RFUSE: Modernizing Userspace Filesystem Framework
through Scalable Kernel-Userspace Communication

USENIX FAST 24

Kyu-Jin Cho, Jaewon Choi, Hyungjoon Kwon, and Jin-Soo Kim

Seoul National University

Transition of Filesystem Design

* File system designs have evolved in response to technology
« High-performance storage devices
« Large number of cores in the machine

Transition of Filesystem Design

* File system designs have evolved in response to technology
« High-performance storage devices
« Large number of cores in the machine

* [n-kernel vs. Userspace

« High safety from crash
Easy to maintain and develop
« High portability

Userspace

Filesystem * Poor performance

» Low safety from crash
In-kernel : .
Filesvstem | ° Native performance « Complex kernel interface
y » Hard to add new functionality

FUSE (Filesystem in Userspace)

» FUSE consists of two main components:
» FUSE driver within the kernel

FUSE daemon

« FUSE daemon within the userspace (Userspace Filesystem)
Application libfuse
VFS /dev/fuse
£ Kernel
* Subsystem
Page Cache | |Async _ sync
/ dcache

Background Pending Processing

FUSE driver

FUSE (Filesystem in Userspace)

» FUSE consists of two main components:
» FUSE driver within the kernel

 FUSE daemon within the userspace (Flﬁ’sifsti':‘;?.esystem)
5559 = 5955
» FUSE driver has 5 types of queues: Application libfuse
* Pending queue for synchronous requests -1 et e SGGEETEEEEY EELEE
* Processing queue for in-flight requests VFS /dev/fuse Kernel
» Background queue for asynchronous requests : Subsystem
* Interrupt queue & Forget queue P?%igfﬁ: HE"

Background Pending Processing

FUSE driver

FUSE (Filesystem in Userspace)

» FUSE consists of two main components:
» FUSE driver within the kernel

 FUSE daemon within the userspace fﬁ’sifsiii'zi?.esystem)
55959 95599
» FUSE driver has 5 types of queues: Application libfuse
* Pending queue for synchronous requests - 1-___. e i EEEEE L EEEEE T EEEE
* Processing queue for in-flight requests VFS /dev/fuse Kernel
» Background queue for asynchronous requests : Subsystem
* Interrupt queue & Forget queue P?%igfﬁ: &

» FUSE request/reply consist of
Background Pending Processing
« Common header FUSE driver
» Operation-specific header
* Argument(s)

FUSE

Overhead #1: Latency of FUSE

O context switch + path lookup
B copy args

O context switch + daemon execution @ send reply + context switch
B wake up app + return

O prepare return

O prepare req
@ send req

|“S

0 50 100

150

200

250

300

FUSE daemon
(Userspace Filesystem)

5595 1m=5555

Application

Iibfuse

Page Cache
/ dcache

[
Async Sync |
4

J §

Background Pending Processing

FUSE driver

Kernel
Subsystem

Overhead #1: Latency of FUSE

FUSE daemon
(Userspace Filesystem)
O context switch + path lookup O prepare req —— ? :
W copy args m send req Application , libfuse
O context switch + daemon execution @ send reply + context switch I .
O prepare return mwakeupapp +retun ~ TTTTTTTTTTTTTTTTTTITTTTOOTC i i Sl
L
VF /dev/fuse
— Kernel
L Subsystem
FUSE LR Page Cadhd | [Async _ sync T
1 1 1 1 1 |“S /dcaChl-b b= e ’
0 50 100 150 200 250 300 /
i Path | Background Pending Processing
raversa FUSE driver

FUSE

Overhead #1: Latency of FUSE

O context switch + path lookup

O prepare req

FUSE daemon
(Userspace Filesystem)

5595 5555

W copy args m send req Application libfuse
O context switch + daemon execution @ send reply + context switch
O prepare return mwakeupapp +retun ~ TTTTTATTTTTTTTTTTTTTTTmTOUTTTTTTOITTTTTTTTTTIOCITTC
6 . VFS | /dev/fuse
______ . Kernel
"""" u Subsystem
199 I Page-Cache | |Async _ sync
. 'S _-l"dcache
0 50 100 150 200 250 300 //’ ,'
4]
7 I
7
1. fuse_in_header Background Pending Processing
2. create_in_header FUSE driver

Overhead #1: Latency of FUSE

FUSE daemon
(Userspace Filesystem)

5595 5555

O context switch + path lookup O prepare req — -
W copy args m send req Application libfuse
O context switch + daemon execution @ send reply + context switch
O prepare return mwake up app +return T TTTATTTOC e B S S
VFS /dev/fuse
6 .1 2 . Kernel
~~~~~ v
- Subsystem
FUSE 199 I Page Cache | |Async _ sync
. . . . . s / dcache
0 50 100 150 200 250 300

Background Pending Processing

FUSE driver

10



FUSE

Overhead #1: Latency of FUSE

O context switch + path lookup O prepare req
B copy args Osend req
O context switch + daemon execution @ send reply + context switch
O prepare return B wake up app + return
6 [22)12 18
199 [
] ] 1 1 1 J “S

0 50 100 150 200 250 300

FUSE daemon
(Userspace Filesystem)

5595 4555

Application libfuse |
________________________________ I S
VFS /dev/fuse I
; : Kernel
* i Subsystem
Page Cache | |Async _ sync I
/ dcache .-—-- -1-

Background Pending Processing

FUSE driver

11



FUSE

Overhead #1: Latency of FUSE

O context switch + path lookup
B copy args

O context switch + daemon execution @ send reply + context switch

O prepare return

O prepare req
@ send req

W wake up app + return

FUSE daemon

(Userspace Filesystem)

Application

Page Cache
/ dcache

Kernel
Subsystem

FUSE driver

Background Pending /Pf60essing

4
Z

7’

7

1.
2.
3.

fuse _out_header

entry_out_header
open_out_header

12




Overhead #1: Latency of FUSE

FUSE daemon
(Userspace Filesystem)

((@)) §§§§§§§§

O context switch + path lookup O prepare req —— -
W copy args m send req Application libfuse
O context switch + daemon execution @ send reply + context switch
O prepare return mwake up app +return T TTTATTTOC e B S S
VFS /dev/fuse
\?\.1.2 181 il 78 : Kernel
""""""""" . Subsystem
FUSE 199 [ 274.4ps Page Cache | |asyne _syne
. . . . . ' S / dcache
0 50 100 150 200 250 300

Background Pending Processing

FUSE driver

13



Overhead #2: Scalability Issue

= Asingle pending queue in FUSE fails to harness the full throughput potential
of a high-performance device

mFUSE  mEXT4
800

700 r
600
+ 500
S 400
300
200
100

0

(KIOPS

u

Through

1 2 4 8 16 32
<Scalability of random read on StackFS over EXT4 (FUSE) vs. native EXT4>

14



RFUSE

» A userspace filesystem framework designed to support a modern hardware
environment with high-performance and scalability

1. Scalable kernel-userspace communication
* Per-core, NUMA-aware ring channels
» Worker thread management

2. Efficient request transmission
« Hybrid polling
« Load balancing of asynchronous requests

3. Full compatibility with existing FUSE-based filesystems

15



RFUSE Architecture

RFUSE daemon
(Userspace Filesystem)

>

Application

Ring Channel #1

-,

Page Cache

Ring Channel #N

librfuse

/dev/rfuse

/ dcache |Async

RFUSE driver

Kernel
Subsystem

16



Scalable Communication

RFUSE daemon

Application

Page Cache
/ dcache RFUSE driver




Scalable Communication

RFUSE daemon

Core #1
alals

3

O

2

wer

Ring Channel #

1

Ring Channel #2

Core #N
alals

{0k

Application

Page Cache
/ dcache

Ring Channel #N

RFUSE driver

18



Scalable Communication

RFUSE daemon
Cosfh #1 Cot'fh #2 CorifN
{0 {0 {0

Ring Channel #1

Ring Channel #2

Application

Page Cache
/ dcache

Ring Channel #N Hr

NUMA 0

NUMA 1

19



Scalable Communication

RFUSE daemon
Core #1

alals

0F

Core #2

alals

0F

S S

S

Ring Channel #1

Ring Channel #2

Application

Page Cache
/ dcache

i

D

Ring Channel #N

RFUSE driver

g

5

20



Scalable Communication

RFUSE daemon
c°ﬂi#1 CorifN
10F coes 10F
Core 2 5 5 5 5 5 5
10F I I I
. Ring Channel #1 Ring Channel #2 Ring Channel #N
Appli¢ation
P i ~ & 1O |
x I
VF_S____..____ —_— | I I I -
Page Cache
/ dcache RFUSE driver




Scalable Communication

RFUSE daemon
Cosfh #1 Co.rle.h #2 CorifN
{0 {0 {0
Ring Channel #1 Ring Channe:l #2 Ring Channel #N
Application .
Page Cache
/ dcache RFUSE driver




Efficient Request Transmission

» RFUSE utilizes the ring buffer structure similar to the io_uring interface,
specifically to meet the needs of the FUSE framework.

Ring Channel

Sync
> > Argument

Common Opaque

Common | Opaque Argument
Async —— Common | Opaque Argument
Background 1{of1]0]0 1{1f{1]o]o0

Pending Header Buffer Argument Buffer




Efficient Request Transmission

Worker Thread
Application y
' Ring Channel
VES
Page Cache 010100 010100
/ dcache Pending Header Buffer Argument Buffer

Background

24



Efficient Request Transmission

RENAME(src, dest)

Application

Worker Thread

Ring Channel

Page Cache
/ dcache

Pending

rename_in_h

Argument

Src_name

dest_name

1101010

Header Buffer

;

|

0

0

Argument Buffer

Background




Efficient Request Transmission

RENAME(src, dest) Worker Thread
Application : :
7Y I Ring Channel
d @ Argument
rename_in_h —> src_name
VFS s > dest_name
Page Cache 110]0]0 1{1]0]0
/ dcache Pending Header Buffer Argument Buffer

Background



Efficient Request Transmission

RENAME(src, dest) Worker Thread
1 A
Application L S
T ’ Ring Channel
_____________________ P 7’ <
—_—— e o = -_ -=" rename_out_h src_name
VIE.S s dest_name
Page Cache 110]0]0 1{1]0]0
/ dcache Pending Header Buffer Argument Buffer

Background



Efficient Request Transmission

Application

Page Cache
/ dcache

Background

Worker Thread

A

Worker Thread

Ring Channel #1

ﬂk

Pending

Ring Channel #2

Pending

Background

28



Efficient Request Transmission

Worker Thread

A

Worker Thread

Application

Ring Channel #1

ﬂk

Llongestipn!

Page Cache §=,’
/ dcache |7 ===

Pending

Ring Channel #2

Background

Pending

Background

29



Efficient Request Transmission

Application

Page Cache
/ dcache

=1 |

Background

Worker Thread

A

Worker Thread

Ring Channel #1

ﬂk

Pending

Ring Channel #2

Load balancing

——

Pending

Background

30



Full Compatibility with FUSE

* The modifications to make use of the ring channels:

e The FUSE kernel driver

* The layer of libfuse that handles message communication

= No modifications of all FUSE APls exposed to developers

« Both high-level FUSE API and low-level FUSE API
« Splicing I/O interface

struct fuse operations
.getattr = ..
.readlink
.mkdir

.

* Users do not need to rewrite their FUSE-based filesystem code when

using RFUSE.

struct fuse lowlevel ops {
.init = .
.destroy
. Llookup

.

31



Evaluation Setup

Hardware Setup

Machine
CPU
DRAM
Disk
OS

Linux Kernel

Frameworks tested
+ FUSE (v3.10.5)

Dell PowerEdge R750xs

2 x Intel(R) Xeon(R) Silver 4316 CPUs (80 logical cores)

DDR4 256GB

2TB Fadu Delta PCle 4.0 SSD

Ubuntu 20.04.3 LTS

v5.15.0

« EXTFUSE [1] : Extended FUSE using eBPF

- RFUSE

32



Evaluation Setup

» Userspace filesystem tested
* NullFS: a very simple filesystem which only supports the LOOKUP on the root directory

« StackFS: a stackable filesystem that forwards incoming filesystem operations to an underlying
in-kernel filesystem

NullFS StackFS
Application User library Application User library
VFS Device File VFS Device File EXT4
Page Cache | = , Page Cache | | :
/dcache |~ Driver / dcache Driver )

<NullFS> <StackFS>

33



Latency Breakdown

= CREAT() on root directory of NullFS, which promptly returns without performing

any action

Egg;;e;(:gsswitch + path lookup Szgi%arr:qreq Ocontext switch + path lookup Oprepare req + enqueue req

O context switch + daemon execution @ send reply + context switch 0 daemon execution B dequeue reply

O prepare return m wake up app + return Oprepare return Ereturn to app

6 [2217 181 [ua] 7s 47 | 2.8 [0.05 8.3
FUSE 199 I RFUSE 108 129.65ps
1 ] ] ] ] ] 1 1 1 J lJS
50 100 150 200 50 100 150 200 250 300

34



Latency Breakdown

= CREAT() on root directory of NullFS, which promptly returns without performing
any action

» RFUSE demonstrates a 53% lower latency than FUSE

Egg;;e;(:gsswitch + path lookup Szgi%arr:qreq Ocontext switch + path lookup Oprepare req + enqueue req

O context switch + daemon execution @ send reply + context switch 0 daemon execution B dequeue reply

O prepare return m wake up app + return Oprepare return Ereturn to app

6 [2217 181 [ua] 7s 47 | 2.8 [0.05 8.3
FUSE 199 I RFUSE 108 129.65ps
J S 1 1 / 1 1 J IJS
0 50 100 150 200 250 300 0 50 100 150 200 250 300
53% |

35



Latency Breakdown

= CREAT() on root directory of NullFS, which promptly returns without performing
any action

» RFUSE demonstrates a 53% lower latency than FUSE

1. No context switches when processing requests and replies

W context switch + path lookup Cprepare req Ocontext switch + path lookup Oprepare req + enqueue req
@ copy args B send req Odaemon execution O dequeue repl
O context switch + daemon execution @ send reply + context switch 9 Py
O prepare return m wake up app + return Oprepare return mreturn to app
4.7 2.8 |0.05 8.3
FUSE 199 RFUSE 108 129.65us
' us ! ! L L ! ; US

0 50 100 150 200 250 300 0 50 100 150 200 250 300

36



Latency Breakdown

= CREAT() on root directory of NullFS, which promptly returns without performing
any action

» RFUSE demonstrates a 53% lower latency than FUSE

1. No context switches when processing requests and replies
2. Low wake-up overhead within the kernel driver

O context switch + path lookup O prepare req O context switch + path lookup Oprepare req + enqueue req
B copy args B sendreq Odaemon execution Odequeue repl
O context switch + daemon execution @ send reply + context switch 9 Py
O prepare return B wake up app + return Dprepare return Wreturn to app
6 [2217 181 [ua] 7s 47 | 28 [0.05 8.3
FUSE 199 I 2744ys  RFUSE 108 129.65ps
' us 1 1 ] 1 1 » IS

0 50 100 150 200 250 300 0 50 100 150 200 250 300

37



Latency Breakdown

= CREAT() on root directory of NullFS, which promptly returns without performing
any action

» RFUSE demonstrates a 53% lower latency than FUSE

1. No context switches when processing requests and replies
2. Low wake-up overhead within the kernel driver
3. Short execution time for path traversal to verify the existence of subdirectories

O context switch + path lookup O prepare req O context switch + path lookup Oprepare req + enqueue req
B copy args B sendreq Odaemon execution Odequeue repl
O context switch + daemon execution @ send reply + context switch 9 Py
O prepare return B wake up app + return Dprepare return Wreturn to app
6 [2217 181 [ua] 7s 47 | 28 [0.05 8.3
FUSE 199 H 2744ys  RFUS 108 129.65ps

] us 1 1 1 1 1 » IS
0 50 100 150 200 250 300 0 50 100 150 200 250 300

38



Throughput (GB/s)

- N w

o ; ! ¢
cCU =N WO,

I/0 Scalability

* FIO benchmark on StackFS while increasing the number of threads
« Sequential I/O with 128KB size
 Random I/O with 4KB size
« 128GB file size in total

B FUSE B RFUSE B EXT4

- 8 6120 ,0?800
— ~ 7 r a 100 F 0_700 B
! o6 | S S 600 |
— 55 B \%80 i \./500 B
24 5 60 f S 400
- Q. Q.
>3 r < i < 300
| - @40 (@)
270 S 20 g 200 r
- =1 F = = 100 r
0 = 0 = 0

1 2 4 8 16 32 1 2 4 8 16 32 1 2 4 8 16 32 1 2 4 8 16 32
# fio threads # fio threads # fio threads # fio threads

(a) sequential write (b) sequential read (c) random write (d) random read

39



Throughput (GB/s)

- N w

o ; ! ¢
cCU =N WO,

I/0 Scalability

* FIO benchmark on StackFS while increasing the number of threads
« Sequential I/O with 128KB size
 Random I/O with 4KB size
« 128GB file size in total

B FUSE B RFUSE B EXT4

- 8 6120 ,0?800
— ~ 7 r a 100 F o 700 |
! o6 | S S 600 | :
i = 5 é 80 r < 500 X2.27
24 5 60 f S 400
- Q. Q.
>3 r < i < 300
| - (@)} 40 (@)
270 S 20 g 200 r
- =1 F = = 100 r
0 = 0 = 0

1 2 4 8 16 32 1 2 4 8 16 32 1 2 4 8 16 32 1 2 4 8 16 32
# fio threads # fio threads # fio threads # fio threads

(a) sequential write (b) sequential read (c) random write (d) random read

40



Workload

Description

MWCL
MWCM
MRDL
MRDM
MWUL
MWUM
MRPL
MRPM
MRPH

Metadata Operation Scalability

FXMARK benchmark on StackFS

Create empty files in a private directory
Create empty files in a shared directory
Enumerate a private directory

Enumerate a shared directory

Unlink empty files in a private directory
Unlink empty files in a shared directory
Open and close private files in a directory
Open and close arbitrary files in a directory
Open and close the same file in a directory

~A-FUSE -3-EXTFUSE -©-RFUSE
0.35 0.035 3 r 35 r
0.3 0.03 25 | 3
® 0.25 0.025 2 | 2.5
(2]
% 0.2 0.02 2
o 15 F
; 0.15 0.015 1.5
1 F
0.1 0.01 } Bl 1
0.05 0.005 F 0.5 .,g“’& Bk 0.5
0 0 Lotm=lmcdeaotaaa ety () L L L 0
1 2 4 10 20 30 40 1 2 4 10 20 30 40 1 2 4 10 20 30 40 1 2 4 10 20 30 40
# core # core # core # core
(a) MWCL (b) MWCM (c) MRDL (d) MRDM
0.14 0.04 r 40 - 45
0.12 [
£ 0.10 0.03 30 i
on
= 0.08 -
U’ = -
80.06 0.02 20 i
s i
0.04 001 | 10 .
0.02 } [
000 1 1 1 1 1 1 1 0 1 1 1 1 1 1 J 0 )
1 2 4 10 20 30 40 1 2 4 10 20 30 40 1 2 4 10 20 30 40 1 2 4 10 20 30 40 1 2 4 10 20 30 40
# core # core # core # core # core
(e) MWUL (fy MWUM (g) MRPL (h) MRPM (i) MRPH

41



Workload Description

MWCL Create empty files in a private directory

d oge MWCM Create empty files in a shared directory
Metadata Operation Scalability @ |m=ei
MRDM Enumerate a shared directory

MWUL Unlink empty files in a private directory

MWUM Unlink empty files in a shared directory

MRPL Open and close private files in a directory
u FXMARK benCh mark On StaCkFS MRPM Open and close arbitrary files in a directory
MRPH Open and close the same file in a directory

~A-FUSE -%-EXTFUSE -©-RFUSE

0.35 0.035 3 r 35 r
0.3 0.03 25 | 3
® 0.25 0.025 2 | 2.5
(2]
% 0.2 0.02 2
o 15 F
; 0.15 0.015 1.5
1 F
0.1 0.01 } Bl 1
0.05 0.005 F 0.5 .,g“’& Bk 0.5
0 0 Lotm=lmcdeaotaaa ety () L L L 0
1 2 4 10 20 30 40 1 2 4 10 20 30 40 1 2 4 10 20 30 40 1 2 4 10 20 30 40
# core # core # core # core
(a) MWCL (b) MWCM (c) MRDL (d) MRDM
0.14 0.04 r 40 - 45
0.12 [
£ 0.10 0.03 30 i
on L
80'08 0.02 } 20 -
3 0.06 i
= 0.04 0.0] o [ affected by
0.02 | i dcache
000 1 1 1 1 1 1 1 0 1 1 1 1 1 1 J 0 )
1 2 4 10 20 30 40 1 2 4 10 20 30 40 1 2 4 10 20 30 40 1 2 4 10 20 30 40 1 2 4 10 20 30 40
# core # core # core # core # core
(e) MWUL (fy MWUM (g) MRPL (h) MRPM (i) MRPH

42



In the paper...

More Details about RFUSE:

Transmission of ring channel Information
Memory usage of ring channels
Compatibility with FUSE

More Experiment Results:

FIO benchmark on Fuse-nfs
Comparison with emulated XFUSE
Macro benchmarks

Factor analysis of RFUSE

ARTIFACT ARTIFACT ARTIFACT
EVALUATED EVALUATED EVALUATED

Epan | | gpnn | | g

AVAILABLE REPRODUCED

RFUSE: Modernizing Userspace Filesystem Framework
through Scalable Kernel-Userspace Communication

Kyu-Jin Cho, Jaewon Choi, Hyungjoon Kwon, and Jin-Soo Kim

Seoul National University

Abstract

With the advancement of storage devices and the increasing
scale of data, filesystem design has transformed in response to
this progress. However, implementing new features within an
in-kernel filesystem is a challenging task due to development
complexity and code security concerns. As an alternative,
userspace filesystems are gaining attention, owing to their
ease of development and reliability. FUSE is a renowned
framework that allows users to develop custom filesystems
in userspace. However, the complex internal stack of FUSE
leads to notable performance overhead, which becomes even
more prominent in modern hardware environments with high-
performance storage devices and a large number of cores.

In this paper, we present RFUSE, a novel userspace filesys-
tem framework that utilizes scalable message communication
between the kernel and userspace. RFUSE employs a per-core
ring buffer structure as a communication channel and effec-
tively minimizes transmission overhead caused by context
switches and request copying. Furthermore, RFUSE enables
users to utilize existing FUSE-based filesystems without mak-
ing any modifications. Our evaluation results indicate that
RFUSE demonstrates comparable throughput to in-kernel
filesystems on high-performance devices while exhibiting
high scalability in both data and metadata operations.

1 Introduction

Traditionally, filesystems have been implemented within the
OS kernel, primarily for direct-attached block devices, such as
Hard Disk Drives (HDDs) or Solid State Disks (SSDs). With
the advent of next-generation storage devices, there have been
significant shifts in filesystem design. Since these emerging
storage devices offer high performance and unique data ac-
cess interfaces, there have been proposals for new filesystems
specifically tailored to those innovative hardware advance-
ments. For Non-Volatile Memory (NVM) [6], which offers
low-latency performance comparable to main memory, many
filesystems are designed to support Direct-Access (DAX)
mode. This mode eliminates redundant memory copying and
facilitates direct access to NVM [24,26, 38, 39]. Filesystems

optimized for Zoned-Namespace (ZNS) SSDs [11] actively
control data placement, ensuring alignment with the device’s
interface that mandates sequential data writes [16,31].

Furthermore, the explosive growth in data scale has led
to the development of various distributed storage solutions.
These storage platforms offer finely tuned APIs that are opti-
mized for their internal architectures. Consequently, the cus-
tomization of filesystems to enhance performance for spe-
cific workloads and platforms has become a prevalent prac-
tice [5,8,10,17,37,41].

Yet, developing and modifying an in-kernel filesystem is
challenging. Developers must possess a deep understanding
of intricate kernel subsystems, including page cache, memory
management, block layers, and device drivers, among others.
Additionally, there is a risk of inadvertently misusing complex
kernel interfaces. This inherent complexity often leads to
insecure implementations of in-kernel filesystems, rendering
them vulnerable to critical issues, including system crashes.
In addition, efforts to integrate specialized functionalities into
existing in-kernel filesystems can intensify these challenges.

Alternatively, userspace filesystems are gaining attention in
both industry and academia owing to their notable advantages.
They offer greater reliability and safety since programming
errors won’t compromise the whole system. They can also
leverage mature user-level libraries and debugging tools, sim-
plifying filesystem maintenance. Userspace filesystems are
easily portable across different operating systems, in contrast
to in-kernel filesystems which are intrinsically tied to a spe-
cific OS kernel interface.

FUSE [36] is a framework that allows users to develop
custom filesystems without requiring kernel-level modifica-
tions. It enables filesystem operations to be implemented in
userspace, making it easier to develop and maintain special-
ized filesystems for various purposes, including filesystems
for new types of storage devices, networked or distributed
filesystems, or user-specific data storage. FUSE has gained
popularity for its flexibility and compatibility, making it a
valuable tool for building user-level filesystem extensions.

However, FUSE is often criticized for the significant over-
head it incurs due to its complex software stack. Each FUSE

43



Conclusion

» RFUSE: A userspace filesystem framework designed to support a scalable

communication between the kernel and userspace

» RFUSE can provides high-performance and scalability on a modern

hardware environment

= Source code is available at Github: https://github.com/snu-csl/rfuse

ARTIFACT
EVALUATED

usenix
ASSOCIATION

AVAILABLE

ARTIFACT
EVALUATED

usenix
ASSOCIATION

ARTIFACT
EVALUATED

susenix
ASSOCIATION

44


https://github.com/snu-csl/rfuse

Thank you



