
https://www.informationweek.com/software/microsoft-pulls-buggy-windows-vista-sp1-files

[49]

[50]

[51]

[52]

[53]

[54]

[55]

[56]

[57]

[58]

[59]

mysql.com. Transaction Isolation Levels.
https://dev.mysql.com/doc/refman/8.0/en/
innodb-transaction-isolation-levels.html.

Rebecca Nelson, Atul Shukla, and Cory Smith. Web
Browser Forensics in Google Chrome, Mozilla Firefox,
and the Tor Browser Bundle. In Digital Forensic Educa-
tion, pages 219-241. Springer, 2020.

news.samsung.com. Samsung Electronics leads
consumers into the new era of multi-terabyte
SSDs with Launch of 2-TB 850 PRO and 850
EVO. https://news.samsung.com/us/samsung-
electronics-leads-consumers-into-the-new-
era-of-multi-terabyte-ssds-with-launch-
of-2-tb-850-pro-and-850-evo/.

Gihwan Oh, Chiyoung Seo, Ravi Mayuram, Yang-Suk
Kee, and Sang-Won Lee. SHARE interface in flash
storage for relational and NoSQL databases. In Proc. of
2016 International Conference on Management of Data
(SIGMOD), 2016.

Sehyeon Oh, Wook-Hee Kim, Jihye Seo, Hyeonho Song,
Sam H Noh, and Beomseok Nam. Doubleheader Log-
ging: Eliminating Journal Write Overhead for Mobile
DBMS. In Proc. of 2020 IEEE 36th International Con-
ference on Data Engineering (ICDE), 2020.

Michael A. Olson. The Design and Implementation of
the Inversion File System. In Proc. of USENIX Winter,
1993.

Stan Park, Terence Kelly, and Kai Shen. Failure-atomic
msync () a simple and efficient mechanism for preserv-
ing the integrity of durable data. In Proc. of 8th ACM Eu-
ropean Conference on Computer Systems (EUROSYS),
2013.

Android Police. The Pixel 3 uses Samsung’s
super-fast F2FS file system, October 2018.
https://www.androidpolice.com/2018/10/
10/pixel-3-uses-samsungs-super-fast-f2fs-
file-system/.

Donald E Porter, Owen S Hofmann, Christopher J Ross-
bach, Alexander Benn, and Emmett Witchel. Operating
system transactions. In Proc. of 22nd ACM Symposium
on Operating Systems Principles (SOSP), 2009.

Vijayan Prabhakaran, Thomas L Rodeheffer, and Lidong
Zhou. Transactional Flash. In Proc. of 8th USENIX
Symposium on Operating Systems Design and Imple-
mentation (OSDI), 2008.

Raghu Ramakrishnan and Johannes Gehrke. Database
Management Systems, Chapter 16.7.1 Stealing Frames
and Forcing Pages. McGraw-Hill, 2000.

[60]

[61]

[62]

[63]

[64]

[65]

[66]

[67]

[68]

[69]

[70]

(71]

[72]

Mendel Rosenblum and John K Ousterhout. The design
and implementation of a log-structured file system. ACM
Transactions on Computer Systems (TOCS), 10(1):26—
52,1992,

Frank Schmuck and Jim Wylie. Experience with transac-
tions in QuickSilver. In Proc. of 13th ACM Symposium
on Operating Systems Principles (SOSP), 1991.

Margo I Seltzer. Transaction support in a log-structured
file system. In Proc. of IEEE 9th International Confer-
ence on Data Engineering (ICDE), 1993.

Margo I Seltzer, Keith Bostic, Marshall K McKusick,
Carl Staelin, et al. An Implementation of a Log-
Structured File System for UNIX. In USENIX Winter,
pages 307-326, 1993.

Kai Shen, Stan Park, and Meng Zhu. Journaling of
Journal is (Almost) Free. In Proc. of 12th USENIX
Conference on File and Storage Technologies (FAST),
2014.

Ji-Yong Shin, Mahesh Balakrishnan, Tudor Marian, and
Hakim Weatherspoon. Isotope: Transactional Isolation
for Block Storage. In Proc. of 14th USENIX Conference
on File and Storage Technologies (FAST), 2016.

Richard P. Spillane, Sachin Gaikwad, Manjunath Chinni,
Erez Zadok, and Charles P. Wright. Enabling Transac-
tional File Access via Lightweight Kernel Extensions.
In Proc. of 7th USENIX Conference on File and Storage
Technologies (FAST), 2009.

SQLite.org. Isolation in sqlite. https://www.sqlite.
org/isolation.html.

SQLite.org. Pragma read_uncommit-
ted. https://www.sqlite.org/pragma.
html#pragma_read_uncommitted.

SQLite.org. Pragma statements, 2012.
http://www.sqlite.org/pragma.

html#pragma_journal_mode.

Jan Stender, Bjorn Kolbeck, Mikael Hogqvist, and Felix
Hupfeld. BabuDB: Fast and Efficient File System Meta-
data Storage. In Proc. of International Workshop on
Storage Network Architecture and Parallel I/Os (SNAPI),
2010.

Stephen C Tweedie et al. Journaling the Linux ext2fs
filesystem. In Proc. of Annual Linux Expo, 1998.

Rajat Verma, Anton Ajay Mendez, Stan Park, Sandya S
Mannarswamy, Terence Kelly, and Charles B Morrey III.
Failure-Atomic Updates of Application Data in a Linux
File System. In Proc. of 13th USENIX Conference on
File and Storage Technologies (FAST), 2015.

360 20th USENIX Conference on File and Storage Technologies

USENIX Association

https://dev.mysql.com/doc/refman/8.0/en/innodb-transaction-isolation-levels.html
https://dev.mysql.com/doc/refman/8.0/en/innodb-transaction-isolation-levels.html
https://news.samsung.com/us/samsung-electronics-leads-consumers-into-the-new-era-of-multi-terabyte-ssds-with-launch-of-2-tb-850-pro-and-850-evo/
https://news.samsung.com/us/samsung-electronics-leads-consumers-into-the-new-era-of-multi-terabyte-ssds-with-launch-of-2-tb-850-pro-and-850-evo/
https://news.samsung.com/us/samsung-electronics-leads-consumers-into-the-new-era-of-multi-terabyte-ssds-with-launch-of-2-tb-850-pro-and-850-evo/
https://news.samsung.com/us/samsung-electronics-leads-consumers-into-the-new-era-of-multi-terabyte-ssds-with-launch-of-2-tb-850-pro-and-850-evo/
https://www.androidpolice.com/2018/10/10/pixel-3-uses-samsungs-super-fast-f2fs-file-system/
https://www.androidpolice.com/2018/10/10/pixel-3-uses-samsungs-super-fast-f2fs-file-system/
https://www.androidpolice.com/2018/10/10/pixel-3-uses-samsungs-super-fast-f2fs-file-system/
https://www.sqlite.org/isolation.html
https://www.sqlite.org/isolation.html
https://www.sqlite.org/pragma.html#pragma_read_uncommitted
https://www.sqlite.org/pragma.html#pragma_read_uncommitted
http://www.sqlite.org/pragma.html#pragma_journal_mode
http://www.sqlite.org/pragma.html#pragma_journal_mode

[73] Ingo Weber, Hiroshi Wada, Alan Fekete, Anna Liu, and
Len Bass. Supporting Undoability in Systems Opera-
tions. In 27th Large Installation System Administration
Conference (LISA), 2013.

[74] Sage A Weil, Scott A Brandt, Ethan L Miller, Darrell DE
Long, and Carlos Maltzahn. Ceph: A scalable, high-
performance distributed file system. In Proc. of 7th
USENIX Symposium on Operating Systems Design and
Implementation (OSDI), 2006.

[75] Matthew J Weinstein, Thomas W Page Jr, Brian K
Livezey, and Gerald J Popek. Transactions and synchro-
nization in a distributed operating system. ACM SIGOPS
Operating Systems Review, 19(5):115-126, 1985.

[76] Youjip Won, Sundoo Kim, Juseong Yun, Dam Quang
Tuan, and Jiwon Seo. Dash: Database shadowing for
mobile dbms. In Proc. of 45th International Confer-
ence on Very Large Data Bases (VLDB), 12(7):793-806,
2019.

[77] David Woodhouse. JFFS: The journalling flash file
system. In Proc. of Ottawa Linux Symposium, 2001.

[78] Charles P Wright, Richard Spillane, Gopalan Sivathanu,
and Erez Zadok. Extending ACID semantics to the
file system. ACM Transactions on Storage (TOS), 3(2),
2007.

[79] Chao Yu. f2fs: avoid stucking GC due to atomic
write. https://www.mail-archive.com/linux-
kernel@vger.kernel.org/msg1667312.html.

USENIX Association 20th USENIX Conference on File and Storage Technologies 361

https://www.mail-archive.com/linux-kernel@vger.kernel.org/msg1667312.html
https://www.mail-archive.com/linux-kernel@vger.kernel.org/msg1667312.html

	Introduction
	Background and Motivation
	Multi-file Transaction
	Multi-file Transaction and SQLite
	Log-structured Filesystem, F2FS and Atomic Write

	Design
	Membership-Oriented Transaction Model
	Transaction API's
	Commit and Abort
	Concurrency Control and Isolation

	Stealing in the Filesystem Transaction
	Stealing and the Filesystem
	Delayed Invalidation and Node Page Pinning
	Commit and Abort in Stealing

	Transaction-aware Garbage Collection
	Garbage Collection and the Transaction
	Shadow Garbage Collection

	Applications with exF2FS
	Evaluation
	SQLite
	RocksDB Compaction
	Garbage Collection
	exF2FS vs. TxFS
	Convoy and Context Switch Overhead
	Double Write and journal metadata overhead

	Related Work
	Conclusion

