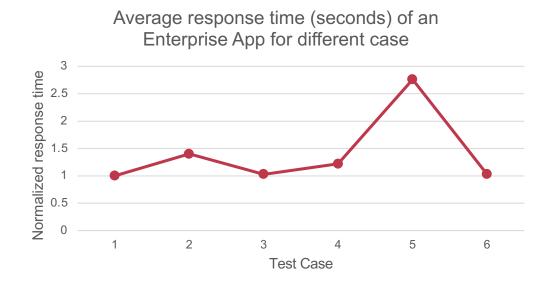
MT²: Memory Bandwidth Regulation on Hybrid NVM/DRAM Platforms


Jifei Yi, Benchao Dong, Mingkai Dong, Ruizhe Tong, Haibo Chen

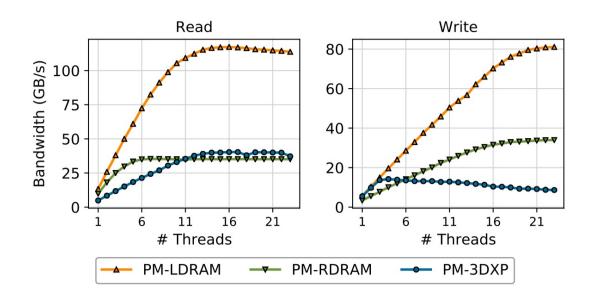
Institute of Parallel and Distributed Systems, Shanghai Jiao Tong University
Engineering Research Center for Domain-specific Operating Systems, Ministry of Education,
China

Noisy Neighbors in Data Center

- Noisy neighbors bother all applications on the same platforms
 - Per-thread bandwidth monitoring is the key to identifying the noisy neighbor

Noisy Neighbor in Hybrid Platforms

- Non-Volatile Memory (NVM)
 - Fast
 - Byte-addressable
 - Non-volatile



Setup

- Each channel has one DRAM and one NVM
- Different types of memory traffic mix together
 - Make the interference model more complex

Challenges in Hybrid Platforms

- Memory bandwidth asymmetry
 - NVM bandwidth is much smaller than DRAM

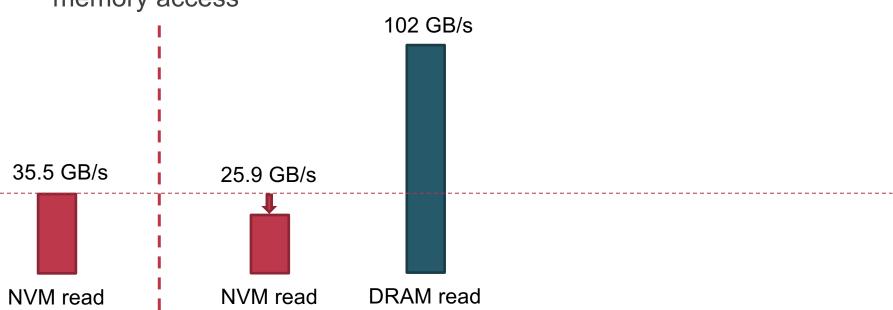
Challenges in Hybrid Platforms

- Memory bandwidth asymmetry
- Hard to distinguish access to NVM and DRAM
 - NVM traffic and DRAM traffic are inevitably mixed and difficult to separate

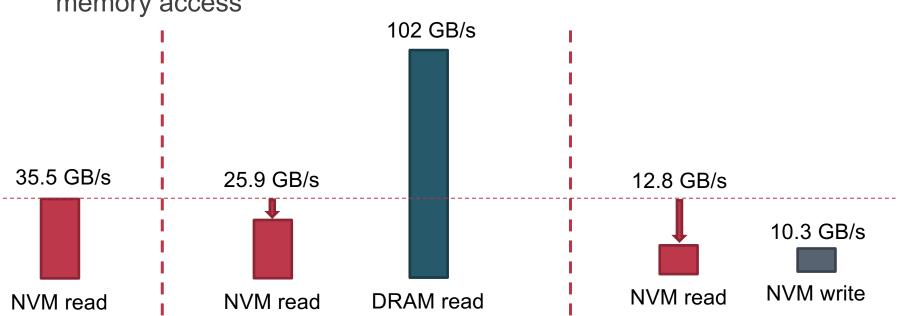
Challenges in Hybrid Platforms

- Memory bandwidth asymmetry
- Hard to distinguish access to NVM and DRAM
- Inadequate hardware and software mechanisms
 - Hardware mechanism
 - Intel MBA can just slow down the memory access instructions
 - It has no effect for NVM.
 - Software mechanisms
 - Frequency scaling and CPU scheduling
 - Slow down both computation and memory accesses

Outline


- Background
- Analysis and Observation
- Design
- Evaluation
- Discussion

 The impact of memory interference is closely related to the type of memory access


35.5 GB/s

NVM read

 The impact of memory interference is closely related to the type of memory access

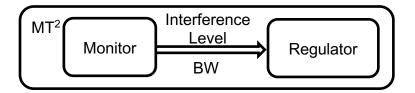
 The impact of memory interference is closely related to the type of memory access

- The impact of memory interference is closely related to the type of memory access
- Bandwidth interference level cannot be represented by the total bandwidth (absolute value is not enough)

- The impact of memory interference is closely related to the type of memory access
- Bandwidth interference level cannot be represented by the total bandwidth (absolute value is not enough)
- NVM accesses of the same bandwidth have a more severe impact on other tasks than DRAM accesses

Outline

- Background
- Analysis and Observation
- Design
- Evaluation
- Discussion

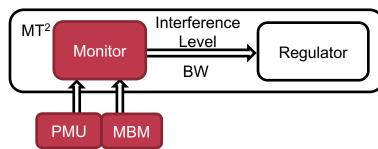

MT² (Memory Traffic Throttle)

Architecture

- Monitor
- Regulator

Use cases

- Noisy neighbor suppression
- Memory bandwidth allocation
- Cloud SLO guarantee


Total bandwidth (Intel MBM)

NVM read: PMU (ocr.all_data_rd.pmm_hit_local_pmm.any_snoop)

NVM write: ?

DRAM read: PMU (ocr.all_data_rd.l3_miss_local_dram.any_snoop)

DRAM write: ?

NVM read: PMU (ocr.all data rd.pmm hit local pmm.any snoop) NVM write: ? Total bandwidth (Intel MBM) DRAM read: PMU (ocr.all data rd.l3 miss local dram.any snoop) Interference DRAM write: ? MT^2 Level Regulator Monitor It is hard to distinguish between NVM write bandwidth and DRAM write bandwidth of a thread 16

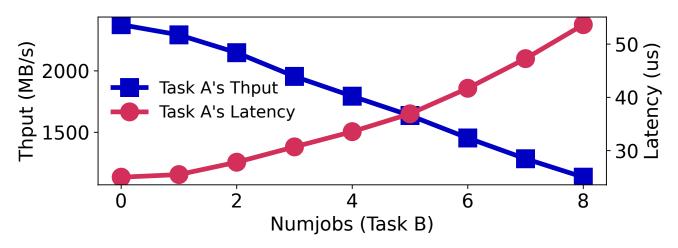
Total bandwidth (Intel MBM)

- NVM read: PMU (ocr.all_data_rd.pmm_hit_local_pmm.any_snoop)
- NVM write: Software tracking in libraries (such as PMDK)
- DRAM read: PMU (ocr.all_data_rd.l3_miss_local_dram.any_snoop)
- DRAM write: Total bandwidth others
- If we can trust the applications, we can rely on the applications to report their NVM write bandwidth faithfully

Total bandwidth (Intel MBM)

NVM read: PMU (ocr.all_data_rd.pmm_hit_local_pmm.any_snoop)

NVM write: PEBS


DRAM read: PMU (ocr.all_data_rd.l3_miss_local_dram.any_snoop)

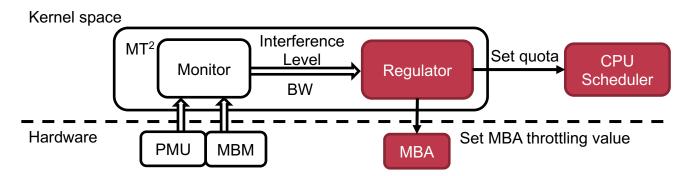
DRAM write: Total bandwidth - others

 Untrusted environment: use PEBS to estimate the write bandwidth roughly (detail can be found in the paper)

Monitor: Interference Level

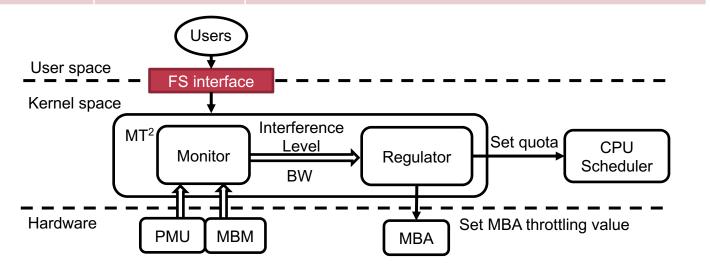
 The memory access latency is negatively correlated to the bandwidth

Measure memory access latency to indicate the bandwidth interference level

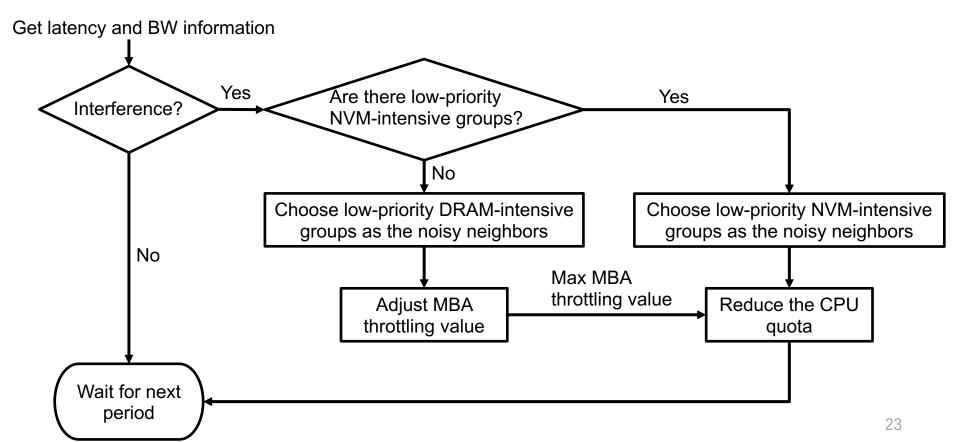

Bandwidth Regulator Mechanisms

Intel MBA

 Intel MBA can inject delay in memory accesses to reduce the memory bandwidth of a core


CPU quota

 Completely Fair Scheduler (CFS) allows to specify a cap of CPU time for a cgroup in a period



Interface

File Name	Permission	Description
priority	read/write	Get/set the priority of a group
bandwidth	read only	Get the bandwidth of a group for the last second
limit	read/write	Get and set the absolute bandwidth limit of a group

Use Case: Noisy Neighbors Suppression

Outline

- Background
- Observation
- Design
- Evaluation
- Discussion

Evaluation

Evaluation setup

- Two NUMA nodes, each has
 - Intel Xeon Gold 6238R CPU (28 cores)
 - Hyper-threading: disabled
 - 6 * 32GB DDR4 DRAM
 - 6 * 128GB Intel Optane Persistent Memory

Accuracy

- Use four FIO tasks to generate mixed bandwidth
- PCM monitors system-wide memory bandwidth

Bandwidth(GB/s)	DR	DW	NR	NW
MT ²	10.51	4.19	3.84	2.79
PCM	10.69	4.22	3.89	2.81
Deviation	1.68%	0.71%	0.13%	0.71%

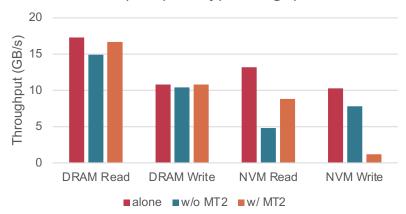
The results reported by MT² are very close to the ground-truth bandwidth (<2%)

Performance Overhead


- Run applications without/with MT²
 - FIO, Graphchi, Hadoop, and RocksDB

Throughput/Time	w/o MT²	w/ MT²	Overhead
FIO	31505 MB/s	31507 MB/s	< 0.01%
Graphchi	321.64 s	321.55 s	< 0.01%
Hadoop	54.93 s	54.93 s	< 0.01%
RocksDB	37770 ops/s	37767 ops/s	< 0.01%

Introduced overhead is negligible (less than 0.01%)


Noisy Neighbors Suppression

- High priority: YCSB
 - Tail latency: lower is better
 YCSB-A (high priority) latency

- Low priority: four FIO tasks
 - Throughput: higher is better

FIO (low priority) throughput

MT² optimizes the performance of the high-priority applications and some low-priority applications by restricting the noisiest low-priority application

Discussion and Future Works

- Hybrid memory bandwidth allocation
 - Not NUMA-aware: NUMA-and-NVM-aware scheduler
 - More accurate and generic bandwidth monitoring mechanism
 - More sophisticated restriction policies
- Suggestions for NVM-aware data structure and system software design
 - Minimize memory footprint, especially for NVM writes, which can lead to poor scalability

Conclusion

- Memory interference become more severe on the hybrid NVM/DRAM platforms
- Per-thread bandwidth monitoring is the key to reduce memory interference
- MT² is the first comprehensive system to monitor and regulate memory bandwidth on the hybrid platforms with thread granularity
- MT² can effectively regulate the bandwidth among applications with nearly zero performance overhead
- High-performance NVM data structure/software design needs to take bandwidth interference into consideration

Thanks!