NyxCache: Flexible and Efficient Multi-Tenant
Persistent Memory Caching

Kan Wu, Kaiwei Tu, Yuvraj Patel, Rathijit Sen, Kwanghyun Park,
Andrea Arpaci-Dusseau and Remzi Arpaci-Dusseau

WISCONSIN gt Microsoft

UNIVERSITY OF WISCONSIN-MADISON

In-Memory Key-Value Caches are Crucial

WEL ¢

In-Memory Key-Value Caches are Crucial

/D
|
wn

|
[
I
[
I
I
[
[
I
I
rBackend $)
i “. RocksDB Spor‘lgz 1

_ TensorFlow ,J

In-Memory Key-Value Caches are Crucial

~
redis =
rBackend | N
“lE® 7 RocksDB Spark’ T

_ TensorFlow J

A Cache Server is Usually Multi-Tenant

Cache (Single Server) 1
""" NN T T T T T
I
i Cache 1, Cache 1 : Cache :
NGy AT L teeee-. '

Consolidated instances

A Cache Server is Usually Multi-Tenant

Consolidated instances
Contention -> regulation required

A Cache Server is Usually Multi-Tenant

Consolidated instances
Contention -> regulation required

Example sharing policies

resource limit based on price tier,
QoS
proportional sharing, ...

Persistent Memory for In-Memory KV Caches

Persistent Memory (PMEM)
® Intel Optane DC PMM (byte-addressable, memory bus, comparable performance to DRAM)

8 of 88

Persistent Memory for In-Memory KV Caches

Persistent Memory (PMEM)

® Intel Optane DC PMM (byte-addressable, memory bus, comparable performance to DRAM)

Appealing building blocks for in-mem KV caches
® Large capacity -> high hit rate
® |ow cost per byte -> cheap, scale

® Energy-efficiency -> operational cost
°

R

Memcached

9 of 88

Challenges: Multi-tenancy over PMEM

10

Challenges: Multi-tenancy over PMEM

(QO Can we not regulate PM access?

11

Challenges: Multi-tenancy over PMEM

1.5=

Read Throughput

(single thread 256B, GB/s)
0.5=

12

Challenges: Multi-tenancy over PMEM

Lessons

e We must regulate PMEM access; small PMEM traffic can have a big effect

1.5=

Read Throughput

(single thread 256B, GB/s)
0.5=

Collocate 1GB/s 64B writes
Device Max BW: 14 GB/s

2.7x

13

Challenges: Multi-tenancy over PMEM

Lessons

e We must regulate PMEM access; small PMEM traffic can have a big effect

e We need new PMEM sharing mechanisms; existing DRAM/storage mechanisms
can be ineffective due to PMEM'’s unique characteristics

14

Challenges: Multi-tenancy over PMEM

Lessons
e We must regulate PMEM access; small PMEM traffic can have a big effect
e We need new PMEM sharing mechanisms; existing DRAM/storage mechanisms

can be ineffective due to PMEM'’s unique characteristics

- Example: memory bandwidth limiting for “limiting impact to others”
- Setup: Cache A and B (B limit: 1GB/s PMEM traffic)

15

Challenges: Multi-tenancy over PMEM

Lessons
e We must regulate PMEM access; small PMEM traffic can have a big effect
e We need new PMEM sharing mechanisms; existing DRAM/storage mechanisms

can be ineffective due to PMEM'’s unique characteristics

- Example: memory bandwidth limiting for “limiting impact to others”
- Setup: Cache A and B (B limit: 1GB/s PMEM traffic)

4 B (256B writes)

2
Cache A, P99 Latency
(256B read, us)

1.0=

Time

16

Challenges: Multi-tenancy over PMEM

Lessons
e We must regulate PMEM access; small PMEM traffic can have a big effect
e We need new PMEM sharing mechanisms; existing DRAM/storage mechanisms

can be ineffective due to PMEM'’s unique characteristics

- Example: memory bandwidth limiting for “limiting impact to others”

- Setup: Cache A and B (B limit: 1GB/s PMEM traffic)

- Memory bandwidth limiting is ineffective due to PMEM 256B internal access granularity

4 B (256B writes) | B (64B writes)

[

Cache A, P99 Latency 2:5 2% I I/
(256B read, us) B achieves 1GB/s all time

R |

I

1.0=

>
Time 17

Goal: Design New PMEM Sharing Mechanisms

18

Goal: Design New PMEM Sharing Mechanisms

?

(QQ What mechanisms should we focus?

N

19

Many Sharing Goals ...
dWs

Resource Limiting
« $->Resources

20

Many Sharing Goals ...
dWs

Resource Limiting
« $->Resources

s eoo

g, 4+ Spark
'

Quality of Service (QoS)
« Latency-critical clients have
latency guarantee

» Best-effort clients
21

Many Sharing Goals ...
dWs

Resource Limiting
« $->Resources

@ 4 ~"300r‘l’<\Z
L

Quality of Service (QoS)

« Latency-critical clients have
latency guarantee

» Best-effort clients

Proportional Sharing

Weight -> Allocation

22

Many Sharing Goals ...
dWs

Resource Limiting
« $->Resources

@ + Soaik’
«

Quality of Service (QoS)

« Latency-critical clients have
latency guarantee

» Best-effort clients

£

Fair Slowdown
« Equalize client slowdowns

alone

p
 Slowdown:

share

Proportional Sharing
* Weight -> Allocation

23

Focus: Basic Mechanisms

aws

Resource Limiting
« $->Resources

@ +.$pcu'<ll(\Z
o

Quality of Service (QoS)

« Latency-critical clients have
latency guarantee

» Best-effort clients

Mechanisms

[M1: Request Regulation
Control the rate a client can access PM

\.

J

(M2: Resource Usage Accounting
*« How much PMEM resource (not
. bandwidth) does a client use?

[M3: Interference Analysis
« Who interferes client A the most?

.

4 . .
M4: Slowdown Estimation
* How much has a client been slowed as

. P
a result of sharing?: —&kze

share

2

Fair Slowdown

Equalize client slowdowns

alone

P
Slowdown:

share

Proportional Sharing

Weight -> Allocation

24

Resource Limiting >

Quality of Service (QoS)

aws

$ -> Resources

7
7
7

@ + Spcwr‘ll(\Z
«

Latency-critical clients have

Focus: Basic Mechanisms

Mechanisms ;

[M1: Request Regulation
Control the rate a client can access PM

\.

J

(M2: Resource Usage Accounting
*« How much PMEM resource (not
. bandwidth) does a client use?

[M3: Interference Analysis
L ¢+ Who interferes client A the most?

4 . .
M4: Slowdown Estimation
* How much has a client been slowed as

. P
a result of sharing?: —&kze

latency guarantee
Best-effort clients

share

£

Fair Slowdown
« Equalize client slowdowns

alone

P
 Slowdown:

share

Proportional Sharing
* Weight -> Allocation

25

Focus: Basic Mechanisms

aws
N

Resource Limiting \
« $->Resources

@ +.$pcu'<ll(\Z
o

Quality of Service (QoS)

« Latency-critical clients have
latency guarantee

» Best-effort clients

N\

R

Mechanisms

[M1: Request Regulation
Control the rate a client can access PM

\.

J

(M2: Resource Usage Accounting
*« How much PMEM resource (not
. bandwidth) does a client use?

[M3: Interference Analysis
L ¢+ Who interferes client A the most?

4 . .
M4: Slowdown Estimation
* How much has a client been slowed as

. P
a result of sharing?: —&kze

share

2

Fair Slowdown
« Equalize client slowdowns

alone

P
 Slowdown:

share

Proportional Sharing
* Weight -> Allocation

26

2

Fair Slowdown

Focus: Basic Mechanisms . Equalize client slowdowns

alone

P
 Slowdown:

aWS Pshare
e Mechanisms

[M1: Request Regulation
Control the rate a client can access PM

Resource Limiting
« $->Resources

~

. J

(M2: Resource Usage Accounting
*« How much PMEM resource (not
. bandwidth) does a client use?

J
’ —_— _—— I —_— _—— I —_— _—— I —_— _\
\

[M3: Interference Analysis
L ¢+ Who interferes client A the most?)

@ + Spcwr‘ll(\Z
'

[

I

| ~ - - Proportional Sharing
Quality of Service (QoS) | M4: Slowdown Estimation

I

\

N
* Weight -> Allocation
Latency critical clients have e How much has a client been slowed as
¢ - . . Palone
latency guarantee a result of sharing?: Pshare y
» Best-effort clients 7z

‘__________—

27

Focus: Basic Mechanisms

aws

Resource Limiting
« $->Resources

@ + Spcwr‘ll(\Z
«

Quality of Service (QoS)

« Latency-critical clients have
latency guarantee

» Best-effort clients

Mechanisms

[M1: Request Regulation
Control the rate a client can access PM

\.

J

(M2: Resource Usage Accounting
*« How much PMEM resource (not

S bandwidth) does a client use?

P

[M3: Interference Analysis A

L ¢+ Who interferes client A the most? I

4 . .) I
M4: Slowdown Estimation

« How much has a client been slowed as | |

a result of sharing?; 2alone I

share J
- e - - - - - e - o . —-— /

2

Fair Slowdown
« Equalize client slowdowns

alone

P
 Slowdown:

share

Proportional Sharing
* Weight -> Allocation

28

Focus: Basic Mechanisms

aws

Resource Limiting
« $->Resources

@ + Spcwr‘ll(\Z
«

Quality of Service (QoS)

« Latency-critical clients have
latency guarantee

» Best-effort clients

Mechanisms

[M1: Request Regulation

\.

~

Control the rate a client can access PM ,’

(M2: Resource Usage Accounting
*« How much PMEM resource (not

S bandwidth) does a client use?

/

2

Fair Slowdown
« Equalize client slowdowns

alone

P
 Slowdown:

’ Pshare
/
/

’ __________ \
[(M3: Interference Analysis T
| L Who interferes client A the most? 4
I | 2 » | Proportional Sharing
4 ; : N1 , .
M4: Slowdown Estimation « Weight -> Allocation
L[. How much has a client been slowed as I
I a result of sharing?; 2alone I
_ share J
\ /

29

Contributions

Re-evaluate Key Mechanisms
® Analyze problems with existing mechanisms on PMEM

NyxCache: a flexible access regulation framework for any sharing goal
e Design new software mechanisms for PMEM sharing
e Revise four policy implementations based on new mechanisms

30

Contributions This talk:

Interference
Analysis

NyxCache: a flexible access regulation framework for any sharing goal |
e Design new software mechanisms for PMEM sharing v
® Revise four policy implementations based on new mechanisms QoS Policy

Re-evaluate Key Mechanisms
® Analyze problems with existing mechanisms on PMEM

31

Interference Analysis

Use Case: Quality-of-Service policy
e Latency-critical clients (with tail latency guarantee) + Best-effort clients

Example Target:
P999 < bms

Latency-Critical
Client
[PMEM]

32

Interference Analysis

Use Case: Quality-of-Service policy
e Latency-critical clients (with tail latency guarantee) + Best-effort clients

Example Target:
P999 < bms

Best-Effort Latency-Critical Best-Effort
Client Client Client
[PMEM]

33

Interference Analysis

Use Case: Quality-of-Service policy
e Latency-critical clients (with tail latency guarantee) + Best-effort clients

a1 .

- - Latency target violated Example Target:
P999 < 5ms

Best-Effort Latency-Critical Best-Effort
Client Client Client
[PMEM]

34

Interference Analysis

Use Case: Quality-of-Service policy
e Latency-critical clients (with tail latency guarantee) + Best-effort clients

s 1.
- Latency target violated Example Target:
\ P999 < 5ms

l

I | | Best-Effort] [Latency-CriticaI] [Best-Effort]

v Vo - Client Client Client

~ — — - — .
Throttle best-effort cllents ;/ ! 1 %/\

e]

35

S

Interference Analysis

Use Case: Quality-of-Service policy
e Latency-critical clients (with tail latency guarantee) + Best-effort clients
® Question: Who should we throttle? interference analysis to find out the most

: interfering client -> quick rescue and high utilization
4

= Latency target violated Example Target:

/ \ P999 < 5ms

I | Best-Effort Latency-Critical Best-Effort

v Vo Client Client Client

~ - = -.— - e e B
- - - o= e - P
= = VA f

Throttle best-effort clients ; 1 ;/\

e

36

Problems: Interference Analysis on PMEM

DRAM method: use clients’ BW as indicator; higher BW -> more interference
Problems: PMEM Bandwidth is not a good indicator of interference

37

Problems: Interference Analysis on PMEM

DRAM method: use clients’ BW as indicator; higher BW -> more interference
Problems: PMEM Bandwidth is not a good indicator of interference
e Problem 1: write interference > read interference

38

Problems: Interference Analysis on PMEM

DRAM method: use clients’ BW as indicator; higher BW -> more interference
Problems: PMEM Bandwidth is not a good indicator of interference
e Problem 1: write interference > read interference

3.0
2.5 1
2.0 1

Victim P99 Latency

(256B read, us) i
1.0

0.5 1

0 5 10

Co-located Traffic
(GBI/s)

Problems: Interference Analysis on PMEM

DRAM method: use clients’ BW as indicator; higher BW -> more interference
Problems: PMEM Bandwidth is not a good indicator of interference
e Problem 1: write interference > read interference

3.0

2:57
Victim P99 Latency ~ *”] Read
(256B read, us) 1'5“,’J
1.0 1
0.5 1
6 é 1I0

Co-located Traffic
(GBI/s)

Problems: Interference Analysis on PMEM

DRAM method: use clients’ BW as indicator; higher BW -> more interference
Problems: PMEM Bandwidth is not a good indicator of interference
e Problem 1: write interference > read interference

3.0

5 5 \Write
Victim P99 Latency ~ *”] Read
(256B read, us) ad
1.0 1
0.5 1
6 é 1I0

Co-located Traffic
(GBI/s)

Problems: Interference Analysis on PMEM

DRAM method: use clients’ BW as indicator; higher BW -> more interference

Problems: PMEM Bandwidth is not a good indicator of interference

® Problem 1: write interference > read interference

® Problem 2: small accesses (<256B) interference > large access, with the same BW
e.g., 1GB/s 64B writes cause 2x the interference as 1GB/s 256B writes

42

Problems: Interference Analysis on PMEM

DRAM method: use clients’ BW as indicator; higher BW -> more interference

Problems: PMEM Bandwidth is not a good indicator of interference

® Problem 1: write interference > read interference

® Problem 2: small accesses (<256B) interference > large access, with the same BW
e.g., 1GB/s 64B writes cause 2x the interference as 1GB/s 256B writes

We need new high-fidelity interference analysis for PMEM sharing

43

Solutions: NyxCache - Interference Analysis

44

Solutions: NyxCache - Interference Analysis

Goal: Answer who is interfering the most with a given client
® No special hardware — software solution
® Minimal device assumptions — treat devices as black box

45

Solutions: NyxCache - Interference Analysis

Goal: Answer who is interfering the most with a given client
Solution: runtime micro-, controlled-experiments

46

Solutions: NyxCache - Interference Analysis

Goal: Answer who is interfering the most with a given client
Solution: runtime micro-, controlled-experiments
® Setup: cache A, B, C; who is interfering A the most?

47

Solutions: NyxCache - Interference Analysis

Goal: Answer who is interfering the most with a given client
Solution: runtime micro-, controlled-experiments
e Setup: cache A, B, C; who is interfering A the most?

Current State
A Performance: L

. .\
|
.\ A

48

Solutions: NyxCache - Interference Analysis

Goal: Answer who is interfering the most with a given client
Solution: runtime micro-, controlled-experiments
e Setup: cache A, B, C; who is interfering A the most?

Current State
A Performance: L

Exp1:B-A "
¢ A

A Performance : L + A;4

49

Solutions: NyxCache - Interference Analysis

Goal: Answer who is interfering the most with a given client
Solution: runtime micro-, controlled-experiments
e Setup: cache A, B, C; who is interfering A the most?

Current State
A Performance: L

Exp1:B-A .’

Exp2:C-A
A Performance : L+ A,

ﬂ.:

A Performance : L + A;4

QP ‘

50

Solutions: NyxCache - Interference Analysis

Solutlon runtime micro-, controlled-experiments
e Setup: cache A, B, C; who is interfering A the most?

Current State
A Performance: L

Exp1:B-A .’ Exp2:C-A
- A Performance : L+ A,

A Performance : L + A;4
‘ 51

Evaluation: NyxCache — QoS

What'’s the benefit of NyxCache interference analysis mechanism?
e Setup: cache A, B, C

- Cache A: latency-critical cache (fixed)

- Cache B: read-dominant best-effort cache (fixed)

- Cache C: write-dominant best-effort cache (dynamic)

52

NyxCache Ensures QoS and High Utilization

Latency-critical cache
P99 latency (us) >

Best-effort (BE) cache
throughput (GB/s)

— Cache C (writes)

o R N W
[T T SR

0 15 30 45
Time(s)

NyxCache Ensures QoS and High Utilization

Best-effort cache C burst writes
-> |latency-critical cache target violation

N\

3_

Latency-critical cache
P99 latency (us) >

3 .

Best-effort (BE) cache 7 -
throughput (GB/s) 1 |
0 | , , | — Cache C (writes)

0 15 30 45
Time(s)

NyxCache Ensures QoS and High Utilization

DRAM solution: throttle
caches with higher bandwidth

| >

Latency-critical cache
P99 latency (us)

Best-effort (BE) cache
throughput (GB/s)

o R N W
[R B

| , N — Cache C (writes)
0 15 30 45
Time(s)

NyxCache Ensures QoS and High Utilization

DRAM solution: throttle

caches with higher bandwidth

Latency-critical cache
P99 latency (us)

Best-effort (BE) cache
throughput (GB/s)

o R N W
[R B

Time(s)

Cache C’s interference cause
Cache B throttled to O

/

— Cache C (writes)

56

NyxCache Ensures QoS and High Utilization

DRAM solution: throttle

caches with higher bandwidth

NyxCache: throttle caches causing
larger interferences

Latency-critical cache
P99 latency (us) >

NyxCache throttles
the right

interference source

7’
7’

Best-effort (BE) cache
throughput (GB/s)

O R N W
[R B

— Cache C (writes)

Time(s)

45

57

NyxCache Ensures QoS and High Utilization

DRAM solution: throttle NyxCache: throttle caches causing
caches with higher bandwidth larger interferences
NyxCache throttles
the right
3 interference source
Latency-critical cache s
P99 latency (us) - /
-8 aEEEEEES LEE X E K F L | 6x higher CacheB
throughput

Best-effort (BE) cache
throughput (GB/s)

— Cache C (writes)

0 15 30 45 0 15 30 45
Time(s) Time(s) 58

NyxCache Summary

PMEM sharing necessitates evolving software/hardware stack.
Our contributions:

e Define what are important sharing mechanisms (the subtrate)
e Analyze problems with existing mechanisms on PMEM
e NyxCache — design new software PMEM sharing mechanisms
e NyxCache — revise policy implementations based on new mechanisms
Nyx—QoS Nyx-resource limiting || Nyx—fair slowndown Nyx—s;c;ﬁ?‘r;ional
6x system utilization 5x better perf. isolation 2x better fairness Intfer;eorjg;e;vrg;;dle

Future Directions
e Hardware Redesigns and Hardware/Software Codesigns for PMEM Sharing

Contact: kanwu@cs.wisc.edu
Code: cs.wisc.edu/~kanwu 59

