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In-Memory Key-Value Caches are Crucial
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A Cache Server is Usually Multi-Tenant

Consolidated instances
Contention -> regulation required



A Cache Server is Usually Multi-Tenant

Consolidated instances
Contention -> regulation required

Example sharing policies

resource limit based on price tier,
QoS
proportional sharing, ...



Persistent Memory for In-Memory KV Caches

Persistent Memory (PMEM)
® Intel Optane DC PMM (byte-addressable, memory bus, comparable performance to DRAM)
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Persistent Memory for In-Memory KV Caches

Persistent Memory (PMEM)

® Intel Optane DC PMM (byte-addressable, memory bus, comparable performance to DRAM)

Appealing building blocks for in-mem KV caches
® Large capacity -> high hit rate
® |ow cost per byte -> cheap, scale

® Energy-efficiency -> operational cost
°

R

Memcached
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Challenges: Multi-tenancy over PMEM
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Challenges: Multi-tenancy over PMEM

(QO Can we not regulate PM access?
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Challenges: Multi-tenancy over PMEM

Lessons

e We must regulate PMEM access; small PMEM traffic can have a big effect
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Collocate 1GB/s 64B writes
Device Max BW: 14 GB/s

2.7x
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Challenges: Multi-tenancy over PMEM

Lessons

e We must regulate PMEM access; small PMEM traffic can have a big effect

e We need new PMEM sharing mechanisms; existing DRAM/storage mechanisms
can be ineffective due to PMEM'’s unique characteristics
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Challenges: Multi-tenancy over PMEM

Lessons
e We must regulate PMEM access; small PMEM traffic can have a big effect
e We need new PMEM sharing mechanisms; existing DRAM/storage mechanisms

can be ineffective due to PMEM'’s unique characteristics

- Example: memory bandwidth limiting for “limiting impact to others”
- Setup: Cache A and B (B limit: 1GB/s PMEM traffic)
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Challenges: Multi-tenancy over PMEM

Lessons
e We must regulate PMEM access; small PMEM traffic can have a big effect
e We need new PMEM sharing mechanisms; existing DRAM/storage mechanisms

can be ineffective due to PMEM'’s unique characteristics

- Example: memory bandwidth limiting for “limiting impact to others”

- Setup: Cache A and B (B limit: 1GB/s PMEM traffic)

- Memory bandwidth limiting is ineffective due to PMEM 256B internal access granularity

4 B (256B writes) | B (64B writes)

[

Cache A, P99 Latency 2:5 2% I I/
(256B read, us) B achieves 1GB/s all time
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Goal: Design New PMEM Sharing Mechanisms

18



Goal: Design New PMEM Sharing Mechanisms
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Many Sharing Goals ...
dWs

Resource Limiting
« $->Resources
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latency guarantee

» Best-effort clients
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Focus: Basic Mechanisms
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Contributions

Re-evaluate Key Mechanisms
® Analyze problems with existing mechanisms on PMEM

NyxCache: a flexible access regulation framework for any sharing goal
e Design new software mechanisms for PMEM sharing
e Revise four policy implementations based on new mechanisms
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Contributions This talk:

Interference
Analysis

NyxCache: a flexible access regulation framework for any sharing goal |
e Design new software mechanisms for PMEM sharing v
® Revise four policy implementations based on new mechanisms QoS Policy

Re-evaluate Key Mechanisms
® Analyze problems with existing mechanisms on PMEM
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Interference Analysis

Use Case: Quality-of-Service policy
e Latency-critical clients (with tail latency guarantee) + Best-effort clients

Example Target:
P999 < bms

Latency-Critical
Client
[ PMEM ]
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Interference Analysis

Use Case: Quality-of-Service policy
e Latency-critical clients (with tail latency guarantee) + Best-effort clients

Example Target:
P999 < bms

Best-Effort Latency-Critical Best-Effort
Client Client Client
[ PMEM ]
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Interference Analysis

Use Case: Quality-of-Service policy
e Latency-critical clients (with tail latency guarantee) + Best-effort clients

a1 .

- - Latency target violated Example Target:
P999 < 5ms
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[ PMEM ]
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Interference Analysis

Use Case: Quality-of-Service policy
e Latency-critical clients (with tail latency guarantee) + Best-effort clients
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- Latency target violated Example Target:
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Interference Analysis

Use Case: Quality-of-Service policy
e Latency-critical clients (with tail latency guarantee) + Best-effort clients
® Question: Who should we throttle? interference analysis to find out the most

: interfering client -> quick rescue and high utilization
4

= Latency target violated Example Target:

/ \ P999 < 5ms
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Problems: Interference Analysis on PMEM

DRAM method: use clients’ BW as indicator; higher BW -> more interference
Problems: PMEM Bandwidth is not a good indicator of interference
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e Problem 1: write interference > read interference
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Problems: Interference Analysis on PMEM

DRAM method: use clients’ BW as indicator; higher BW -> more interference
Problems: PMEM Bandwidth is not a good indicator of interference
e Problem 1: write interference > read interference
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Problems: Interference Analysis on PMEM

DRAM method: use clients’ BW as indicator; higher BW -> more interference
Problems: PMEM Bandwidth is not a good indicator of interference
e Problem 1: write interference > read interference
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Problems: Interference Analysis on PMEM

DRAM method: use clients’ BW as indicator; higher BW -> more interference

Problems: PMEM Bandwidth is not a good indicator of interference

® Problem 1: write interference > read interference

® Problem 2: small accesses (<256B) interference > large access, with the same BW
e.g., 1GB/s 64B writes cause 2x the interference as 1GB/s 256B writes
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Problems: Interference Analysis on PMEM

DRAM method: use clients’ BW as indicator; higher BW -> more interference

Problems: PMEM Bandwidth is not a good indicator of interference

® Problem 1: write interference > read interference

® Problem 2: small accesses (<256B) interference > large access, with the same BW
e.g., 1GB/s 64B writes cause 2x the interference as 1GB/s 256B writes

We need new high-fidelity interference analysis for PMEM sharing
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Solutions: NyxCache - Interference Analysis
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Solutions: NyxCache - Interference Analysis

Goal: Answer who is interfering the most with a given client
® No special hardware — software solution
® Minimal device assumptions — treat devices as black box
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Solutions: NyxCache - Interference Analysis

Goal: Answer who is interfering the most with a given client
Solution: runtime micro-, controlled-experiments
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Solutions: NyxCache - Interference Analysis

Goal: Answer who is interfering the most with a given client
Solution: runtime micro-, controlled-experiments
® Setup: cache A, B, C; who is interfering A the most?
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Solutions: NyxCache - Interference Analysis

Goal: Answer who is interfering the most with a given client
Solution: runtime micro-, controlled-experiments
e Setup: cache A, B, C; who is interfering A the most?
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Solutions: NyxCache - Interference Analysis
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Solutions: NyxCache - Interference Analysis

Goal: Answer who is interfering the most with a given client
Solution: runtime micro-, controlled-experiments
e Setup: cache A, B, C; who is interfering A the most?

Current State
A Performance: L

Exp1:B-A .’

Exp2:C-A
A Performance : L+ A,

ﬂ.:

A Performance : L + A;4
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Solutions: NyxCache - Interference Analysis

Solutlon runtime micro-, controlled-experiments
e Setup: cache A, B, C; who is interfering A the most?

Current State
A Performance: L

Exp1:B-A .’ Exp2:C-A
- A Performance : L+ A,

A Performance : L + A;4
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Evaluation: NyxCache — QoS

What'’s the benefit of NyxCache interference analysis mechanism?
e Setup: cache A, B, C

- Cache A: latency-critical cache (fixed)

- Cache B: read-dominant best-effort cache (fixed)

- Cache C: write-dominant best-effort cache (dynamic)
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NyxCache Ensures QoS and High Utilization
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NyxCache Ensures QoS and High Utilization

Best-effort cache C burst writes
-> |latency-critical cache target violation
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NyxCache Ensures QoS and High Utilization

DRAM solution: throttle
caches with higher bandwidth
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NyxCache Ensures QoS and High Utilization

DRAM solution: throttle

caches with higher bandwidth

Latency-critical cache
P99 latency (us)
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throughput (GB/s)

o R N W
[ R B

Time(s)

Cache C’s interference cause
Cache B throttled to O

/

— Cache C (writes)

56



NyxCache Ensures QoS and High Utilization

DRAM solution: throttle

caches with higher bandwidth

NyxCache: throttle caches causing
larger interferences

Latency-critical cache
P99 latency (us) >
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interference source
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NyxCache Ensures QoS and High Utilization

DRAM solution: throttle NyxCache: throttle caches causing
caches with higher bandwidth larger interferences
NyxCache throttles
the right
3 interference source
Latency-critical cache s
P99 latency (us) - /
-8 aEEEEEES LEE X E K F L | 6x higher CacheB
throughput

Best-effort (BE) cache
throughput (GB/s)
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NyxCache Summary

PMEM sharing necessitates evolving software/hardware stack.
Our contributions:

e Define what are important sharing mechanisms (the subtrate)
e Analyze problems with existing mechanisms on PMEM
e NyxCache — design new software PMEM sharing mechanisms
e NyxCache — revise policy implementations based on new mechanisms
Nyx—QoS Nyx-resource limiting || Nyx—fair slowndown Nyx—s;c;ﬁ?‘r;ional
6x system utilization 5x better perf. isolation 2x better fairness Intfer;eorjg;e;vrg;;dle

Future Directions
e Hardware Redesigns and Hardware/Software Codesigns for PMEM Sharing

Contact: kanwu@cs.wisc.edu
Code: cs.wisc.edu/~kanwu 59



