
NyxCache: Flexible and Efficient Multi-Tenant
Persistent Memory Caching

Kan Wu, Kaiwei Tu, Yuvraj Patel, Rathijit Sen, Kwanghyun Park,
Andrea Arpaci-Dusseau and Remzi Arpaci-Dusseau

In-Memory Key-Value Caches are Crucial

2

In-Memory Key-Value Caches are Crucial

Backend

3

In-Memory Key-Value Caches are Crucial

Backend

Cache

Cache

4

A Cache Server is Usually Multi-Tenant

Cache Cache Cache

Cache (Single Server)

Consolidated instances

5

A Cache Server is Usually Multi-Tenant

Cache

Cache Cache Cache

Consolidated instances
Contention -> regulation required

6

A Cache Server is Usually Multi-Tenant

Cache

Consolidated instances
Contention -> regulation required
Example sharing policies
• resource limit based on price tier,
• QoS
• proportional sharing, …

Cache Cache Cache

7

Persistent Memory for In-Memory KV Caches
Persistent Memory (PMEM)
● Intel Optane DC PMM (byte-addressable, memory bus, comparable performance to DRAM)

8 of 88

Persistent Memory for In-Memory KV Caches
Persistent Memory (PMEM)
● Intel Optane DC PMM (byte-addressable, memory bus, comparable performance to DRAM)

Appealing building blocks for in-mem KV caches
● Large capacity -> high hit rate
● Low cost per byte -> cheap, scale
● Energy-efficiency -> operational cost
● …

9 of 88

Challenges: Multi-tenancy over PMEM

Cache

Cache Cache Cache

10

Challenges: Multi-tenancy over PMEM

Cache

Cache Cache Cache

Can we not regulate PM access?

11

Challenges: Multi-tenancy over PMEM

Read Throughput
(single thread 256B, GB/s)

0.5

1.5

12

Challenges: Multi-tenancy over PMEM

Read Throughput
(single thread 256B, GB/s)

Collocate 1GB/s 64B writes
Device Max BW: 14 GB/s

2.7x
1.5

Lessons
● We must regulate PMEM access; small PMEM traffic can have a big effect

13

0.5

Challenges: Multi-tenancy over PMEM
Lessons
● We must regulate PMEM access; small PMEM traffic can have a big effect
● We need new PMEM sharing mechanisms; existing DRAM/storage mechanisms

can be ineffective due to PMEM’s unique characteristics

14

Challenges: Multi-tenancy over PMEM
Lessons
● We must regulate PMEM access; small PMEM traffic can have a big effect
● We need new PMEM sharing mechanisms; existing DRAM/storage mechanisms

can be ineffective due to PMEM’s unique characteristics
- Example: memory bandwidth limiting for “limiting impact to others”
- Setup: Cache A and B (B limit: 1GB/s PMEM traffic)

15

Challenges: Multi-tenancy over PMEM

Time

Cache A, P99 Latency
(256B read, us)

1.0

2.5

B (256B writes)

16

Lessons
● We must regulate PMEM access; small PMEM traffic can have a big effect
● We need new PMEM sharing mechanisms; existing DRAM/storage mechanisms

can be ineffective due to PMEM’s unique characteristics
- Example: memory bandwidth limiting for “limiting impact to others”
- Setup: Cache A and B (B limit: 1GB/s PMEM traffic)

Lessons
● We must regulate PMEM access; small PMEM traffic can have a big effect
● We need new PMEM sharing mechanisms; existing DRAM/storage mechanisms

can be ineffective due to PMEM’s unique characteristics
- Example: memory bandwidth limiting for “limiting impact to others”
- Setup: Cache A and B (B limit: 1GB/s PMEM traffic)
- Memory bandwidth limiting is ineffective due to PMEM 256B internal access granularity

Challenges: Multi-tenancy over PMEM

B (256B writes)

Time

Cache A, P99 Latency
(256B read, us)

2.5

B (64B writes)

2x B achieves 1GB/s all time

17

1.0

18

Goal: Design New PMEM Sharing Mechanisms

19

Goal: Design New PMEM Sharing Mechanisms

What mechanisms should we focus?

Many Sharing Goals …

Resource Limiting
• $ -> Resources

20

Many Sharing Goals …

Resource Limiting
• $ -> Resources

+
Quality of Service (QoS)
• Latency-critical clients have

latency guarantee
• Best-effort clients

21

Many Sharing Goals …

Resource Limiting
• $ -> Resources

Proportional Sharing
• Weight -> Allocation

+
Quality of Service (QoS)
• Latency-critical clients have

latency guarantee
• Best-effort clients

22

Many Sharing Goals …

Resource Limiting
• $ -> Resources

Proportional Sharing
• Weight -> Allocation

+
Quality of Service (QoS)
• Latency-critical clients have

latency guarantee
• Best-effort clients

Fair Slowdown
• Equalize client slowdowns
• Slowdown: !!"#$%

!&'!(%

23

Focus: Basic Mechanisms

Resource Limiting
• $ -> Resources

Proportional Sharing
• Weight -> Allocation

+
Quality of Service (QoS)
• Latency-critical clients have

latency guarantee
• Best-effort clients

Fair Slowdown
• Equalize client slowdowns
• Slowdown: !!"#$%

!&'!(%

24

Mechanisms

M2: Resource Usage Accounting
• How much PMEM resource (not

bandwidth) does a client use?

M4: Slowdown Estimation
• How much has a client been slowed as

a result of sharing?:)!"#$%
)&'!(%

M3: Interference Analysis
• Who interferes client A the most?

M1: Request Regulation
• Control the rate a client can access PM

Focus: Basic Mechanisms

Resource Limiting
• $ -> Resources

Proportional Sharing
• Weight -> Allocation

+
Quality of Service (QoS)
• Latency-critical clients have

latency guarantee
• Best-effort clients

Fair Slowdown
• Equalize client slowdowns
• Slowdown: !!"#$%

!&'!(%

25

Mechanisms

M2: Resource Usage Accounting
• How much PMEM resource (not

bandwidth) does a client use?

M4: Slowdown Estimation
• How much has a client been slowed as

a result of sharing?:)!"#$%
)&'!(%

M3: Interference Analysis
• Who interferes client A the most?

M1: Request Regulation
• Control the rate a client can access PM

Focus: Basic Mechanisms

Resource Limiting
• $ -> Resources

Proportional Sharing
• Weight -> Allocation

+
Quality of Service (QoS)
• Latency-critical clients have

latency guarantee
• Best-effort clients

Fair Slowdown
• Equalize client slowdowns
• Slowdown: !!"#$%

!&'!(%

26

Mechanisms

M2: Resource Usage Accounting
• How much PMEM resource (not

bandwidth) does a client use?

M4: Slowdown Estimation
• How much has a client been slowed as

a result of sharing?:)!"#$%
)&'!(%

M3: Interference Analysis
• Who interferes client A the most?

M1: Request Regulation
• Control the rate a client can access PM

Focus: Basic Mechanisms

Resource Limiting
• $ -> Resources

Proportional Sharing
• Weight -> Allocation

+
Quality of Service (QoS)
• Latency-critical clients have

latency guarantee
• Best-effort clients

Fair Slowdown
• Equalize client slowdowns
• Slowdown: !!"#$%

!&'!(%

27

Mechanisms

M2: Resource Usage Accounting
• How much PMEM resource (not

bandwidth) does a client use?

M4: Slowdown Estimation
• How much has a client been slowed as

a result of sharing?:)!"#$%
)&'!(%

M3: Interference Analysis
• Who interferes client A the most?

M1: Request Regulation
• Control the rate a client can access PM

Focus: Basic Mechanisms

Resource Limiting
• $ -> Resources

Proportional Sharing
• Weight -> Allocation

+
Quality of Service (QoS)
• Latency-critical clients have

latency guarantee
• Best-effort clients

Fair Slowdown
• Equalize client slowdowns
• Slowdown: !!"#$%

!&'!(%

28

Mechanisms

M2: Resource Usage Accounting
• How much PMEM resource (not

bandwidth) does a client use?

M4: Slowdown Estimation
• How much has a client been slowed as

a result of sharing?:)!"#$%
)&'!(%

M3: Interference Analysis
• Who interferes client A the most?

M1: Request Regulation
• Control the rate a client can access PM

Focus: Basic Mechanisms

Resource Limiting
• $ -> Resources

Proportional Sharing
• Weight -> Allocation

+
Quality of Service (QoS)
• Latency-critical clients have

latency guarantee
• Best-effort clients

Fair Slowdown
• Equalize client slowdowns
• Slowdown: !!"#$%

!&'!(%

29

Mechanisms

M2: Resource Usage Accounting
• How much PMEM resource (not

bandwidth) does a client use?

M4: Slowdown Estimation
• How much has a client been slowed as

a result of sharing?:)!"#$%
)&'!(%

M3: Interference Analysis
• Who interferes client A the most?

M1: Request Regulation
• Control the rate a client can access PM

Contributions
Re-evaluate Key Mechanisms
● Analyze problems with existing mechanisms on PMEM

NyxCache: a flexible access regulation framework for any sharing goal
● Design new software mechanisms for PMEM sharing
● Revise four policy implementations based on new mechanisms

30

Contributions
Re-evaluate Key Mechanisms
● Analyze problems with existing mechanisms on PMEM

NyxCache: a flexible access regulation framework for any sharing goal
● Design new software mechanisms for PMEM sharing
● Revise four policy implementations based on new mechanisms

31

This talk:
Interference

Analysis

QoS Policy

Interference Analysis
Use Case: Quality-of-Service policy
● Latency-critical clients (with tail latency guarantee) + Best-effort clients

32

PMEM

Latency-Critical
Client

Example Target:
P999 < 5ms

Interference Analysis
Use Case: Quality-of-Service policy
● Latency-critical clients (with tail latency guarantee) + Best-effort clients

33

PMEM

Latency-Critical
Client

Best-Effort
Client

Best-Effort
Client

Example Target:
P999 < 5ms

Interference Analysis
Use Case: Quality-of-Service policy
● Latency-critical clients (with tail latency guarantee) + Best-effort clients

34

PMEM

Latency-Critical
Client

Best-Effort
Client

Best-Effort
Client

Example Target:
P999 < 5ms

Latency target violated

Interference Analysis
Use Case: Quality-of-Service policy
● Latency-critical clients (with tail latency guarantee) + Best-effort clients

35

PMEM

Latency-Critical
Client

Best-Effort
Client

Best-Effort
Client

Latency target violated

Throttle best-effort clients

Example Target:
P999 < 5ms

Interference Analysis
Use Case: Quality-of-Service policy
● Latency-critical clients (with tail latency guarantee) + Best-effort clients
● Question: Who should we throttle? interference analysis to find out the most

interfering client -> quick rescue and high utilization

36

PMEM

Latency-Critical
Client

Best-Effort
Client

Best-Effort
Client

Latency target violated

Throttle best-effort clients

Example Target:
P999 < 5ms

Problems: Interference Analysis on PMEM
DRAM method: use clients’ BW as indicator; higher BW -> more interference
Problems: PMEM Bandwidth is not a good indicator of interference

37

Problems: Interference Analysis on PMEM
DRAM method: use clients’ BW as indicator; higher BW -> more interference
Problems: PMEM Bandwidth is not a good indicator of interference
● Problem 1: write interference > read interference

38

DRAM method: use clients’ BW as indicator; higher BW -> more interference
Problems: PMEM Bandwidth is not a good indicator of interference
● Problem 1: write interference > read interference

Victim P99 Latency
(256B read, us)

Co-located Traffic
(GB/s)

Problems: Interference Analysis on PMEM

39

Read

DRAM method: use clients’ BW as indicator; higher BW -> more interference
Problems: PMEM Bandwidth is not a good indicator of interference
● Problem 1: write interference > read interference

Victim P99 Latency
(256B read, us)

Co-located Traffic
(GB/s)

Problems: Interference Analysis on PMEM

40

Read

DRAM method: use clients’ BW as indicator; higher BW -> more interference
Problems: PMEM Bandwidth is not a good indicator of interference
● Problem 1: write interference > read interference

Victim P99 Latency
(256B read, us)

Co-located Traffic
(GB/s)

Problems: Interference Analysis on PMEM

Write

41

DRAM method: use clients’ BW as indicator; higher BW -> more interference
Problems: PMEM Bandwidth is not a good indicator of interference
● Problem 1: write interference > read interference
● Problem 2: small accesses (<256B) interference > large access, with the same BW

e.g., 1GB/s 64B writes cause 2x the interference as 1GB/s 256B writes

Problems: Interference Analysis on PMEM

42

DRAM method: use clients’ BW as indicator; higher BW -> more interference
Problems: PMEM Bandwidth is not a good indicator of interference
● Problem 1: write interference > read interference
● Problem 2: small accesses (<256B) interference > large access, with the same BW

e.g., 1GB/s 64B writes cause 2x the interference as 1GB/s 256B writes

We need new high-fidelity interference analysis for PMEM sharing

Problems: Interference Analysis on PMEM

43

Solutions: NyxCache – Interference Analysis

44

Solutions: NyxCache – Interference Analysis
Goal: Answer who is interfering the most with a given client
● No special hardware – software solution
● Minimal device assumptions – treat devices as black box

45

Solutions: NyxCache – Interference Analysis
Goal: Answer who is interfering the most with a given client
Solution: runtime micro-, controlled-experiments

46

Solutions: NyxCache – Interference Analysis
Goal: Answer who is interfering the most with a given client
Solution: runtime micro-, controlled-experiments
● Setup: cache A, B, C; who is interfering A the most?

47

Solutions: NyxCache – Interference Analysis
Goal: Answer who is interfering the most with a given client
Solution: runtime micro-, controlled-experiments
● Setup: cache A, B, C; who is interfering A the most?

B

Current State
A Performance: L

C

A

48

Solutions: NyxCache – Interference Analysis
Goal: Answer who is interfering the most with a given client
Solution: runtime micro-, controlled-experiments
● Setup: cache A, B, C; who is interfering A the most?

B

Current State
A Performance: L

C

AB C

A

Exp 1: B - ∆
A Performance : L + ∆𝑳𝟏

49

Solutions: NyxCache – Interference Analysis
Goal: Answer who is interfering the most with a given client
Solution: runtime micro-, controlled-experiments
● Setup: cache A, B, C; who is interfering A the most?

B

Current State
A Performance: L

C

AB C

A

B

A

C

Exp 1: B - ∆
A Performance : L + ∆𝑳𝟏

Exp 2: C - ∆
A Performance : L + ∆𝑳𝟐

50

Solutions: NyxCache – Interference Analysis
Goal: who is interfering the most with a given client -> who yields the largest ∆𝑳
Solution: runtime micro-, controlled-experiments
● Setup: cache A, B, C; who is interfering A the most?

B

Current State
A Performance: L

C

AB C

A

B

A

C

Exp 1: B - ∆
A Performance : L + ∆𝑳𝟏

Exp 2: C - ∆
A Performance : L + ∆𝑳𝟐

51

What’s the benefit of NyxCache interference analysis mechanism?
● Setup: cache A, B, C

- Cache A: latency-critical cache (fixed)
- Cache B: read-dominant best-effort cache (fixed)
- Cache C: write-dominant best-effort cache (dynamic)

Evaluation: NyxCache – QoS

52

Latency-critical cache
P99 latency (us)

Best-effort (BE) cache
throughput (GB/s)

Target

NyxCache Ensures QoS and High Utilization

–– Cache B (reads)
–– Cache C (writes)

53

NyxCache Ensures QoS and High Utilization

Best-effort cache C burst writes
-> latency-critical cache target violation

Latency-critical cache
P99 latency (us)

Best-effort (BE) cache
throughput (GB/s)

Target

–– Cache B (reads)
–– Cache C (writes)

54

NyxCache Ensures QoS and High Utilization

DRAM solution: throttle
caches with higher bandwidth

Latency-critical cache
P99 latency (us)

Best-effort (BE) cache
throughput (GB/s)

Target

–– Cache B (reads)
–– Cache C (writes)

55

NyxCache Ensures QoS and High Utilization

Latency-critical cache
P99 latency (us)

Best-effort (BE) cache
throughput (GB/s)

Target
Cache C’s interference cause

Cache B throttled to 0

–– Cache B (reads)
–– Cache C (writes)

56

DRAM solution: throttle
caches with higher bandwidth

NyxCache Ensures QoS and High Utilization

NyxCache: throttle caches causing
larger interferences

Latency-critical cache
P99 latency (us)

Best-effort (BE) cache
throughput (GB/s)

Target

–– Cache B (reads)
–– Cache C (writes)

57

DRAM solution: throttle
caches with higher bandwidth

NyxCache throttles
the right

interference source

NyxCache Ensures QoS and High Utilization

Latency-critical cache
P99 latency (us)

Best-effort (BE) cache
throughput (GB/s)

Target
6x higher Cache B

throughput

–– Cache B (reads)
–– Cache C (writes)

58

NyxCache throttles
the right

interference source

NyxCache: throttle caches causing
larger interferences

DRAM solution: throttle
caches with higher bandwidth

NyxCache Summary
PMEM sharing necessitates evolving software/hardware stack.
Our contributions:
● Define what are important sharing mechanisms (the subtrate)
● Analyze problems with existing mechanisms on PMEM
● NyxCache – design new software PMEM sharing mechanisms
● NyxCache – revise policy implementations based on new mechanisms

Future Directions
● Hardware Redesigns and Hardware/Software Codesigns for PMEM Sharing

59

Nyx–QoS

6x system utilization

Nyx–resource limiting

5x better perf. isolation

Nyx–fair slowndown

2x better fairness

Nyx–proportional
sharing

Interference-aware idle
resource donation

Contact: kanwu@cs.wisc.edu
Code: cs.wisc.edu/~kanwu

