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• Early days
– Loose consistency guarantees
– Fsck (file system consistency check) attempt to recover without guarantee after 

crash
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• Early days
– Loose consistency guarantees
– Fsck (file system consistency check) attempt to recover without guarantee after 

crash

• Storage device is getting faster
– Crash consistency is important for file systems

Performance vs Consistency



• Per-request sequential consistency
– Concurrency control
– Crash consistency

Strong Consistency



• Per-request sequential consistency
– Concurrency control
– Crash consistency

• All-or-nothing semantics

Strong Consistency
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• Pros
– Fast
– Byte-addressable
– Non-volatile

Persistent Memory



• Pros
– Fast
– Byte-addressable
– Non-volatile

Persistent Memory

Providing strong consistency 
guarantees is particularly challenging 

for memory-based file systems 
because maintaining data consistency 

in NVMM can be costly. [1]

[1] Jian Xu and Steven Swanson. NOVA: A log-structured file system for hybrid volatile/non-volatile main memories. FAST 16, 2016.



• Wrap memory accesses with _xbegin() and _xend()
– Successful commit: all changes complete atomically (become globally visible)
– Failure: No changes are applied

Hardware Transactional Memory

int *addr = xxx;
_xbegin();
int a = *addr;
*addr = a + 1;
_xend();



• Wrap memory accesses with _xbegin() and _xend()
– Successful commit: all changes complete atomically (become globally visible)
– Failure: No changes are applied

Hardware Transactional Memory

int *addr = xxx;
_xbegin();
int a = *addr;
*addr = a + 1;
_xend();

HTM inherently satisfies all-or-nothing semantics!



• Wrap memory accesses with _xbegin() and _xend()
– Successful commit: all changes complete atomically (become globally visible)
– Failure: No changes are applied

• Reason for failure
– Limited write set (hardware limitation)
– Memory access conflict
– Cache line flush (cannot be used in persistent memory)
– …

Hardware Transactional Memory

int *addr = xxx;
_xbegin();
int a = *addr;
*addr = a + 1;
_xend();



eADR: New opportunity

Ref: https://www.intel.com/content/www/us/en/developer/articles/technical/eadr-new-opportunities-for-persistent-memory-applications.html



• Wrap memory accesses with _xbegin() and _xend()
– Successful commit: all changes complete atomically (become globally visible)
– Failure: No changes are applied

• Reason for failure
– Limited write set (hardware limitation)
– Memory access conflict
– Cache line flush
– …

Hardware Transactional Memory

int *addr = xxx;
_xbegin();
int a = *addr;
*addr = a + 1;
_xend();

HTM can be used in persistent memory to guarantee crash consistency!



Crash Consistency Mechanism Comparison
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Mechanism Write 
Amplification Write Set Data Structure Crash 

Consistency

In-place Update 1 Unlimited Any No guarantee

Journaling >2 Unlimited Any Strong

Shadow Paging >1 Unlimited Dedicated Strong

Soft Updates 1 Unlimited Dedicated Weak

Intel RTM 1 < 16K Any Strong



Challenges
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• RTM is limited in both read and write set size, thus can easily abort 
due to file data copy.

• There are certain dependencies in the code paths of FS-related 
system calls. 



Outline
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• Background

• Design & Implementation
– HOP: a lightweight hardware-software cooperative mechanism

• strong crash consistency
• fine-grained concurrency control

– Use HOP to build a strong crash consistency file system

• Evaluation



HOP (Hardware-assisted Optimistic Persistence)

• Memory access classification
– Reads
– Invisible writes

• Updates that cannot be observed via the file system interface
– Visible writes

• Updates that can be observed by the file system interface

• HOP only wraps visible writes with HTM

• Convert visible writes to invisible writes if needed



HOP (Hardware-assisted Optimistic Persistence)

• Memory access classification
– Reads
– Invisible writes
– Visible writes

• write(fd, buf, size)
– Allocate new pages (invisible)
– Copy data to new pages (visible)
– Modify file metadata (visible)

Record seqcount A

Read data A

Invisible writes

RTM begin

Validate seqcounts

Visible writes

RTM end
RTM abort

If A is changed



Use HOP to build HTMFS
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• Challenges
– The size of data write can exceed the write set size of HTM
– Wrap memory allocation in HTM?

• Yes: concurrent memory allocation may abort the transaction
• No: Memory leak may happen after system crash

• Optimization
– Improve the scalability

• HTM can also handle concurrent accesses



Shadow page 
0

Shadow page 
1

…

Ptr NSeq

Ptr 0Seq

Ptr 1Seq

Inode

File

Page 0

Page N

Page 1

1. Prepare the data2. Replace the pointer and the 
sequence count in an RTM

Data Accesses
• Data Read

– Protected by sequence count

• Single-page update
– Wrap the updates and metadata updates in a single transaction

• Multi-page update
– Combined with shadow pages
– Convert visible writes into invisible writes



Atomic Memory Allocator
• Structure of a free list

• Per-thread allocator (no contention)
– Free list
– Allocated list (NULL represents that all page allocation is persisted)

Current Next Ptr 0 Ptr 1 … Ptr 510

Free page Allocated

4096 bytes

8 bytes



Atomic Memory Allocator
• Allocate a page (not in HTM)

– Add a page from free list to allocated list

• Persist memory allocation (in HTM)
– Drop allocated list

• Revert memory allocation
– Link allocated list to free list



Improve Dentry Scalability
• Scalability

– Different name distributes in different buckets, scaling well with threads increase

InodeDirectory

Hash table

Dir 
Entries

inoDseq Name

…

inoDseq Name…

PtrBseq

PtrBseqBucket 0

Bucket N

Dentry 0

Dentry M
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Prevent Rename Cycle
• Correctness

– Check all sequence count in the whole path



KernFS

Pages for Co ers to store 
data and metadata

Super
block

Page 
allocation 

table
Path-Co er 
mappings

LibFS A Free 
pagesB

C D

Co er_enlarge Co er_shrink

Allocator-K

Allocator-L

Implementation based on ZoFS[1]

• LibFS
– User-space FS libraries
– All FS logic is implemented in LibFS
– HTMFS only modifies LibFS

• KernFS
– Protect global metadata and free space

[1] Mingkai Dong, Heng Bu, Jifei Yi, Benchao Dong, and Haibo Chen. Performance and protection in the zofs user-space nvm file system. SOSP 19, 2019.



Outline
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• Background

• Design & Implementation
– HOP: a lightweight hardware-software cooperative mechanism
– Use HOP to build a strong crash consistency file system

• Evaluation



Performance Evaluation
• Evaluation setup

– Intel Xeon Gold 6330 CPU (28 cores) with hyper-threading disabled
– 512GB DDR4 DRAM
– 8*128GB Intel Optane Persistent Memory 200 series

• Benchmarks
– Fxmark: read, data/metadata write in different contention level
– TPCC on SQLite, LevelDB
– …

• File systems
– Ext4-DAX, NOVA-CoW, NOVA-relax, SplitFS, Libnvmmio (on NOVA), ZoFS



Evaluation: FxMark Data Read/Write
• Data Read: HTMFS’s read performance is the same as ZoFS (weak 

crash consistency)
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Evaluation: FxMark Data Read/Write
• Data Read: HTMFS’s read performance is the same as ZoFS (weak 

crash consistency)

• Data Write (medium contention): HTMFS has best performance 
and scalability
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Evaluation: FxMark Data Read/Write
• Data Read: HTMFS’s read performance is the same with ZoFS

(weak crash consistency)
• Data Write (medium contention): HTMFS has best performance and 

scalability
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ZoFS-SSE2’s performance is the same with HTMFS



Evaluation: FxMark Rename
• Low contention: HTMFS has similar performance with ZoFS

• Medium contention: HTMFS is better than others

• The performance of HTMFS is similar or even better than that of a 
weak crash consistency file system (ZoFS)!
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• TPCC on SQLite (higher is better)
– HTMFS is as good as ZoFS while NOVA-relax is much better than NOVA-CoW

Evaluation: Real-world Applications



• LevelDB (latency/us, lower is better)
– HTMFS is as good as ZoFS while NOVA-relax is much better than NOVA-CoW

• HTMFS gets strong crash consistency for nearly free

Evaluation: Real-world Applications
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Conclusion
• HTM can guarantee crash consistency for PM file systems on the eADR

platforms

• The write set of HTM is limited, making it difficult to use HTM directly to build a 
PM file system

• We propose HOP, a lightweight hardware-software cooperative mechanism, to 
provide both strong crash consistency and fine-grained concurrency control

• We apply HOP to build the first HTM-based user-space file system, HTMFS

• The performance of HTMFS is comparable to or better than file systems that 
only provide weak crash consistency

Thanks!


