
HTMFS: Strong Consistency Comes for Free with 
Hardware Transactional Memory in Persistent 

Memory File Systems
Jifei Yi, Mingkai Dong, Fangnuo Wu, Haibo Chen

Institute of Parallel and Distributed Systems, Shanghai Jiao Tong University
Engineering Research Center for Domain-specific Operating Systems, Ministry of 

Education, China



• Early days
– Loose consistency guarantees
– Fsck (file system consistency check) attempt to recover without guarantee after 

crash

Performance vs Consistency

Performance
Consistency



• Early days
– Loose consistency guarantees
– Fsck (file system consistency check) attempt to recover without guarantee after 

crash

• Storage device is getting faster
– Crash consistency is important for file systems

Performance vs Consistency



• Per-request sequential consistency
– Concurrency control
– Crash consistency

Strong Consistency



• Per-request sequential consistency
– Concurrency control
– Crash consistency

• All-or-nothing semantics

Strong Consistency

aaaa
aaaaaa
…
aaaaaa

bbbb
bbbbbb
…
bbbbbb

write(fd, “bbb”, 4096)

bbbb
bbbbbb
…
aaaaaa

aaaa
aaaaaa
…
aaaaaa

bbbb
bbbbbb
…
bbbbbb

InconsistentNothingAll



• Pros
– Fast
– Byte-addressable
– Non-volatile

Persistent Memory



• Pros
– Fast
– Byte-addressable
– Non-volatile

Persistent Memory

Providing strong consistency 
guarantees is particularly challenging 

for memory-based file systems 
because maintaining data consistency 

in NVMM can be costly. [1]

[1] Jian Xu and Steven Swanson. NOVA: A log-structured file system for hybrid volatile/non-volatile main memories. FAST 16, 2016.



• Wrap memory accesses with _xbegin() and _xend()
– Successful commit: all changes complete atomically (become globally visible)
– Failure: No changes are applied

Hardware Transactional Memory

int *addr = xxx;
_xbegin();
int a = *addr;
*addr = a + 1;
_xend();



• Wrap memory accesses with _xbegin() and _xend()
– Successful commit: all changes complete atomically (become globally visible)
– Failure: No changes are applied

Hardware Transactional Memory

int *addr = xxx;
_xbegin();
int a = *addr;
*addr = a + 1;
_xend();

HTM inherently satisfies all-or-nothing semantics!



• Wrap memory accesses with _xbegin() and _xend()
– Successful commit: all changes complete atomically (become globally visible)
– Failure: No changes are applied

• Reason for failure
– Limited write set (hardware limitation)
– Memory access conflict
– Cache line flush (cannot be used in persistent memory)
– …

Hardware Transactional Memory

int *addr = xxx;
_xbegin();
int a = *addr;
*addr = a + 1;
_xend();



eADR: New opportunity

Ref: https://www.intel.com/content/www/us/en/developer/articles/technical/eadr-new-opportunities-for-persistent-memory-applications.html



• Wrap memory accesses with _xbegin() and _xend()
– Successful commit: all changes complete atomically (become globally visible)
– Failure: No changes are applied

• Reason for failure
– Limited write set (hardware limitation)
– Memory access conflict
– Cache line flush
– …

Hardware Transactional Memory

int *addr = xxx;
_xbegin();
int a = *addr;
*addr = a + 1;
_xend();

HTM can be used in persistent memory to guarantee crash consistency!



Crash Consistency Mechanism Comparison

13

Mechanism Write 
Amplification Write Set Data Structure Crash 

Consistency

In-place Update 1 Unlimited Any No guarantee

Journaling >2 Unlimited Any Strong

Shadow Paging >1 Unlimited Dedicated Strong

Soft Updates 1 Unlimited Dedicated Weak

Intel RTM 1 < 16K Any Strong



Challenges

14

• RTM is limited in both read and write set size, thus can easily abort 
due to file data copy.

• There are certain dependencies in the code paths of FS-related 
system calls. 



Outline

15

• Background

• Design & Implementation
– HOP: a lightweight hardware-software cooperative mechanism

• strong crash consistency
• fine-grained concurrency control

– Use HOP to build a strong crash consistency file system

• Evaluation



HOP (Hardware-assisted Optimistic Persistence)

• Memory access classification
– Reads
– Invisible writes

• Updates that cannot be observed via the file system interface
– Visible writes

• Updates that can be observed by the file system interface

• HOP only wraps visible writes with HTM

• Convert visible writes to invisible writes if needed



HOP (Hardware-assisted Optimistic Persistence)

• Memory access classification
– Reads
– Invisible writes
– Visible writes

• write(fd, buf, size)
– Allocate new pages (invisible)
– Copy data to new pages (visible)
– Modify file metadata (visible)

Record seqcount A

Read data A

Invisible writes

RTM begin

Validate seqcounts

Visible writes

RTM end
RTM abort

If A is changed



Use HOP to build HTMFS

18

• Challenges
– The size of data write can exceed the write set size of HTM
– Wrap memory allocation in HTM?

• Yes: concurrent memory allocation may abort the transaction
• No: Memory leak may happen after system crash

• Optimization
– Improve the scalability

• HTM can also handle concurrent accesses



Shadow page 
0

Shadow page 
1

…

Ptr NSeq

Ptr 0Seq

Ptr 1Seq

Inode

File

Page 0

Page N

Page 1

1. Prepare the data2. Replace the pointer and the 
sequence count in an RTM

Data Accesses
• Data Read

– Protected by sequence count

• Single-page update
– Wrap the updates and metadata updates in a single transaction

• Multi-page update
– Combined with shadow pages
– Convert visible writes into invisible writes



Atomic Memory Allocator
• Structure of a free list

• Per-thread allocator (no contention)
– Free list
– Allocated list (NULL represents that all page allocation is persisted)

Current Next Ptr 0 Ptr 1 … Ptr 510

Free page Allocated

4096 bytes

8 bytes



Atomic Memory Allocator
• Allocate a page (not in HTM)

– Add a page from free list to allocated list

• Persist memory allocation (in HTM)
– Drop allocated list

• Revert memory allocation
– Link allocated list to free list



Improve Dentry Scalability
• Scalability

– Different name distributes in different buckets, scaling well with threads increase

InodeDirectory

Hash table

Dir 
Entries

inoDseq Name

…

inoDseq Name…

PtrBseq

PtrBseqBucket 0

Bucket N

Dentry 0

Dentry M



/

A X

B

C

Y

Z

/

A X

B

C

Y

Z

Prevent Rename Cycle
• Correctness

– Check all sequence count in the whole path



KernFS

Pages for Co ers to store 
data and metadata

Super
block

Page 
allocation 

table
Path-Co er 
mappings

LibFS A Free 
pagesB

C D

Co er_enlarge Co er_shrink

Allocator-K

Allocator-L

Implementation based on ZoFS[1]

• LibFS
– User-space FS libraries
– All FS logic is implemented in LibFS
– HTMFS only modifies LibFS

• KernFS
– Protect global metadata and free space

[1] Mingkai Dong, Heng Bu, Jifei Yi, Benchao Dong, and Haibo Chen. Performance and protection in the zofs user-space nvm file system. SOSP 19, 2019.



Outline

25

• Background

• Design & Implementation
– HOP: a lightweight hardware-software cooperative mechanism
– Use HOP to build a strong crash consistency file system

• Evaluation



Performance Evaluation
• Evaluation setup

– Intel Xeon Gold 6330 CPU (28 cores) with hyper-threading disabled
– 512GB DDR4 DRAM
– 8*128GB Intel Optane Persistent Memory 200 series

• Benchmarks
– Fxmark: read, data/metadata write in different contention level
– TPCC on SQLite, LevelDB
– …

• File systems
– Ext4-DAX, NOVA-CoW, NOVA-relax, SplitFS, Libnvmmio (on NOVA), ZoFS



Evaluation: FxMark Data Read/Write
• Data Read: HTMFS’s read performance is the same as ZoFS (weak 

crash consistency)

� � � � �� �� �� �� ��
�7KUHDGV

�

���

���

���

7K
UR
XJ
KS
XW
��0
RS
V�
V�

DRBL



Evaluation: FxMark Data Read/Write
• Data Read: HTMFS’s read performance is the same as ZoFS (weak 

crash consistency)

• Data Write (medium contention): HTMFS has best performance 
and scalability

� � � � �� �� �� �� ��
�7KUHDGV

�

�

�

��

7K
UR
XJ
KS
XW
��0
RS
V�
V�

DWOM

� � � � �� �� �� �� ��
�7KUHDGV

�

���

���

���

7K
UR
XJ
KS
XW
��0
RS
V�
V�

DRBL



Evaluation: FxMark Data Read/Write
• Data Read: HTMFS’s read performance is the same with ZoFS

(weak crash consistency)
• Data Write (medium contention): HTMFS has best performance and 

scalability

� � � � �� �� �� �� ��
�7KUHDGV

�

�

�

��

7K
UR
XJ
KS
XW
��0
RS
V�
V�

DWOM

� � � � �� �� �� �� ��
�7KUHDGV

�

���

���

���

7K
UR
XJ
KS
XW
��0
RS
V�
V�

DRBL
REP-based MOV is faster than SSE2-based MOV in this workload (cache hit only)
ZoFS-SSE2’s performance is the same with HTMFS



Evaluation: FxMark Rename
• Low contention: HTMFS has similar performance with ZoFS

• Medium contention: HTMFS is better than others

• The performance of HTMFS is similar or even better than that of a 
weak crash consistency file system (ZoFS)!

� � � � �� �� �� �� ��
�7KUHDGV

�

�

��

��

7K
UR
XJ
KS
XW
��0
RS
V�
V�

MWRL

� � � � �� �� �� �� ��
�7KUHDGV

�

���

���

���

����

7K
UR
XJ
KS
XW
��.
RS
V�
V�

MWRM



� ����� ����� ����� ����� ������
7KURXJKSXW��7SP&�

([W��'$;
6SOLW)6

129$�&R:
129$�UHOD[
/LEQYPPLR

=R)6
+70)6

• TPCC on SQLite (higher is better)
– HTMFS is as good as ZoFS while NOVA-relax is much better than NOVA-CoW

Evaluation: Real-world Applications



• LevelDB (latency/us, lower is better)
– HTMFS is as good as ZoFS while NOVA-relax is much better than NOVA-CoW

• HTMFS gets strong crash consistency for nearly free

Evaluation: Real-world Applications

0

1

2

3

4

5

6

7

Fill sync. Fill seq. Delete rand.

NOVA-relax

NOVA-CoW

ZoFS

HTMFS

0

5

10

15

20

25

30

35

40

45

Fill rand. Overwrite .



Conclusion
• HTM can guarantee crash consistency for PM file systems on the eADR

platforms

• The write set of HTM is limited, making it difficult to use HTM directly to build a 
PM file system

• We propose HOP, a lightweight hardware-software cooperative mechanism, to 
provide both strong crash consistency and fine-grained concurrency control

• We apply HOP to build the first HTM-based user-space file system, HTMFS

• The performance of HTMFS is comparable to or better than file systems that 
only provide weak crash consistency

Thanks!


