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Abstract
Range lock enables concurrent accesses to disjoint parts

of a shared storage. However, existing range lock managers
rely on centralized CPU resources to process lock requests,
which results in server-side CPU bottleneck and suboptimal
performance when placed in a distributed scenario.

We propose Citron, an RDMA-enabled distributed range
lock manager that bypasses server-side CPUs by using only
one-sided RDMA in range lock acquisition and release paths.
Citronmanages range locks with a static data structure called
segment tree, which effectively accommodates dynamically
located and sized ranges but only requires limited and nearly
constant synchronization costs from the clients. Citron can
also scale up itself in microseconds to adapt to a shared stor-
age of a growing size at runtime. Evaluation shows that under
various workloads, Citron delivers up to 3.05× throughput
and 76.4% lower tail latency than CPU-based approaches.

1 Introduction

Large-scale distributed applications have high demands to
access shared storage resources concurrently [60, 65]. File
systems designed for high-performance computing (HPC),
for example, are usually required to handle massive parallel
I/O requests to different parts of a single data file [11, 32, 49].
Disaggregated memory pools have the need to allow multiple
clients to access the same memory space simultaneously, pos-
sibly with different access patterns [19,40,50]. These systems
require the capability to correctly and efficiently coordinate
concurrent accesses to a large-scale shared storage.

Lock is a common and essential approach to enabling cor-
rect concurrent accesses to a shared storage. A wealth of
research contributes to designing mutual exclusive locks (i.e.,
mutexes) and their variants [20, 22, 29, 33, 76], which grant
exclusive access (or write) permission of the shared storage
to at most one client at any time. Still, mutexes can be too
coarse-grained and, thus, inefficient. For this reason, range
locks become a preferable alternative since they allow finer-
grained concurrency, i.e., clients simultaneously operating at
disjoint parts of the same shared storage resource [35, 39].

Existing distributed range lock managers (DRLMs) grant
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and revoke locks with centralized server-side1 CPUs through
a remote procedure call (RPC) interface. However, with preva-
lent high-speed networks, CPU-oriented DRLMs cause perfor-
mance bottlenecks. First, they limit throughput because of the
mismatch between high network packet rate (e.g., 215 Mops/s
for NVIDIA ConnectX-6 [58]) and limited CPU resources
and that they need to perform CPU-consuming traversal and
modification to complex dynamic data structures upon lock
operations (e.g., the interval trees in Lustre [47]). Second,
they also incur high queueing latencies (4-5 network roundtrip
times, §2.2) due to the RPC paradigm. In latency-sensitive
scenarios like memory pools, a CPU-based DRLM can be-
come a major latency contributor in the critical path.

Remote Direct Memory Access (RDMA) offers a chance
to avoid the CPU bottleneck with its one-sided verbs that
can bypass server-side CPUs. However, taking this chance
requires a comprehensive re-design of the range lock protocol.
First, existing DRLMs are built atop dynamic data structures,
but RDMA incapacitates them due to the lack of support for
dynamic remote memory allocation. Second, these DRLMs
are also RDMA-unconscious and perform many memory
accesses to their data structures in lock operations, which
turn into excessive network roundtrips when using one-sided
RDMA, overshadowing RDMA’s high performances.

This paper proposes Citron, an efficient distributed range
lock manager. Citron acquires and releases range locks using
only one-sided RDMA to lift the burden off server-side CPUs
with an RDMA-conscious lock protocol based on static data
structures to exploit the full performance potentials of the
RDMA hardware. Specifically, Citron retrofits segment tree,
an RDMA-friendly static data structure, to manage lock en-
tries. Thus, Citron simplifies lock conflict resolution into the
communication between ancestor and descendant nodes on
the tree. To effectively handle dynamically positioned and
sized lock requests, Citron develops a protocol tightly inter-
woven with the range lock specs, the segment tree’s memory
layout, and the one-sided RDMA semantics. Clients lock at
different levels of the segment tree and pay nearly constant
costs to synchronize with conflicting peers. In the best case,
lock acquisition takes only two RDMA roundtrips.

1For disambiguation, in this paper, we use different terms for different
purposes: servers are counterparts of clients; machines are computers in the
distributed system; nodes are components of tree data structures.
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For a shared storage whose size grows, Citron provides a
mechanism to scale itself up (i.e., expand its capacity), lever-
aging the structural self-similarity of segment trees. Citron
enables scaling up the lock tree to a proper size with one-sided
RDMA and minimum server-side CPU intervention.

Citron offers several benefits. First, it is CPU-efficient. To
our knowledge, Citron is the first DRLM that uses only one-
sided RDMA for lock acquisitions and releases, which obvi-
ates the server-side CPU bottleneck. Second, Citron delivers
high performance. Evaluation shows that Citron outperforms
CPU-based range lock managers by up to 3.05× in throughput
and 76.4% in latency under different workloads.

2 Background

2.1 RDMA
RDMA is a network protocol with low latency, high through-
put, and low CPU overhead. Due to these benefits, numerous
distributed file systems [2,3,26,42,44,46,47,77], transaction
systems [5, 16, 31, 41, 72], and lock managers [13, 54, 79] are
built atop or compatible with RDMA.

Machines must equip RDMA-capable NICs (RNICs) to
communicate with RDMA. Clients first post RDMA verbs
to queue pairs (QPs) and later poll the completion queues
(CQs) associated with the QPs for completion events. RDMA
supports one-sided verbs, including read, write, atomic
compare-swap (CAS), and atomic fetch-add (FAA). Fur-
thermore, a wide range of off-the-shelf RNICs (e.g., from
Mellanox Connect-IB to NVIDIA ConnectX-7 [51,57–59])
also support masked atomic verbs [56], which perform simi-
larly to standard atomic verbs but have more flexibility.

For masked-CAS, users need to provide a compare bitmask
and a swap bitmask. The compare and swap steps are each
performed with regard to the corresponding bitmask. The
masked-out bits will not get compared or swapped.

For masked-FAA, users need to provide a bitmask that splits
the 8 bytes into different fields. Each set bit in the bitmask
indicates the left boundary of a field, and FAA is performed
separately within every field. The field boundaries can occur
at any position; non-byte-aligned fields are allowed.

2.2 Distributed Range Lock Management
CPU-based centralized solutions. Most existing DRLMs
rely heavily on server-side CPUs [3,9,47]. However, this kind
of solutions are notorious for their high CPU overheads and
the ensuing CPU bottleneck, including limited throughput
and high queueing latencies; see Figure 1(a).

First, executing complex range lock operations with limited
CPU resources not only bottlenecks the throughput but also
inevitably harms co-locating CPU-demanding services that
have little chance of being offloaded to the RNIC (e.g., path
traversal in a distributed file system). Second, in the RPC
paradigm, server-side CPUs fetch and process RPC requests
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Figure 1: Flaws of RPC-based DRLMs and our motivation.

from the RNIC-side queues. Under high concurrency, the re-
quests will queue in the RNIC, which results in high queueing
latencies. Also, when processing a range lock request, a CPU
core cannot process other ones in the same queue, even if they
do not conflict with each other logically.

We demonstrate the high latencies by running eRPC [30]
on a testbed consistent with §4.1. Clients synchronously send
RPCs to one server, and the RPC handler runs for 100 ns.
We measure the server-side queueing latency, i.e., the time
between the RPC arrives at the NIC and the CPU processes the
RPC, similarly to 2LClock [27]. Figure 1(c) shows the results.
With 32 clients, the average queueing latency is 5.4 µs, more
than 2× RDMA roundtrip times (RTTs). The p99 latency even
reaches 9.8 µs (4-5 RTTs).
Mutex-based decentralized solutions. Dividing ranges into
segments and associating each with a mutex is a strawman
solution to decentralized range lock management [35], but it is
only efficient when the access granularity is static and priorly
known. In the case of unaligned or dynamically-sized ranges,
this solution can suffer from a significant 92% throughput
decline and 5.65× higher tail latencies; see §4.2.

3 Design
Our design goal is a high-performance DRLM that leverages
one-sided RDMA to eliminate server-side CPU bottlenecks.
As shown in Figure 1(b), a one-sided RDMA-based DRLM
can remove the queueing latencies and offer higher throughput
by offloading all lock operations to the RNIC’s tailored ASIC,
thus exploiting the full performance potentials of the RNIC.

3.1 Challenges and Design Principles
Challenge 1. We need a one-sided RDMA-conscious data
structure that can efficiently manage dynamically positioned
and sized range locks and resolve their conflicts.
➥ Static tree structure for dynamic ranges. Citron maps
each requested range as precisely as possible to a constant
number of nodes on a segment tree, a static data structure, to
effectively manage dynamic range lock entries.

Challenge 2. To achieve low latency and high throughput,
we must tailor the lock protocol to reduce the critical path
lengths despite the complex range lock semantics.
➥ Minimized synchronization overhead. Citron’s protocol
couples tightly with RDMA semantics and the segment tree’s

298    21st USENIX Conference on File and Storage Technologies USENIX Association



6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21

2 3 4 5

1

0
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

N

Level 1

Level 2

Level 3

Figure 2: The structure and node indices of the lock tree.

layout, minimizing synchronization costs to nearly constant.
Acquiring a lock requires a minimum of only two roundtrips.

Challenge 3. Real-world storage resources are not always
fixed-size. Therefore, we must also efficiently handle a possi-
bly dynamically growing storage size.
➥ Runtime capacity expansion. While segment trees are
static, smaller trees can be seen as subtrees of larger ones.
Citron leverages this characteristic to enable scaling up the
tree’s capacity at runtime using a few server-side CPU cycles.

3.2 Basic Assumptions
Address space. Citron maintains range locks within an
abstract address space [0,∞). Multiple real-world scenarios
fit in this model, e.g., LBA ranges in distributed NVMe-oF
namespaces [62] and byte ranges in file systems [3, 47].
Cluster infrastructure. Aside from a lock server that hosts
Citron’s components (§3.3) in its DRAM, Citron requires
that there is a cluster manager (CM) and a metadata server
(MDS). The CM coordinates configuration changes (§3.5.5)
and detects client failures (§3.10). The MDS maintains the ad-
dresses of Citron’s components to enable the use of one-sided
RDMA. The CM and the MDS need not run on independent
machines: they can run on the lock server behind an RPC
interface. There are already mature solutions for CM and
MDS [17, 23, 48], so we need not discuss them here.
Clock well-behavedness. Citron assumes that the clocks of
all clients are well-behaved, i.e., they advance at nearly the
same speeds. Note that Citron does not require the clocks to
be synchronized. Prior studies report that the clock frequency
variation in a productional network is at most ±100 ppm [43]
or even ±20 ppm when static errors are filtered out [53], which
means that the clock drift is only up to ±0.1 ns or ±0.02 ns
per microsecond, more than sufficient for Citron.

3.3 Components of Citron
Citron maintains range locks with a lock tree and a spillover
mutex. The lock tree is responsible for locks within [0,N),
and the spillover mutex is for [N,∞), where N is specified
at initialization time. Citron further includes a maximizer to
enable clients to scale up the lock tree, i.e., to increase N.
Lock tree. The lock tree is a segment tree [4] – a perfectly
balanced tree in which each node represents a continuous
range. The root represents the entire range [0,N); for every
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Figure 3: 64-bit representations of internal and leaf nodes.

non-root node, it and its siblings each receive an equal and
continuous share of the range represented by their parent.
Such a structure determines that the range represented by any
node intersects only with its ancestors and its descendants.

Orthodox segment trees are binary trees [4]. However, we
define the lock tree in Citron as a quaternary segment tree,
which means that the degrees (i.e., numbers of children) of all
internal nodes are all four. Also, leaf nodes represent ranges
of size 64, not the 1 in the orthodox definition. These designs
aim to limit the tree height and, thus, the number of necessary
RDMA verbs to post per lock request.

Since all internal nodes have the same degrees, there is
no need for pointers in the lock tree. Instead, all nodes are
placed in a continuous flat array by level order and indexed
by positive integers (cf. heaps [74]). Tree navigation is simply
node index arithmetics. For example, Figure 2 shows the lock
tree’s first three levels and the node indices, in which the
widths of nodes correspond to their represented ranges. From
this figure, we can easily verify that for a node with index x,

Child(x, i) = 4x−2+ i (i = 0,1,2,3)
Parent(x) = ⌊(x+2)/4⌋

Spillover mutex. The spillover mutex represents [N,∞), i.e.,
it handles out-of-bound parts (w.r.t. the lock tree) of range
lock requests. It can adopt any design that is friendly to one-
sided RDMA. We use DSLR [79] to implement this mutex.
Maximizer. The maximizer is an initially-zero 8-byte vari-
able accessible by one-sided RDMA. A client modifies this
variable when it locks a range that is not contained within
[0,N). We will detail the usage of the maximizer in §3.9.

3.4 Formats of Lock Tree Nodes
All nodes in the lock tree are 8-byte variables accessible by
all kinds of RDMA one-sided verbs. Internal nodes and leaf
nodes have different formats and are manipulated by different
RDMA atomic verbs, as shown in Figure 3.
Leaf nodes. Leaf nodes are 8-byte bitmaps in which each
bit is associated with a unit of the shared storage. A set bit in
the bitmap indicates the corresponding unit of the resource
occupied by some client, and vice versa. Clients use RDMA
masked-CAS to set and clear each of the 64 bits.
Internal nodes. Each internal node divides into six fields.
Exp and Occ are flags, and the remaining four are counters.
Clients use RDMA masked-FAA to modify these fields.
{TCnt,TMax} and {DCnt,DMax} are two counter pairs

that follow the idea of Lamport’s bakery algorithm [38, 79].
Specifically, in each counter pair, Max is the next available
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Algorithm 1 Acquire range locks from Citron
1: procedure AcquireRangeLock(l, r)
2: A← [l,r)∩ [0,N)
3: if [l,r)∩ [N,∞) , ∅ then ▷ Out-of-bound
4: Acquire the spillover mutex
5: if A , ∅ then ▷ In-bound
6: AcquireLockOnTree(A.left, A.right)

“ticket number,” and Cnt is the ticket number that is currently
holding the lock. A client gets a ticket by performing an FAA
on the Max field, polls the Cnt field until it matches the ticket,
enters the critical section, and finally performs an FAA on the
Cnt field when the client finishes. The two counter pairs are
for different purposes: {TCnt,TMax} counts lock requests at
“this node,” while {DCnt,DMax} counts those at descendants.

As for the flags, Exp (stands for expanded) notifies clients
of a lock tree scale-up event. Occ (stands for occupied) blocks
conflicting lock requests at descendants if it is set. A node
with the Occ flag set will be called an occupied node.

Like prior studies [79], the bit widths of counters impose
a hard limit on the maximum concurrency of the system.
There may not be more than 215 −1 = 32767 clients access-
ing the same Citron instance concurrently; otherwise, the
overflowing counters can put Citron into an erroneous state.
Nevertheless, this restriction is tolerable in most scenarios.

3.5 Lock Acquisition
Algorithm 1 shows how a client acquires a lock on a range
[l,r). Since mutexes are already well-studied, here, we omit
the details about the spillover mutex and focus on the lock
tree. Without loss of generality, we now assume [l,r) is fully
contained within [0,N). Algorithm 2 shows the whole lock
acquisition procedure, which consists of two steps:

1. split the range properly into sub-ranges, such that each
of which corresponds to a single tree node;

2. acquire locks on each sub-range in ascending order.

For each sub-range and the corresponding node on the lock
tree (denoted as node hereinafter), the second step further
decomposites into four phases:

2(a). lock node if it is internal;
2(b). wait until all locks at node’s ancestors are released;
2(c). lock node if it is a leaf, otherwise occupy it;
2(d). notify node’s ancestors and wait for its descendants.

Below, we elaborate on each of the two steps and the four
phases of the second step. For convenience and readability,

• we call our protagonist “Alice”: she is a client trying to
acquire a range lock, and we describe what she will do;

• we use the adjectives low and high to describe tree nodes
that are far from and close to the root;

• we describe masked-FAA with variadic arguments (a pair
per field to FAA) instead of bitmasks (Line 3).

Algorithm 2 Acquire a range lock from the lock tree
1: ▷ Function signatures of RDMA masked atomic verbs ◁
2: def MaskedCAS(addr, cmp, cmpMask, swap, swapMask)→ boolean
3: def MaskedFAA(addr, field1, add1, [field2, add2, [. . .]])→ uint64

4: procedure AcquireLockOnTree(l, r, k = 2, m = 4) ▷ Step 1
5: nodes← SolveKnapsack(l, r, k)
6: for all node ∈ nodes in ascending order do
7: repeat ret← LockNode(node, l, r, m) until ret = Acquired

8: procedure LockNode(node, l, r, m) ▷ Step 2
9: if node is internal then ▷ Phase (a)

10: ticket←MaskedFAA(node, TMax, 1)
11: repeat val← RdmaRead(node) until val.TCnt = ticket.TMax
12: cleared← node ▷ Phase (b)
13: while cleared , root do
14: {anc} ← RdmaRead(all ancestors of cleared)
15: if root.Exp = 1 then return Aborted
16: next← the lowest node in {anc} with Occ , 0
17: if next = nil then break
18: repeat val← RdmaRead(next) until val.Occ = 0
19: cleared← next
20: if node is a leaf then ▷ Phase (c)
21: mask← bitmask of [l,r)∩node.range
22: if not MaskedCAS(node, 0, mask, mask, mask) then
23: if MaskedCAS kept failing for too long then
24: return LockNode(Parent(node), l, r, m)
25: else
26: goto Line 12
27: else
28: MaskedFAA(node, Occ, 1)
29: t0← current time ▷ Phase (d)
30: {ancnotify} ← every m-th ancestor of node
31: MaskedFAA({ancnotify}, DMax, 1), RdmaRead(root)
32: if possible time limit excess then return Aborted
33: if {ancnotify}.highest.Exp = root.Exp = 1 then return Aborted
34: if node is internal then wait until t0 +Twait
35: for desc ∈ {node and its internal descendants within m levels} do
36: repeat val← RdmaRead(desc) until val.DCnt = val.DMax
37: return Acquired

3.5.1 Step 1: Split the range
In this step, Alice decides which node(s) to lock. This step
incurs zero network traffic because Alice knows the structure
of the lock tree in advance and can do all computations locally.

With a segment tree, any continuous range can be expressed
as an aggregate of O(log N) tree nodes [4]. As a result, Alice
has to lock Θ(log N) nodes to precisely lock the range [l,r) in
the worst case. However, this can result in high latencies since
the nodes must be locked sequentially to prevent deadlocks.

A strawman solution is to simply lock the lowest node
whose represented range completely covers [l,r). However,
this can result in severe false conflicts. For example, imag-
ine that Alice wishes to lock [N/2− 1,N/2+ 1): the lowest
node that covers this small range would be the root, which
unfortunately conflicts with all other lock requests.

Citron strikes a balance by allowing Alice to lock up to k
nodes that cover the requested range together. To reduce false
lock conflicts, Citron tries to minimize the covered but unre-
quested range. This optimization goal can be formulated into a
tree knapsack problem [37] and solved by existing algorithms.
Our knapsack algorithm has a time complexity of O(k2 log N),
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which usually finishes within 0.5 µs when properly optimized
and hardly harms lock acquisition performances. Increasing
k trades latencies for fewer false conflicts and vice versa. In
our implementation, we fix k to 2 for low latency purposes.

Procedure AcquireLockOnTree in Algorithm 2 shows how
this step works. Alice first runs a knapsack algorithm to find
the optimal combination of the nodes to lock (Line 5). Then,
she locks the nodes sequentially (Lines 6-7).

3.5.2 Step 2(a): Lock an internal node
In this phase, Alice acquires the lock at node if it is an internal
node. The workflow follows Lamport’s bakery algorithm [79].
Specifically, Alice first increments the TMax field of node to
get a “ticket.” Then, she polls the TCnt field until it matches
the TMax field of the ticket (Lines 10-11).

Alice does not lock node if it is a leaf. Instead, she defers
locking node to Step 2(c) to facilitate failure recovery (§3.10).
Were she to lock node here, Citronwould be unable to recover
to a normal state if Alice crashed before releasing her lock.

3.5.3 Step 2(b): Wait for node’s ancestors
From this phase, Citron starts to resolve conflicts between
different nodes. The major principle is that among multiple
concurrent lock requests, Citron prioritizes the smallest range
because it is usually also the most latency-sensitive one.

As we have discussed before, all ancestors of node conflict
with it. If there is a held lock at one of node’s ancestors, Alice
must wait until it is released. Furthermore, there can be higher
occupied ancestors of node, which belong to lock requests
that arrive earlier than Alice’s but are still waiting because
Citron prioritizes smaller ranges. To ensure fairness, Alice
should also wait for these lock requests to complete.

This phase consists of multiple iterations. In each iteration,
Alice first reads the ancestors of node from the lowest one
possibly occupied (Line 14) and checks their Occ flags to see
if occupied nodes exist. If there are any, the lowest one is

selected (Line 16). Alice waits until the lock at the selected
node gets released (Line 18), which ends her current iteration.
In the next iteration, Alice only needs to check the ancestors
of the previously selected node (Line 19). She repeats this
process until node’s all occupied ancestors are released.

Note that Alice cannot read the ancestors of node only once
because other clients might issue new range lock requests to
nodes higher than any existing lock. Due to unlucky timing,
these clients can occupy the nodes they are locking without
being aware of the lock requests below. The lock protocol
ensures that these clients will get notified of all lock conflicts
in Step 2(d) (§3.5.5), so there are no correctness concerns.
However, Alice must repeatedly check node’s ancestors to
detect these possible new lock requests.

3.5.4 Step 2(c): Occupy or lock node
Alice can ensure no held locks at node’s ancestors now. The
remaining lock conflicts can only locate at node’s descendants
for an internal node, or node itself for a leaf node.

If node is internal, Alice needs to set its Occ flag with an
RDMA masked-FAA. The reason is that Alice should wait for
lock requests at node’s descendants (because they are more
prioritized than Alice’s), but she must not wait indefinitely.
By setting node’s Occ flag, newly arriving lock requests at
node’s descendants will detect and wait for Alice in their Step
2(b), which ensures finite wait time for Alice.

If node is a leaf, Alice needs to post an RDMA masked-
CAS verb to lock the corresponding bits of node. On success,
Alice finishes this phase. On failure, she must return to the
beginning of Step 2(b) because other clients could have set
the Occ flags of node’s ancestors, as discussed above.

Starvation avoidance. When node is a leaf, a series of failed
masked-CASs might cause lock starvation. Citron offers a
workaround: if Alice keeps getting masked-CAS failures for
a certain period, instead of returning to Step 2(b), she can
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optionally set node to its parent, restart the lock acquisition
procedure, and switch to the starvation-free Lamport’s bakery
algorithm since node is now internal (Line 24).

3.5.5 Step 2(d): Notify ancestors, wait for descendants
Let desc be an arbitrary descendant of node. Assume Bob is
another client that is trying to acquire a range lock at desc
concurrently with Alice. Although Bob conflicts with Alice,
they are both unaware of each other’s existence. A mechanism
is therefore needed to allow Bob to notify Alice of a lock
conflict and also to allow Alice to detect this conflict.

There are two strawman solutions. In the first solution, Bob
is responsible for notifying all ancestors of desc. However,
this can result in high latencies for small range lock requests:
the lower desc is, the more ancestors it needs to notify. In
the second solution, Alice is responsible for checking all
descendants of node for possible conflicts. However, this can
result in excessive network traffic since the number of node’s
descendants increases exponentially as node becomes higher.

Inspired by meet-in-the-middle (MITM), a common idea in
computer science, we employ a combination of the solutions
above to synchronize Alice and Bob. Specifically, Citron
maintains a globally consistent parameter: m, the MITM dis-
tance. Starting from desc’s parent node, Bob notifies desc’s
every m-th ancestor (Lines 30-31). Alice, on the other hand,
checks all node’s descendants within m layers on the lock tree,
as well as node itself (Lines 35-36). This solution ensures
that no matter where node and desc locate, Alice will check a
node that Bob notifies and thus detect the lock conflict.

For Bob, this solution reduces his notification overheads
by a factor of m, which is efficient enough even with a small
m. For Alice, she needs to read and check (4m −1)/3 nodes.
Recall that the nodes of the lock tree are placed in the memory
by level order and will only form m continuous blocks in the
memory layout. Therefore, Alice only needs to post m RDMA
reads, which is an acceptable cost. In our implementation, we
set m = 4. Also, to avoid contention of RDMA atomic verbs,
Citron does not notify nodes in the top m− 1 levels of the
lock tree except for node’s parent. Instead, Citron replaces
them with nodes in the m-th level.

We still need to ensure that Bob notifies desc’s ancestors
before Alice checks one of them. To this end, Alice waits for
a period of time Twait before she checks node’s descendants
(Lines 29 & 34). Bob ensures that he finishes notifying desc’s
ancestors before Alice stops waiting; otherwise, he aborts his
lock request (Line 32). The foundations of this solution are
(1) the well-behavedness of the clients’ clocks and (2) the
fact that the server-side RNIC executes inbound writes and
atomics as if in a global order (i.e., linearizability).

For convenience, we assume an imagined global wall clock
in the following discussion. Suppose Alice waits in the time
interval [t0, t0+Twait), where t0 is a global time point. There-
fore, the deadline for Bob’s notification is t0+Twait.

Recall that Bob performs RDMA reads to ancestors of desc

in Step 2(b) to check if there are any occupied nodes. From
this phase, Bob can find a time point t1 at which Alice has
not started waiting. Specifically, if any RDMA reads find an
occupied ancestor of node, t1 is the time when Bob posts the
last of those. Otherwise, t1 is the post time of the last RDMA
read in Step 2(b). Since Alice only starts waiting after she
sets node’s Occ flag in Step 2(c), t1 < t0 must hold because
of RDMA’s linearizability. Say Bob finishes notifying desc’s
ancestors at time t2. Bob verifies that

t2− t1 ≤ (1−δ) ·Twait (1)

where δ is the bound of clock drift. Since Bob does not know
where node locates at, he needs to record a t1 and verify the
equation above for every ancestor of desc.

Despite the non-existence of an imagined global wall clock,
Bob can use his local clock to compute t2 − t1 because it is
well-behaved. We use the number from Sundial [43] and
set δ = 10−4. Bob will abort his lock acquisition process if
Inequation (1) does not hold. The process of aborting a lock
request is the same as releasing the lock, and we will detail
the procedure in §3.6.

To decide Twait, we count the maximum number of RDMA
roundtrips from t1 to t2 and reserve a unit of time for each
roundtrip. On our testbed, the RDMA RTT is around 2 µs;
conservatively, we reserve 5 µs for each roundtrip. Therefore,
Twait = 15 µs: Alice waits for up to two RDMA reads in Step
2(b) and a batch of RDMA masked-FAAs in Step 2(c)+(d).
A complete Step 2(d). In the discussions above, we make
Bob notify Alice and make Alice wait for Bob. However, we
can imagine swapping the roles of Alice and Bob to see that
they are actually symmetric clients and need to do what each
other does. In other words, Alice needs to both notify node’s
ancestors and wait for notification from node’s descendants.
Tuning the parameters. Step 2(d) relies on properly selected
m and Twait to perform well. Increasing either parameter will
trade performance of large range lock requests for small ones,
and vice versa. Therefore, clients can profile the performance
of lock requests (e.g., throughput and lock abort rate, §4.7) and
send the profiled data to the cluster manager (CM), enabling
the CM to make tradeoffs and tune the parameters.

The CM can employ a two-phase commit (2PC) protocol to
adjust the parameters. Suppose we wish to change (m,Twait)
from (mold,Told) to (mnew,Tnew). The CM first broadcasts
(mnew,Tnew) to all clients. Upon receiving the parameters, a
client acknowledges the CM and, in lock acquisition, uses

• min {Told,Tnew} to determine whether it should abort,
• max {Told,Tnew} when waiting for node’s descendants,
• min {mold,mnew} when notifying node’s ancestors, and
• max {mold,mnew} when checking node’s descendants.

After confirming that all clients have already received the new
parameters, the CM sends “commit” messages to make clients
switch entirely to m = mnew and Twait = Tnew.
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Algorithm 3 Release a range lock back to the lock tree
1: procedure ReleaseLockOnTree(l, r)
2: for all node ∈ locked nodes do
3: if node is a leaf then
4: mask← corresponding bitmask of [l,r)
5: MaskedCAS(node, mask, mask, 0, mask)
6: else
7: MaskedFAA(node, Occ, −1, TCnt, 1)
8: for all anc ∈ notified ancestors of node do
9: val←MaskedFAA(anc, DCnt, 1)

10: if anc is the highest notified node and val.Exp , 0 then
11: Fetch and update the new tree configuration if needed
12: Continue the for all loop for new ancestors of anc

3.6 Lock Release
Algorithm 3 shows the lock release procedure. If node is a leaf,
Alice unlocks it with masked-CAS (Lines 3-5); otherwise, she
vacates node by adding the TCnt counter and clearing the Occ
flag with masked-FAA (Line 7). Also, for all node’s ancestors
that have been notified during lock acquisition, Alice adds
their DCnt counters (Lines 8-9). All these RDMA verbs can
be batched together to reduce latency.

3.7 Proof Sketch of Correctness
Range locks in Citron consist of nodes on the lock tree and
possibly a spillover mutex, all of which are acquired separately
and sequentially. The correctness of the spillover mutex is
already proven [79]. Therefore, we only need to prove the
correctness of a lock on a single tree node. Alice is still our
protagonist in the proof sketch.
Safety. Safety means that Citron does not simultaneously
grant locks to Bob – a conflicting client – and Alice. As
shown in Figure 4, no matter when Bob arrives and where he
locates on the lock tree, Citron will resolve the lock conflict
between Alice and him. Specifically, Steps 2(a)+(c) ensures
that no conflicting clients exist at node: 2(a) for an internal
node, and 2(c) for a leaf node. Steps 2(b) and 2(c)+(d) ensure
respectively that no held locks exist at node’s ancestors and
descendants. Step 2(d) further ensures that:

1. if Bob is at a descendant of node, Alice will wait until
he releases his lock or aborts;

2. if Bob is at an ancestor of node, he will wait until Alice
releases her lock or aborts.

Therefore, when Alice enters the critical section, no conflict-
ing held locks may exist. □

Liveness. Liveness means that without infinitely long criti-
cal sections, Alice’s lock acquisition procedure will always
take some finite amount of time to return (the result could
be Aborted, though). Specifically, Step 1 is finite. Step 2(a)
employs Lamport’s bakery algorithm, which is starvation-free.
Step 2(c) is obviously finite for an internal node, and is also
finite for a leaf node, thanks to the starvation avoidance mech-
anism. For Steps 2(b) and 2(d), Alice can only wait for a finite
number of clients in each phase. Because these clients will

eventually abort or release their locks, these phases are also
finite. To sum up, lock acquisition takes a finite time. □

3.8 Fast Path Optimization
Several optimizations apply to the lock acquisition path when
Citron is not under severe contention.

First, RDMA ensures that it will not reorder any one-sided
verb before previous writes and atomics in the same QP [66].
Thanks to this ordering guarantee, Alice can batch the RDMA
verbs in the lock acquisition path together. In Step 2(b), all
reads in an iteration can be batched (Line 14). In Step 2(d),
the notification to node’s ancestors and the read to the root
can be batched (Line 31). Further, Steps 2(a) and 2(b) can be
optimistically batched in the hope that Step 2(a) immediately
succeeds. More aggressively, Steps 2(c) and 2(d) can also be
batched, but Alice needs to roll back the notification to node’s
ancestors in Step 2(d) (by adding DCnt) if node is a leaf and
the masked-CAS verb in Step 2(c) fails.

Second, if node’s children are all leaf nodes, Alice can
explicitly lock all node’s descendants to skip the wait time in
Step 2(d). Specifically, she post masked-CAS verbs to all its
children to set all 256 bits from 0 to 1. If all these masked-
CAS verbs succeed, she can skip the wait and directly enter
her critical section. Otherwise, she needs to fall back to the
regular lock acquisition path and also clear the bits of modified
children nodes. The RDMA masked-CASs can be batched
with the atomic verbs in Steps 2(c) and 2(d).

With these optimizations, optimistically, acquiring a lock
takes only two RDMA roundtrips, ensuring low latencies.

3.9 Scaling the Lock Tree
In real-world scenarios, a shared storage resource can be of a
dynamic size (e.g., append-only log). If the storage size grows,
Citron’s lock tree might be unable to cover the lock requests,
which can cause performance degradation. On the other hand,
if the storage size shrinks, maintaining unused nodes in the
lock tree will result in extra memory consumption. Therefore,
it is necessary for Citron to react to storage size changes.

3.9.1 Scale up
The size of a storage resource can grow upon writes. When
this happens, out-of-bound lock requests not contained within
[0,N) will contend for the spillover mutex. Overprovisioning
the lock tree will inflate Citron’s DRAM footprint, of which
a considerable percentage is wasted, while a stop-the-world
synchronized scaling up mechanism will cause significant
synchronization overheads. To solve this problem, leveraging
the structural self-similarity of segment trees, i.e., small trees
can be viewed as subtrees of large ones, Citron provides an
option to scale up the lock tree at runtime.

Citron uses masked-CAS to decide how large the lock tree
should scale up to. Note that masked-CAS offers bitwise-OR
semantics when the compare mask is zero. For this reason,
Citron contains a maximizer: the clients can OR the right
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Algorithm 4 Scale up the lock tree
1: procedure ScaleUpLockTree
2: Acquire the spillover mutex
3: Send an RPC to server to allocate free and zeroed memory
4: for all node ∈ top m levels of the old lock tree, by index order do
5: v←MaskedFAA(node, Exp, 1)
6: for i = m,2m,3m, . . . do
7: anc← i-th ancestor of node in the new lock tree
8: MaskedFAA(anc, DCnt, v.DCnt, DMax, v.DMax+ v.Occ)
9: Update the metadata service to renew the lock tree configuration

10: RdmaWrite(maximizer, 0)
11: Release the spillover mutex

5 6 7 8 9 10 11 12 13 14 15 16

2 3 4Exp = 1

1

Newly allocated space

MDS

new root

subtree
(old root)

Figure 5: Demonstration of a lock tree scale-up process.

boundaries of out-of-bound lock requests to the maximizer
with one-sided masked-CAS, enabling the detection of such
lock requests. The maximizer’s value is at most 2× of the
actual maximum, which is accurate enough because the mini-
mum scale-up factor of the lock tree is 4×.

If Alice is willing to scale up the lock tree, she can read
the maximizer via RDMA and perform the scale-up if she
finds a non-zero value. Algorithm 4 shows the procedure of
scaling up. Alice first acquires the spillover mutex (Line 2)
to both ensure lock safety and prevent simultaneous scale-up
attempts. Then, Alice sends an RPC to the server to allocate
the expanded part of the segment tree (Line 3). The original
lock tree is not moved and will form a new enlarged tree with
the newly allocated nodes, as shown in Figure 5. Alice then
sets the Exp bits of all nodes in the top m levels of the old lock
tree to notify other clients of the scale-up event (Lines 4-5).
She also needs to propagate these nodes’ DCnt and DMax
counters to their new ancestors (Lines 7-8). Note that an oc-
cupied node accounts for an extra unit of DMax. Finally, Alice
updates the metadata service with a renewed configuration
containing addresses of both original and expanded parts of
the lock tree, clears the maximizer, and releases the spillover
mutex to finish scaling up the lock tree (Lines 9-11).

With off-the-shelf RNICs that do not support one-sided
memory allocation, we must rely on the server-side CPUs to
allocate memory and register it to the RNIC. However, this is a
lightweight task compared with CPU-based lock management
and can hardly cause any server-side CPU bottleneck.
Handling scale-ups in lock acquisition. When acquiring a
lock (Algorithm 2), Bob, another client, must take into con-
sideration that Alice can concurrently scale up the lock tree.
Specifically, in Step 2(b), Bob checks the Exp flag whenever
he reads the root (Line 15): a set Exp indicates a concurrent
scale-up. In Step 2(d), Bob needs to read the root after notify-

ing node’s ancestors. If the Exp flags of the highest notified
ancestor of node and the root are both set (Line 33), there must
be a concurrent scale-up. Bob handles concurrent scale-ups
trivially: he aborts and retries.
Handling scale-ups in lock release. The lock tree can also
be scaled up after Bob acquires a lock and before he releases
it. Alice will notify the new ancestors of node on behalf of
Bob. Therefore, Bob should also add the DCnt counters of the
new ancestors of node (Algorithm 3, Lines 10-12).
Node index arithmetics. For a node x in the enlarged part of
the lock tree, by simply offsetting the number of nodes in the
old lock tree that lie ahead of x in the level order, the node
index arithmetics rules described in §3.3 still hold.
Impact to Step 2(d) of lock acquisition. Scaling up the
lock tree can break the continuous memory layout of the tree
nodes in the memory, which can affect Step 2(d) of the lock
acquisition path. To detect Bob, Alice originally only needs
to post m RDMA reads, but with a scaled-up lock tree she
will possibly need to post more. However, even in the worst
case, the number of RDMA reads is only m(m+1)/2, which
is still acceptable when m is small (e.g., for our m = 4 setting,
the number of RDMA reads is 10) because all these reads can
be parallelized. The extra reads can also be reduced by setting
a larger minimum scale-up factor (e.g., 16×).

3.9.2 Scale down
Different to scaling up, scaling down cannot be triggered by
writes and is in most cases intrinsically a blocking operation.
For example, in file systems, calling ftruncate to shrink a
file will take its inode mutex and block all other I/O attempts.
During a blocking scale-down operation, Citron can safely
shrink its lock tree by removing all nodes except a subtree.

3.10 Handling Client Failures
To enable recovery, all clients must agree with a lease time
Tlease and that a range lock must be released within Tlease.
Detection. Citron relies on the cluster manager (CM) to de-
tect client failures. The CM notifies the lock server to destroy
the RDMA QPs that were connected with the failed clients.
Recovery. Citron recovers lazily. Alice detects a failure if
she spins at a place for longer than Tlease during lock acqui-
sition, including Lines 11, 18, and 36 in Algorithm 2. Also,
Alice suspects a failure if she fails too many times at Line 22.
Line 11. Alice detects a failure when TCnt and Occ are both
unchanged for Tlease. Shen then waits for up to (∆−1) ·Tlease,
where ∆ is the gap between node’s TCnt and her ticket’s TMax.
If TCnt and Occ remain unchanged, Alice sets node’s TCnt
field to her ticket’s TMax and clears node’s Occ flag to recover.
Line 18. Alice detects a failure when TCnt of an ancestor
of node is unchanged for Tlease. She aborts the current lock
request and tries to lock that ancestor instead, reducing the
problem to the situation of Line 11, which we have already
discussed above.
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Codename Type Lock Management Scheme Description

MT I Maple tree [21] A modern data structure dedicated to efficiently managing disjoint ranges,
ported from Oracle Linux UEK.

IT I Interval tree [47] A representative implementation of interval tree ported from Lustre, in which
it is used to manage range locks upon file I/O requests.

LLC I
Lock-free linked list [36]

A range lock manager that chains lock entries in a lock-free linked list.

LLD II Same as above, but all the CPU atomic instructions are replaced with RDMA
one-sided atomic verbs to make the lock manager decentralized.

SS II Static segmentation [35] The whole range is divided into fixed-size segments, each associated with a
DSLR [79] instance, a state-of-the-art RDMA-based decentralized mutex.

Table 1: Baseline systems used in evaluation.

Line 36. Alice detects a failure when DCnt is unchanged for
H · Tlease, where H is node’s height in the lock tree. Since
H ≥ 1, Alice is sure that no clients are holding locks at node’s
descendants and can set node’s DCnt to its DMax to recover.
Line 22. Alice cannot distinguish between lock starvation
and client failures when she repeatedly fails to lock node
with masked-CAS. However, she can acquire a lock at node’s
parent and then check if node is zero. If not, Alice detects a
failure and zeroes node with an RDMA write to recover.

The recovery time is dominated by the user-defined lease
time Tlease. Aside from waiting for lease expiration, Alice
only needs one RDMA operation to perform the recovery.
In practice, Tlease is usually set to several milliseconds (e.g.,
10 ms in [79]); with larger ranges, Tlease can also be longer.

4 Evaluation
In this section, we use a number of benchmarks to evaluate
Citron, seeking to answer the following questions:

• How does Citron compare against existing lock managers?
(§4.2, §4.3)

• What are the performance effects of the fast path? (§4.4)
• How well does Citron scale up itself? (§4.5)
• How does splitting ranges reduce false conflicts? (§4.6)
• What is the lock abort rate of Citron? (§4.7)

4.1 Experiment Setup
Our testbed consists of 4 machines, one acting as the lock
server and the other as clients. Each machine is equipped with
two Intel® Xeon® Gold 5220 CPUs running at 2.20 GHz,
256 GB DDR4-2666 DRAM, and a Mellanox ConnectX-6
RNIC via PCIe 3.0 ×16 interface. All machines run Ubuntu
18.04 with Linux kernel version 4.15.0 and are connected by
a Mellanox QM8790 InfiniBand switch.
Lock tree configuration. Except in §4.5 (in which we need
to scale up the lock tree), the lock tree is always initialized
with N = 228. This is to simulate a large-scale scenario where
1 TB space is divided into 4 KB pages and managed by Citron.
As a result, the lock tree contains 5.6 million nodes and the
Citron instance takes up 42.7 MB of memory, which is only
about 0.004% of the total storage amount.
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Figure 6: Throughputs and latencies of Citron and baseline
systems with different range lock sizes.

Baseline systems. All baseline systems are shown in Table 1,
which can be classified into the following two types.

I. Server-side CPUs are fully responsible for acquiring and
releasing locks, and they accept clients’ requests using
eRPC [30], a state-of-the-art RDMA RPC engine.

II. Clients leverage one-sided RDMA to acquire and release
range locks and server-side CPUs are idle.

The number of threads. The server machine runs 18 RPC
server threads when evaluating baselines of type I. For clients,
we enable hyperthreading and run up to 64 worker threads in
each client machine, each thread on a separate logical core.
As a result, the maximum number of clients is 3×64 = 192.

4.2 Microbenchmarks
In this experiment, we set the range sizes to L = 1, L = 16, and
L = 256 respectively. For static segmentation (SS), we con-
sider three different situations in terms of the segment size: (1)
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Figure 7: Throughputs by range size of Citron and baseline
systems under a mixed-size workload.

exactly the range size L (SS-Exact), (2) overestimated to 8L
(SS-Over), and (3) underestimated to L/8 (SS-Under). The
left borders of the requested ranges are subject to a Zipfian-0.9
distribution on [0,N −L]. Figure 6 shows the results.

In terms of median latency, in almost all cases, Citron per-
forms comparably to the best of the baselines, namely MT, LLC,
and SS-Exact. This matches our expectation because Citron
needs a similar number of RDMA roundtrips to these base-
lines to acquire a range lock. We focus on the lock manager’s
tail latencies below.

When L = 1, range locks are equivalent to mutexes. As ex-
pected, Citron underperforms SS-Exact. It delivers 44.6%
lower throughput (i.e., locks granted per second) and 1.83×
higher p99 latency on average. However, this gap is because
the access granularity is static and correctly known in ad-
vance. If this requirement is not met, the performance of SS
will drop dramatically: SS-Over and SS-Under deliver peak
throughputs of only 83.2% and 16.6% compared to that of
Citron, and they suffer from 3.77× and 4.68× higher p99
latencies, respectively on average. The results demonstrate
that the static segmentation mechanism is unfit for dynamic
workloads whose I/O granularities vary.

When L is 16 or 256, because of unaligned ranges, static
segmentation causes severe false lock conflicts and degrades
performance. Citron delivers 28.7% and 38.6% higher peak
throughputs and significantly lower tail latencies than SS.

Type I baseline systems that rely heavily on server-side
CPUs are all bottlenecked by CPUs under high contention.
Citron avoids such bottleneck and has 1.56× and 1.76× peak
throughputs than these baselines for L = 1 and L = 16. When
L = 256, Citron shows similar peak throughput to LLC but
in average 24.6% lower tail latencies. Under low contention,
due to the efficient eRPC engine and low CPU burdens, the
queueing latencies are lowered to a sub-microsecond level
and the baselines can show tail latency advantages to Citron.
Unfortunately, such advantages vanish quickly as the number
of clients increases.
LLC performs significantly better than LLD because their

lock management scheme, i.e., the lock-free linked list, is
CPU-friendly but RDMA-unfriendly. LLC performs pointer
chasing which has very limited overheads on the CPU. How-
ever, with RDMA, each step of pointer chasing takes one
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Figure 8: Throughputs and latencies of Citron and baseline
systems under the BT-IO workload. Latency is log scale.

RDMA roundtrip, leading to high latencies and low perfor-
mance. This demonstrates the unfeasibility of simply porting
existing range lock managers to one-sided RDMA.

We also test a mixed workload where each of the range
sizes described above accounts for one-third of the client
threads. For SS, we test three granularities: 1, 16, and 256.
Figure 7 shows the results. Citron delivers higher through-
puts than baselines under high contention: it outperforms the
best baseline by 27.7%, 51.7%, and 55.9% with 63, 129, and
192 client threads, respectively. Also, Citron grants higher
throughput to small range locks without starving large ones.

In summary, Citron delivers the overall best performance
for different range sizes under high contention. However,
Citron can be suboptimal for mutex-only workloads.

4.3 Application Benchmarks
We build a distributed in-DRAM file system CitronFS to
evaluate Citron and baseline lock managers under realistic
workloads. CitronFS follows Octopus’s design [46] but stores
all data in DRAM. It implements cacheless file I/O that can be
protected by either per-file byte-range locks or inode mutexes.
The server machine serves file metadata, while the three client
machines stores file data.

4.3.1 BT-IO: a non-conflicting I/O workload
This experiment runs the Class D BT-IO [75] workload in
the NAS Parallel Benchmarks [55] with different process
counts. This application performs non-conflicting interleaved
writes and reads to a total of 135.8 GB of data in a single
file; different process counts lead to different I/O granularities
ranging from 2040 B to 16320 B. Figure 8 shows the results.

With Citron, the I/O bandwidth of CitronFS reaches a
maximum of 3.90 GB/s, which is 3.05× and 2.13× to those
with LLC and SS-Exact, the best CPU-based and one-sided
RDMA-based baselines, respectively. Citron outperforms
LLC and SS-Exact by 1.89× and 1.52× on average. Com-
pared with LLC and other CPU-based baselines, Citron deliv-
ers a 73.4% p99 latency reduction on average.

The underlying reason is that the range locks uniformly
span the whole range because BT-IO is a non-conflicting
workload. Therefore, CPU-based range lock managers need
to maintain larger data structures for more concurrent lock
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Lock Scheme Throughput (kops/s) Reader 99% Latency (µs)
Citron 781.4 59.6
MT 220.6 2043.4
IT 503.1 118.7
LLC 847.5 430.9
LLD 144.8 442.0
SS-4KB 575.3 56.1
Mutex 173.8 295.2

Table 2: Throughputs and latencies of Citron and baseline
systems under the Filebench OLTP workload.

entries and perform memory (de)allocations more frequently,
aggravating the CPU bottleneck. Citron, SS-1, and LLD avoid
such bottlenecks by using only one-sided RDMA. Compared
with LLD, Citron requires much fewer network roundtrips
and has significantly lower latencies. Compared with SS-1,
Citron leverages RDMA masked-CAS, which can obviate
false lock conflicts and also minimize the number of locks to
acquire, resulting in higher performances.

4.3.2 Filebench OLTP: a conflicting I/O workload
This experiment runs the Filebench [68] OLTP workload
modified to run distributedly. This application runs reader
and writer threads that operate on a dataset of 10 data files
and a log file, all 10 MB sized. Each client runs 1 log file
writer, 10 data file writers, and 50 readers. In each client,
readers perform random 8 KB reads to data files, while writers
perform 100 random 8 KB random writes evenly to all data
files per 1000 reads and one 256 KB write to the log file per
3200 reads. We use 4 KB (i.e., page size) as the granularity
for static segmentation (SS). Table 2 shows the results.

Overall, CitronFS delivers the second highest I/O through-
put with Citron, 7.8% lower than that with LLC. However,
LLC shows 7.2× p99 latencies compared with Citron, which
demonstrates that Citron can avoid the CPU bottleneck by
eliminating the RDMA CQ queueing latencies.

Another baseline system, SS-4KB, shows similar latencies
to Citron for readers because they share similar numbers of
necessary RDMA roundtrips to acquire and release a lock.
However, Citron delivers 35.8% higher throughput for two
reasons. First, when using SS-4KB, CitronFS is bottlenecked
by the inefficient log writer that needs to acquire 64 mutexes to
perform a write. Second, Citron is more friendly to the CPU
cache because it reduces memory footprint by compressing
lock entries into bitmaps, which brings higher performance
thanks to Intel’s Data Direct I/O technology [24].

4.4 Effects of the Fast Path
We measure the performance of Citron with and without the
fast path optimization (§3.8) to understand its benefits. We
use the same fixed-size microbenchmark as in §4.2 and set the
range sizes to L = 16 and L = 256, respectively, to evaluate the
fast path for both small and large ranges. The left borders of
the requested ranges are subject to a Zipfian-α distribution on
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Figure 9: Performance effects of the fast path optimization.

[0,N −L], for which we adjust the skewness factor α from 0
(i.e., uniform) to 0.99 (i.e., highly skewed). We fix the number
of threads to 96. Figure 9 shows the results.

For L = 16, the fast path does not significantly affect
Citron’s throughputs because it simply batches the RDMA
verbs in Steps 2(c) and 2(d) in the lock acquisition workflow.
However, by batching RDMA verbs together, the fast path
saves a network roundtrip from the critical path, reducing the
median latency by 2.4 µs (21.5%) on average.

For L = 256, the fast path contributes to higher throughput
and lower latency. The fast path effectively eliminates the wait
time in Step 2(d), which reduces lock acquisition latency and
increases the throughput. On average, enabling the fast path
improves the throughput by 34.3%. When α ≤ 0.70, the fast
path reduces the median latency by 11.5 µs (39.4%). However,
when most lock requests conflict with each other (α > 0.70),
the fast path lengthens the critical path and wastes RDMA
IOPS, resulting in increased median latency (4.8 µs, 17.4%
higher than that without the fast path when α = 0.99). Note
that non-conflicting lock requests still benefit from the fast
path, which brings higher throughput.

Also, we observe that the fast path shows no significant
impact on the p99 latencies. The reason is straightforward:
the tail latencies stem from lock requests that cannot benefit
from the fast path. We omit the results due to limited space.

4.5 Performance with Scale-ups
We use a trace collected from the hard-write workload of
the IO500 benchmark [25] to evaluate the scale-up process
of Citron. In this workload, 64 I/O threads repeatedly write
47008 B data to a large shared data file in parallel. Offsets of
the writes continue to increase, resulting in a constantly grow-
ing file size. The whole trace consists of 12.8 million writes.
We only acquire and release range locks without performing
writes to avoid shadowing the impacts of scale-up events.

We initialize Citron with N = 210 (i.e., 4 MB size, has
scale-ups) and compare the results with N = 228 (i.e., no need
for scale-ups). When N = 210, each client machine runs a
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Figure 10: Lock/unlock-only throughput of Citron with and
without scale-ups under the IO500 hard-write workload.

background thread that polls the maximizer once per 10 ms
and scales up the lock tree whenever necessary. The server
runs one eRPC thread to serve lock tree metadata queries and
memory allocation requests. Figure 10 shows the results.

The scale-up process takes only tens of microseconds to
complete and hardly blocks other lock requests. Hence, upon
a scale-up, there will be an immediate increase in the through-
put, as shown in Figure 10. In the first 300 ms of the experi-
ment, the whole lock tree is still small despite being scaled
up. The write offsets quickly grow beyond its size, causing
the clients to contend for the sole spillover mutex and thus a
throughput decline of up to 92.6%. After that, however, the
throughput decline before the 4th scale-up is only 57.5%. The
reason is that the lock tree is already large enough, and client
threads are not perfectly synchronized; therefore, only a part
of the threads contend for the spillover mutex. The throughput
keeps almost stable afterward for similar reasons.

It is worth noting that the stable throughput with scale-ups
is slightly higher than that without. Specifically, before and
after the 6th scale-up, the throughput advantages are 9.7%
and 7.4%, respectively. The reason is that the lock tree only
grows larger when necessary, resulting in a smaller tree height,
reducing the number of RDMA verbs per lock request, thus
bringing higher performance.

4.6 False Conflict Rate
We measure the false conflict rate of Citron to understand the
effects of our range splitting mechanism in Step 1 of the lock
acquisition path (§3.5.1). Two lock requests constitute a false
conflict if they do not overlap but lock conflicting nodes. We
measure the false conflict rate with different L (i.e., requested
range lock size) and different k (i.e., the maximum number of
nodes to lock per request). The left borders of the requested
ranges are independently subject to a uniform distribution on
[0,N −L]. We repeatedly issue two concurrent lock requests
and detect whether they conflict with each other logically and
actually. The false conflict rate is calculated as the number
of false conflicts divided by the number of all lock requests.
Figure 11 shows the results.

For all L ≤ 64, k = 2 is sufficient to split the requested range

into leaf nodes on the lock tree, eliminating false conflicts
because Citron employs RDMA masked-CAS. As a result,
Citron can achieve its highest throughput for prevalent small
range lock requests in real-world workloads.

Increasing k beyond k = 2 brings minor benefits. Compared
with k = 1, setting k = 2 reduces the false conflict rate by two
orders of magnitude (to relatively 3.6% on average), whose
absolute value is around 10−4, virtually negligible. To further
reduce this rate for an order of magnitude, we need k = 5,
which results in 3 more nodes to lock and more than doubled
lock acquisition latencies. Therefore, we trade that marginal
throughput improvement for lower latency and adopt k = 2 in
our implementation of Citron.

4.7 Lock Abort Rate
We measure Citron’s lock abort rate to understand the efficacy
of the synchronization mechanism in Step 2(d) of the lock
acquisition path (§3.5.5). Low abort rates indicate the strong
practicability of Citron. Aside from hardware issues such as
the RNIC capabilities, the abort rate can be affected by the
following three configurable factors:

1. # Threads: the thread count (i.e., contention severity),
2. m: the meet-in-the-middle distance in Step 2(d), and
3. Twait: the time to wait in Step 2(d).

Therefore, we conduct three experiments, in each of which
we fix two of these parameters, adjust the remaining one, and
measure the lock abort rate. We retry for each aborted lock
request until it succeeds, so the abort rate also reflects the
amount of the retry traffic. We set the fixed parameters to
# Threads = 96, m = 4, and Twait = 15 µs, respectively, as is
described in §3. We use the same mixed-size microbenchmark
as in §4.2. The abort rate is calculated as the number of lock
aborts divided by the number of all lock requests. Figure 12
shows the results.
# Threads. As the number of threads increases from 3 to
192, the RNIC suffers from an increased IOPS pressure and
therefore delivers higher latencies, causing the lock abort
rate to increase from 10−5 level to 10−2 level. However, the
overall throughput (i.e., successful locks) does not drop with
the increase in the abort rate after reaching the maximum. This
shows that Citron’s lock protocol causes acceptable numbers
of lock aborts and retries under both low and high contention.
m. When m is small, clients need to notify many ancestors
of node in Step 2(d) with RDMA masked-FAA, resulting in
low throughput and a high possibility of lock aborting. When
m is large, the burden to notify node’s ancestors is low, but
the networking cost to detect conflicts at node’s descendants
suffers from exponential growth. We adopt m = 4 to balance
throughput, abort rate, and network traffic.
Twait. Increasing the wait time in Step 2(d) reduces the chance
that lower clients exceed the time limit but makes higher
clients wait longer and degrades throughput. We adopt Twait =
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15 µs to balance between throughput and abort rate. Further
increasing Twait contributes little to reducing the abort rate
since there are always occasional long-lasting RDMA verbs
due to unpredictable hardware-level issues of the RNIC.

To sum up, with our configuration, the lock abort rate of
Citron is acceptably low and has minimal negative effects on
the overall performance.

5 Related Work

Lock management. Locks have been a major research topic
ever since the outset of concurrent programming. A wealth
of previous studies aim for efficient locking within a single
machine [7, 8, 14, 15, 33, 34, 45, 52].

With the advent of RDMA, studies above have become less
valuable in distributed systems as they fall short in alleviating
the CPU bottleneck. Such a situation led to the birth of decen-
tralized [10, 54, 72, 79] and hardware-offloaded [28, 80] lock
managers. Among them, DrTM [72] uses RDMA CAS to
grant writer locks and reader leases. DSLR [79] uses RDMA
FAA to implement the starvation-free Lamport’s bakery al-
gorithm [38]. NetLock [80] offloads lock management to a
programmable switch, achieving both high performance and
the benefits of centralized lock management.

While most existing studies focus on mutexes, Citron aims
at range locks and supports locking disjoint parts of the same
shared storage for finer-grained concurrency.

Range locks. Range locks are widely adopted in key-value
stores [18,61], file systems [3,9,35,47], and memory manage-
ment systems [21, 36]. These systems usually use carefully
designed dynamic tree data structures to manage range locks,
including the range tree in RocksDB [18], the interval tree in
Lustre [47], the red-black tree in BeeGFS [3], and the maple
tree in Oracle Linux UEK [21]. Kogan et al. also propose
using a lock-free linked list to maintain range locks [36] since
the number of cores is limited and the list cannot be too long.

Citron targets distributed range lock management where
far more clients exist than within a single machine. Citron
avoids the CPU bottleneck by using only one-sided RDMA
on the critical paths of range lock operations.

Lock conflict resolution. Allowing more types of commu-
nication aside from direct one-sided RDMA between the

clients and the server brings different lock conflict resolution
means. For example, Sherman [70] proposes a hierarchical
lock scheme that maintains a local lock table within each
client machine to avoid unnecessary remote retries and enable
lock handing-over, which is also applicable to Citron. Thakur
et al. proposes maintaining a lock table entry in the lock server
for each client, thus enabling a lock holder to read the whole
lock table and wake up conflicting clients when it releases
the lock [69]. Other prior research [12, 63, 67] also discusses
work delegation among clients to eliminate conflicts.
One-sided RDMA systems. In addition to decentralized lock
management, existing studies employ one-sided RDMA for
various purposes, including file I/O [2, 46, 77, 78], transaction
processing [16, 64, 71–73], and memory disaggregation [1, 6,
19,40,50]. A recent study, RedN [66], even proves the Turing-
completeness of one-sided RDMA and shows its efficacy in
RNIC-offloading multiple functionalities.

Citron shares the same goals with most one-sided RDMA
systems: eliminating server-side CPU bottlenecks and im-
proving performance. However, Citron is the first to develop
an efficient distributed range lock manager with one-sided
RDMA and to outperform the state-of-the-art.

6 Conclusion
We present Citron, a distributed range lock manager that
relies only on one-sided RDMA to acquire and release locks.
Citron employs a lock protocol that operates a segment tree
and efficiently coordinates conflicting range lock requests.
Citron together offers a fast path optimization and supports
dynamic scaling as the size of its managed range changes.
Our evaluation shows that Citron significantly outperforms
existing distributed range lock managers.
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