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Executive Summary

Problem: Unnecessary writes reduce flash lifetime and system performance
A large part of writes is contributed by cache files
Android systems write all cache files into flash storage
Not all cache files need to be written back for storing persistently

Our goal: To improve both system performance and lifetime of flash storage

CacheSifter: differentiate cache files and treat them according to their reuse
behaviors and main-memory/storage usages

CachesSifter can reduce writes to flash storage more than 60% and thus prolong the
flash lifetime more than 114% and improve write performance under intensive 1/O
workloads more than 18%.
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Extensive Data Are Written into Flash Every Day!

Total writes of testing users is about 10GB on average and up to 30GB
per day!

Writes could reduce lifetime of flash storagel* and system performance!?

[1] Tao Zhang, Aviad Zuck, Donald E. Porter, and Dan Tsafrir. Apps can quickly destroy your mobile’s flash - why they don’t, and how to keep it that
way (poster). Proceedings of the 17th Annual International Conference on Mobile Systems, Applications, and Services, page 207-221, 2019

[2] Congming Gao, Liang Shi, Mengying Zhao, Chun Jason Xue, Kaijie Wu, and Edwin H.-M. Sha. Exploiting parallelism in i/o scheduling for access
conflict minimization in flash-based solid state drives. In 30th Symposium on Mass Storage Systems and Technologies (MSST), pages 1-11, 2014.
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» Cache file writes account for a large part of total writes
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» Many cache file writes are produced within 2 hours
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Lots of Cache File Writes

» Cache file writes account for a large part of total writes
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Cache file writes represent an average of 64%
of total writes.



Lots of Cache File Writes

» Too many cache file writes each day
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According to our survey, cache file writes are 6.4GB on
average and up to 19.2GB each day.

Greatly hurt lifetime of flash storage!
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Lots of Cache File Writes

» Many 1I/O operations for cache file writes in 2 hours

6.4GB on average and
up to 19.2GB each day
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Could degrade system performance, especially under extensive I/0O workloads!



Source of Massive Cached Data

» Android performance optimization
* Android systems cache all data to achieve high re-access performance

Applications
v Reguest

Main memory
$ 10

Flash storage

» Related works:
« Store cache data in main memory®!
— Fast access and reduced writes if memory is sufficient
— Memory is limited in practice
« Handle cache files differentlyt“!
— Still requires a solution

[3] Ngoan Nguyn. Ram disk: an app to mount a folder directly into the ram. https://apkpure.com/ramdisk/com.yz.ramdisk, 2019.

[4] Yu Liang, Jinheng Li, Xianzhang Chen, Rachata Ausavarungnirun, Riwei Pan, Tei-Wei Kuo, and Chun Jason Xue. Differentiating cache files for fine-grain
management to improve mobile performance and lifetime. In 12th USENIX Workshop on Hot Topics in Storage and File Systems (HotStorage 20), July 2020.



Observation: Cache Files Are Not All The Same

Android System

&AM \
S
Flash
Cache files
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Observation: Cache Files Are Not All The Same

Android System
w @AM j \
Get read once and N
- not used again
J Flash
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Observation: Cache Files Are Not All The Same

Android System

(oram 5 N

. Flash
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Observation: Cache Files Are Not All The Same

Android System
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Differentiating File Types

» Type 1. Read once and not used again
« Burn-after-read files (BAR)
« Strategy: Do not need to cache these files

» Type 2: Frequent reuse that happen quickly
e Transient files
« Strategy: Cache them in DRAM - Benefit from the low latency

» Type 3: Reuse happens long after the first touch
* Long-living files
* Do not benefit from DRAM’s low latency
o Strategy: Put in storage - Reduce the transfer over the network
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CacheSifter’'s Goal

» Categorize files into three types
« Fast and application-transparent

» Manage files based on their types
 Maximize DRAM’s utility

» Adapt to changes in user behaviors
 Recategorize files as needed

» Ensure safety when deleting files
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Framework of CacheSifter

» Lightweight ML-based categorization
* Quickly and adaptively categorization

CacheSifter

@AM

Categorization

engine ~—"
t Flash

Cache files
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Framework of CacheSifter

» BAR file management
o Delete them before they are written back to flash

CacheSifter =
/E;;Ahﬂ

Categorization

Cache files

Flash
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Framework of CacheSifter

> BAR file re-access

( -
Re-access BAR [ Applications ]

CacheSifter &
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Categorization

Flash

Cache files
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Framework of CacheSifter

» Transient file management

( .
Re-access BAR [ Applications ]
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Framework of CacheSifter

» Transient file re-access in memory
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Framework of CacheSifter

» Transient file re-access after deleting

Re-access Transient .
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Re-access Transient
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Framework of CacheSifter

» Long-living file management
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Framework of CacheSifter

» Long-living file re-access
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Framework of CacheSifter

» Long-living file re-access
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Experimental Setup

» Real smartphones

. P9

* P9 equipped with an ARM Cortex-A72 CPU, 32GB internal flash memory and 3GB DRAM
running Android 7.0 with Linux kernel version 4.1.18.

e Mate30

* Mate30 equipped with an ARM Cortex-A76 CPU, 128GB internal flash memory and 8GB
DRAM running Android 10 with Linux kernel version 4.14.116.

» Comparisons
» Default Android
* High-accuracy model
* High-recall model

25



Evaluation Results: Cache Files’ Writes

» Reduction in cache file writes and total writes to flash storage.

high-recall model on smartphone P9
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Normalized reduction ratio of cache files’ writes and total 1/0s.
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Evaluation Results: Cache Files’ Writes

» Reduction in cache file writes and total writes to flash storage.

high-recall model on smartphone P9
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Evaluation Results: Cache Files’ Writes

» Reduction in cache file writes and total writes to flash storage.

high-recall model on smartphone P9
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Chrome, Facebook, TikTok
Normalized reduction ratio of cache files’ writes and total 1/Os.
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Evaluation Results: Cache Files’ Writes

» Reduction in cache file writes and total writes to flash storage.

high-recall model on smartphone P9
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Evaluation Results: Cache Files’ Writes

» Reduction in cache file writes and total writes to flash storage.

high-recall model on smartphone P9
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Evaluation Results: Cache Files’ Writes

» Reduction in cache file writes and total writes to flash storage.

high-recall model on smartphone P9
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Evaluation Results: Cache Files’ Writes

» Reduction in cache file writes and total writes to flash storage.

high-recall model on smartphone P9
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Cache file write can be much reduced.

Total write reduction varies by application.
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Evaluation Results: Cache Files’ Writes

» Reduction in cache file writes and total writes to flash storage.

Cache ratio is 95% hlgh recaII model on smartphone P9
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1) Cache ratio varies by application.

e Cache ratio = cache writes/ total writes
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Evaluation Results: Cache Files’ Writes

» Reduction in cache file writes and total writes to flash storage.

stand-alone game

high-recall model on smartphone P9 Small cache files
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1) Cache ratio varies by application.

2) Variation between different tests
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Evaluation Results: Cache Files’ Writes

» Reduction in cache file writes and total writes to flash storage.

Variation between

high-recall model on smartphone P Jifferent tests
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Cannot eliminate the variation by replaying trace

because we can not obtain precise traces.
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Evaluation Results: Cache Files’ Writes

» Reduction in cache file writes and total writes to flash storage.

Total writes is reduced by
53% on average
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Lifetime is inversely proportional to the total writes.

Lifetime can be improved by an average of 113.7% (1/(1-53.2%)-1).
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Evaluation Results: Cache Files’ Writes

» Reduction in cache file writes and total writes to flash storage.

high-recall model on smartphone P9
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Improve system performance due to the reduction on I/O competition,
especially under extensive 1/0 workloads.
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Evaluation Results: Overhead

» Overhead of CacheSifter.

 Network overhead
» Redownload because of misclassification

Six types of misclassifications : “BR->TR,LL", “TR->BR,LL", and “LL->BR,TR".

“TR->BR” and “LL->BR,TR"” could induce re-download.

1) “LL->TR” case has a small possibility to re-download (lower bound)

2) Other cases have a large possibility to re-download (upper bound)
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Evaluation Results: Overhead

» Overhead of CacheSifter.
 Network overhead

« Redownload because of misclassification
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Evaluation Results: Overhead

» Overhead of CacheSifter.

 Network overhead
» Redownload because of misclassification
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Evaluation Results: Overhead

» Overhead of CacheSifter

« Memory overhead
» For categorization: 492KB
* For maintaining Transient files: 10MB 12 5MB DRAM
* For ML inference: 2MB

« CPU time overhead
» Training/retraining
— 20h-data training per day on PC
» Categorization
— 82ms out of 10s on average 84ms out of 10s CPU time

 Manage cache files in memory
— list move/insert operations
— 1.9ms out of 10s on average
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Executive Summary

Problem: Unnecessary writes reduce flash lifetime and system performance
A large part of writes is contributed by cache files
Android systems write all cache files into flash storage
Not all cache files need to be written back for storing persistently

Our goal: To improve both system performance and lifetime of flash storage

CacheSifter: differentiate cache files and treat them according to their reuse
behaviors and main-memory/storage usages

CachesSifter can reduce writes to flash storage more than 60% and thus prolong the
flash lifetime more than 114% and improve write performance under intensive 1/O
workloads more than 18%.
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