CachesSifter: Sifting Cache Files for Boosted

Mobile Performance and Lifetime

Yu Liang, Riwei Pan, Tianyu Ren, Yufei Cui, Rachata Ausavarungnirun,
Xianzhang Chen, Changlong Li, Tei-Wei Kuo, and Chun Jason Xue

ERETH KR

City University of Hong Kong

Executive Summary

Problem: Unnecessary writes reduce flash lifetime and system performance
A large part of writes is contributed by cache files
Android systems write all cache files into flash storage
Not all cache files need to be written back for storing persistently

Our goal: To improve both system performance and lifetime of flash storage

CacheSifter: differentiate cache files and treat them according to their reuse
behaviors and main-memory/storage usages

CachesSifter can reduce writes to flash storage more than 60% and thus prolong the
flash lifetime more than 114% and improve write performance under intensive 1/O
workloads more than 18%.

2

Extensive Data Are Written into Flash Every Day!

Total writes of testing users is about 10GB on average and up to 30GB
per day!

Writes could reduce lifetime of flash storagel* and system performance!?

[1] Tao Zhang, Aviad Zuck, Donald E. Porter, and Dan Tsafrir. Apps can quickly destroy your mobile’s flash - why they don’t, and how to keep it that
way (poster). Proceedings of the 17th Annual International Conference on Mobile Systems, Applications, and Services, page 207-221, 2019

[2] Congming Gao, Liang Shi, Mengying Zhao, Chun Jason Xue, Kaijie Wu, and Edwin H.-M. Sha. Exploiting parallelism in i/o scheduling for access
conflict minimization in flash-based solid state drives. In 30th Symposium on Mass Storage Systems and Technologies (MSST), pages 1-11, 2014.

(7))
()
=
=
Q
._IH
D
e
(@)
M
@)
(-
@)
(7))
i
@)
—

» Cache file writes account for a large part of total writes

@ cache m@mothers

I‘IHHHHHH;HH HDDHHﬂH

a3l
1saJaluId
[rewo
pagAibuy
al101SAe|d
Anods
HIOUIMS
lagn
ysim
Teyoa\

“OApued

alquoz
X0Jall
awouyd
SENINYN
300Qgade
NOIMIL
9gNINOA
yueg
dein

Dcache @others

H = =

=

a3t
1Saloiuld
[rewo
pagAibuy
al01SAe|d
Anods
HDOUIMS
adn
ysim
1eyoa/W\
OApued
alquoz
X0Jall
awoJiy)d
JaNIML
)00gade
NOIMIL
agnINoA
yueg

<

n
&)
=
=
o
I
()
L
O
M
O
(T
@
n
i
@)
—

D cache @mothers

HHHHHHQHH “n. Nf.| B3°cB2n

|

a3l
1salauld
[rews
pagAibuy
alo1sAe|d
Anods
HOUIMS
13dnN
USIM
1eyoa\
‘DApue)d
|lquoz
X0}l
awoliyd
Jomm]
300(92e
NOIMIL
aqnINoA

ues

» Many cache file writes are produced within 2 hours

den

Lots of Cache File Writes

» Cache file writes account for a large part of total writes

P
003000 @cache @others
~—2000
IR I
o, N BAOMO. alle . o
L BELSSELS80ESE522ERER
= “=05x95SlEECESDELgEGeh
><:3|—Q|—5LLN8§ (%U)%g c
L a< o

Cache file writes represent an average of 64%
of total writes.

Lots of Cache File Writes

» Too many cache file writes each day

P
003000 @ cache @others
~—2000
Roo [, 0. 0o L] I
o, N BAOMO. alle . o
L BELSSELS80ESE522ERER
= “=05x95SlEECESDELgEGeh
>c3|—o|—6|.LN8; (%U)%g c
L a< o

According to our survey, cache file writes are 6.4GB on
average and up to 19.2GB each day.

Greatly hurt lifetime of flash storage!

7

Lots of Cache File Writes

» Many 1I/O operations for cache file writes in 2 hours

6.4GB on average and
up to 19.2GB each day

2000 N\ _
2
Z1500 mcache @others
]
1000 T
S 1.7 million/2h
O 500 H

oc o x 5 0 X000 Rg<E5E LT = O
= mSég'Eg.gg%8§DEgﬁboﬁk

>
gl—%l—Ou_NO; (%U)c_ug E
L

QO

o
Could degrade system performance, especially under extensive I/0O workloads!

Source of Massive Cached Data

» Android performance optimization
* Android systems cache all data to achieve high re-access performance

Applications
v Reguest

Main memory
$ 10

Flash storage

» Related works:
« Store cache data in main memory®!
— Fast access and reduced writes if memory is sufficient
— Memory is limited in practice
« Handle cache files differentlyt“!
— Still requires a solution

[3] Ngoan Nguyn. Ram disk: an app to mount a folder directly into the ram. https://apkpure.com/ramdisk/com.yz.ramdisk, 2019.

[4] Yu Liang, Jinheng Li, Xianzhang Chen, Rachata Ausavarungnirun, Riwei Pan, Tei-Wei Kuo, and Chun Jason Xue. Differentiating cache files for fine-grain
management to improve mobile performance and lifetime. In 12th USENIX Workshop on Hot Topics in Storage and File Systems (HotStorage 20), July 2020.

Observation: Cache Files Are Not All The Same

Android System

&AM \
S
Flash
Cache files
- /

10

Observation: Cache Files Are Not All The Same

Android System
w @AM j \
Get read once and N
- not used again
J Flash

11

Observation: Cache Files Are Not All The Same

Android System

(oram 5 N

. Flash

12

Observation: Cache Files Are Not All The Same

Android System

(oram 5 N B
*

Reuse happens Flash

after long time
N /

13

Differentiating File Types

» Type 1. Read once and not used again
« Burn-after-read files (BAR)
« Strategy: Do not need to cache these files

» Type 2: Frequent reuse that happen quickly
e Transient files
« Strategy: Cache them in DRAM - Benefit from the low latency

» Type 3: Reuse happens long after the first touch
* Long-living files
* Do not benefit from DRAM’s low latency
o Strategy: Put in storage - Reduce the transfer over the network

14

CacheSifter’'s Goal

» Categorize files into three types
« Fast and application-transparent

» Manage files based on their types
 Maximize DRAM’s utility

» Adapt to changes in user behaviors
 Recategorize files as needed

» Ensure safety when deleting files

15

Framework of CacheSifter

» Lightweight ML-based categorization
* Quickly and adaptively categorization

CacheSifter

@AM

Categorization

engine ~—"
t Flash

Cache files

16

Framework of CacheSifter

» BAR file management
o Delete them before they are written back to flash

CacheSifter =
/E;;Ahﬂ

Categorization

Cache files

Flash

17

Framework of CacheSifter

> BAR file re-access

(-
Re-access BAR [Applications]

CacheSifter &
/E;;Ahﬂ

Categorization

Flash

Cache files

18

Framework of CacheSifter

» Transient file management

(.
Re-access BAR [Applications]

| CacheSifter &
@AM (In-memory file Svster§;7 \“

Networ ino //
B g N
Cate'gorization | LRU-like lists /\x/’b(i/
engine —
\) §
non-swappable)
@ € ing Flash

Cache files

19

Framework of CacheSifter

» Transient file re-access in memory

(.
Re-access BAR [Applications]
Re-access Transient
CacheSifter ¥ &
@AM @-memory file syster§/ \“
Networ ino A4
Categorizati T LRU-like lists /<°\7
a e'gor|za ion /\ﬁ/ —
engine S
~) o
voo | non-swappable A
Oogs J
@ € ing Flash
Cache files
_ / |

20

Framework of CacheSifter

» Transient file re-access after deleting

Re-access Transient .
Re-access BAR L Sippiications]

Re-access Transient

CacheSifter ‘ =
@AM @-memory file syster§/ \“
= Ino| Pt
Cate'gorization — LRU-like lists ,\(/@(;/ J—
engine —
~— , o
. non-swappable y A
@ data& n Flash
Cache files ©
K / ~

21

Framework of CacheSifter

» Long-living file management

Re-access Transient (
Re-access BAR ® [

Applications]

Re-access Transient

CacheSifter ! &
@AM @-memory file syster§/A \“
Networ /./,c"/
Cate'gorization —] LRU-like lists /\(/qfa/ R
engine e
) T o] 1 | 2
non-swappable P 7
_ =) =
' 2 || Flash
Cache files - =
—) Default LRU lists %
K data & ino W.nmng &3
) S~~~

Framework of CacheSifter

» Long-living file re-access

Re-access Transient (Aoplications
Re-access BAR L PP

S

Re-access Long-

Re-access Transient

CacheSifter v

&AM @-memory file syster§/
Networ /,/,c
Categorization —{ LRU-like lists /\@Qi/

engine ~ /
non-swappable Q

[] & Y,

Cache files -
Default LRU lists

living

}

—

N

K data & ino

Cong |

)
< | &
ST

=

(V5]

Q

=

i

(7p]
ving[=

N/

23

| Flash

Framework of CacheSifter

» Long-living file re-access

Re-access Transient (
Re-access BAR @ L

Applications

e/

Re-access Long-

Re-access Transient

v

CacheSifter
@AM
Networ
Categorization
engine
Cache files

Safe list mechanism K

~\

n-memory file syster§/
Q

L
LRU-like lists Qid/

/|

non-swappable Q

/

living

}

==

N

Default LRU lists

data & ino

Cong'|

S
& | 5
| B
>
(Vp)
Q
4
<
(%))
ving[=
N/

| Flash

Experimental Setup

» Real smartphones

. P9

* P9 equipped with an ARM Cortex-A72 CPU, 32GB internal flash memory and 3GB DRAM
running Android 7.0 with Linux kernel version 4.1.18.

e Mate30

* Mate30 equipped with an ARM Cortex-A76 CPU, 128GB internal flash memory and 8GB
DRAM running Android 10 with Linux kernel version 4.14.116.

» Comparisons
» Default Android
* High-accuracy model
* High-recall model

25

Evaluation Results: Cache Files’ Writes

» Reduction in cache file writes and total writes to flash storage.

high-recall model on smartphone P9

g 100
o 80
©
X 60
S 40
S 20
=)
S
Q 0
o + < N
& Q & X X @ @ X @ K o o > >
000 $&\ N \@‘}o Q/’bé ‘@O \o((\ &\30 o\\\?, {\O\ é(fb §\ «@ &$® ((rg’ OOC)
RN & S 9@ 19§ e & o A
A < o
«° O,b(\ \é(’b Q'\&$ «é\/
O >
<

total count reduction m cache count reduction © total size reduction m cache size reduction

Normalized reduction ratio of cache files’ writes and total 1/0s.
26

Evaluation Results: Cache Files’ Writes

» Reduction in cache file writes and total writes to flash storage.

high-recall model on smartphone P9

g 100
o 80
©
X 60
S 40
S 20
=)
S
Q 0
o + < N
& Q & X X @ @ X @ K o o > >
000 $&\ N \@‘}o Q/’bé ‘@O \o((\ &\30 o\\\?, {\O\ é(fb §\ «@ &$® ((rg’ OOC)
RN & S 9@ 19§ e & o A
A < o
«° O,b(\ \é(’b Q'\&$ «é\/
O >
<

total count reduction m cache count reduction © total size reduction m cache size reduction

Normalized reduction ratio of cache files’ writes and total 1/0s.
27

Evaluation Results: Cache Files’ Writes

» Reduction in cache file writes and total writes to flash storage.

high-recall model on smartphone P9

|
o
o

Reduciton Ratio (%)

total count reduction m cache count reduction © total size redudtion = cache size reduction

Chrome, Facebook, TikTok
Normalized reduction ratio of cache files’ writes and total 1/Os.
28

Evaluation Results: Cache Files’ Writes

» Reduction in cache file writes and total writes to flash storage.

high-recall model on smartphone P9

g 100
o 80
IS
£ 60
5 40
S 20
-
©
() 0
o + < \
& Q F & & W @ X @ K o o & 2
RN & S 9@ 19§ e & o A
< < o
< o & &
O >
4

total count reduction m cache count reduction © total size reduction m cache size reduction

Normalized reduction ratio of cache files’ writes and total 1/0s.
29

Evaluation Results: Cache Files’ Writes

» Reduction in cache file writes and total writes to flash storage.

high-recall model on smartphone P9

g 100
o 80
©
X 60
§ 40
S 20
=)
i®]
Q 0
o + < N
& Q. F XY @ @ X e K O 10 W ¢
S & & & S S & & &° & /\§ ,@® <<f§<’ K
<<’b0® 1\ < o\ S 9 °b§ /\/O ' <O «? é\ §\O /\/6\
P \{g N
oY«

<<’b
@unt reduction mcache coun'@) total size reduction = cache size reduction

I/O number reduction. _ _ _ _
Normalized reduction ratio of cache files’ writes and total 1/0s.

30

Evaluation Results: Cache Files’ Writes

» Reduction in cache file writes and total writes to flash storage.

high-recall model on smartphone P9

g 100

o 80

©

X 60

§ 40

S 20

=)

S

Q 0

m .
Oo\l‘) ,\{\@& @er \O-\. @(\‘Q ‘ &0‘3: ((\Q) \SQQ \}é(\ ‘0\® < {b&\ g\O &O @‘b (g/"b 00\\
F &S © Ly F LSS NSRS

<« « TN TS
® XK >

S
QU’
total count reduction m cache count reducti total size reduction m cache size reduction

_ _ _ , _ Write amount reduction
Normalized reduction ratio of cache files’ writes and total 1/0s.

31

Evaluation Results: Cache Files’ Writes

» Reduction in cache file writes and total writes to flash storage.

high-recall model on smartphone P9

gloo
= 80 60%
Aot b il Gk by Gl BEel B B b G B N R &
5 40
S 20
o
& 0
S Q + Q & o0
»&foxo@i‘/\oé‘&&v & §
0?30 D N A Ni ‘(60 o\{'\ Ac} /\,06\ C}Q((<<6 q> &"\&$ (§< \°
« Sig NS
SN
<
total size reduction m cache size reduction

Cache file write can be much reduced.

Total write reduction varies by application.
32

Evaluation Results: Cache Files’ Writes

» Reduction in cache file writes and total writes to flash storage.

Cache ratio is 95% hlgh recaII model on smartphone P9
< 100 S —
‘9’ 80
<
S 60
5 40
S 20
o
2 0
¥ &R G X @ Q Q0 10 3§ P
& ¢° @’06 & & T F @O F S
& N < ’\o“@&'\POQ\Q@/\'\AOs\
< & A
@) SRR R
<<’b
total size reduction m cache size reduction

1) Cache ratio varies by application.

e Cache ratio = cache writes/ total writes
33

Evaluation Results: Cache Files’ Writes

» Reduction in cache file writes and total writes to flash storage.

stand-alone game

high-recall model on smartphone P9 Small cache files

< 100 ~\Ratioi1s 729
o 80
©
X 60
5 40
S 20
o
& 0
o Q F A& @ QO o 0 @ & o
& S&\ W & ‘%{\O & &\\P o“\? é‘{b gk & &
& ° < & S L <<'b NPEQI
< C)(bo Q’b .&$ é\/
0\\ Q\ ’b«
- - . - Q
total size reduction m cache size reduction

1) Cache ratio varies by application.

2) Variation between different tests
34

Evaluation Results: Cache Files’ Writes

» Reduction in cache file writes and total writes to flash storage.

Variation between

high-recall model on smartphone P Jifferent tests

< 100

S

o 80

T

X 60

5 40

S 20

S

o 0

o X \ 40 ©

o Q 3 N\ (%}
SRS q& & & &

. "\ &
(boéo ,&& (<\\ "% && Os(\\ 19 &3 19) DA Q(b& &6 4OQ 6\
< & A
@) AR Q'b«
total size reduction m cache size reduction

Cannot eliminate the variation by replaying trace

because we can not obtain precise traces.
35

Evaluation Results: Cache Files’ Writes

» Reduction in cache file writes and total writes to flash storage.

Total writes is reduced by
53% on average

80
60
40
20

high-recall model on smartphone P9

|
o
o

Reduciton Ratio (%)

(@)

2@ XS {\‘0 ¢ ® & Q 40 o P P O
éo «$’\(\' @ ¢ \«K Q/’b && ‘(\\0((\ &\5 0\\5 o((@ \é({b) QD . & Q ~\O\‘f
& G @ YO <<'1> QA0 S
< o SR
O AR) ’b«
total size reduction m cache size reduction

Lifetime is inversely proportional to the total writes.

Lifetime can be improved by an average of 113.7% (1/(1-53.2%)-1).
36

Evaluation Results: Cache Files’ Writes

» Reduction in cache file writes and total writes to flash storage.

high-recall model on smartphone P9

g 100 numbers are reduced by 48% and 88% on average
o 80
T
$ 60
5 40
©
g 0
X Q F & @ Q QO) o fb & o
Q})o /\&\"’ W & & /\@0 S &&3 <F o@v & g\ & ((RS
S & S ° 0& 190 & O <<Q> é\ 29 /\/6\
« Sig NEPSIPS
SN
N
total count reduction m cache count reduction

Improve system performance due to the reduction on I/O competition,
especially under extensive 1/0 workloads.

37

Evaluation Results: Overhead

» Overhead of CacheSifter.

 Network overhead
» Redownload because of misclassification

Six types of misclassifications : “BR->TR,LL", “TR->BR,LL", and “LL->BR,TR".

“TR->BR” and “LL->BR,TR"” could induce re-download.

1) “LL->TR” case has a small possibility to re-download (lower bound)

2) Other cases have a large possibility to re-download (upper bound)

38

Evaluation Results: Overhead

» Overhead of CacheSifter.
 Network overhead

« Redownload because of misclassification

[ERN
o

Redownload ratio (%)
O N M OO
/'{ z
| |

m high-recall lower bound
high-accuracy lower bound

m high-recall upper bound
m high-accuracy upper bou

39

Evaluation Results: Overhead

» Overhead of CacheSifter.

 Network overhead
» Redownload because of misclassification

< 10
S . Smaller than 10%
o
: I
£ -DLIlHI
@
S 2
AN T . | | -
o N < N .
8 QOO \\@ @er) é\0+ Q/(b&(\ ’ &O KO ((\Q) \\:}QQ K\)(;Q (60\0
xr & S < S & 49
< 0@0
m high-recall lower bound m high-recall upper bound

@ high-accuracy lower bound m high-accuracy upper bound

40

Evaluation Results: Overhead

» Overhead of CacheSifter

« Memory overhead
» For categorization: 492KB
* For maintaining Transient files: 10MB 12 5MB DRAM
* For ML inference: 2MB

« CPU time overhead
» Training/retraining
— 20h-data training per day on PC
» Categorization
— 82ms out of 10s on average 84ms out of 10s CPU time

 Manage cache files in memory
— list move/insert operations
— 1.9ms out of 10s on average

41

Executive Summary

Problem: Unnecessary writes reduce flash lifetime and system performance
A large part of writes is contributed by cache files
Android systems write all cache files into flash storage
Not all cache files need to be written back for storing persistently

Our goal: To improve both system performance and lifetime of flash storage

CacheSifter: differentiate cache files and treat them according to their reuse
behaviors and main-memory/storage usages

CachesSifter can reduce writes to flash storage more than 60% and thus prolong the
flash lifetime more than 114% and improve write performance under intensive 1/O
workloads more than 18%.

42

Thank you!
yliang22@cityu.edu.hk

CachesSifter: Sifting Cache Files for Boosted

Mobile Performance and Lifetime

Yu Liang, Riwei Pan, Tianyu Ren, Yufei Cui, Rachata Ausavarungnirun,
Xianzhang Chen, Changlong Li, Tei-Wei Kuo, and Chun Jason Xue

ERETH KR

City University of Hong Kong

	CacheSifter: Sifting Cache Files for Boosted Mobile Performance and Lifetime
	幻灯片编号 2
	Extensive Data Are Written into Flash Every Day!
	Lots of Cache File Writes
	Lots of Cache File Writes
	Lots of Cache File Writes
	Lots of Cache File Writes
	Lots of Cache File Writes
	Source of Massive Cached Data
	Observation: Cache Files Are Not All The Same
	Observation: Cache Files Are Not All The Same
	Observation: Cache Files Are Not All The Same
	Observation: Cache Files Are Not All The Same
	Differentiating File Types
	CacheSifter’s Goal
	Framework of CacheSifter
	Framework of CacheSifter
	Framework of CacheSifter
	Framework of CacheSifter
	Framework of CacheSifter
	Framework of CacheSifter
	Framework of CacheSifter
	Framework of CacheSifter
	Framework of CacheSifter
	 Experimental Setup
	 Evaluation Results: Cache Files’ Writes
	 Evaluation Results: Cache Files’ Writes
	 Evaluation Results: Cache Files’ Writes
	 Evaluation Results: Cache Files’ Writes
	 Evaluation Results: Cache Files’ Writes
	 Evaluation Results: Cache Files’ Writes
	 Evaluation Results: Cache Files’ Writes
	 Evaluation Results: Cache Files’ Writes
	 Evaluation Results: Cache Files’ Writes
	 Evaluation Results: Cache Files’ Writes
	 Evaluation Results: Cache Files’ Writes
	 Evaluation Results: Cache Files’ Writes
	 Evaluation Results: Overhead
	 Evaluation Results: Overhead
	 Evaluation Results: Overhead
	 Evaluation Results: Overhead
	幻灯片编号 42
	CacheSifter: Sifting Cache Files for Boosted Mobile Performance and Lifetime

