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« High-performance storage devices
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FUSE

Overhead #1: Latency of FUSE
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FUSE

Overhead #1: Latency of FUSE
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Overhead #1: Latency of FUSE

O context switch + path lookup
B copy args

O context switch + daemon execution @ send reply + context switch

O prepare return

O prepare req
@ send req

W wake up app + return

FUSE daemon

(Userspace Filesystem)

Application

Page Cache
/ dcache

Kernel
Subsystem

FUSE driver

Background Pending /Pf60essing

4
Z

7’

7

1.
2.
3.

fuse _out_header

entry_out_header
open_out_header

12




Overhead #1: Latency of FUSE
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Overhead #2: Scalability Issue

= Asingle pending queue in FUSE fails to harness the full throughput potential
of a high-performance device
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RFUSE

» A userspace filesystem framework designed to support a modern hardware
environment with high-performance and scalability

1. Scalable kernel-userspace communication
* Per-core, NUMA-aware ring channels
» Worker thread management

2. Efficient request transmission
« Hybrid polling
« Load balancing of asynchronous requests

3. Full compatibility with existing FUSE-based filesystems
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RFUSE Architecture

RFUSE daemon
(Userspace Filesystem)

>

Application

Ring Channel #1

-,

Page Cache

Ring Channel #N

librfuse

/dev/rfuse

/ dcache |Async

RFUSE driver

Kernel
Subsystem

16



Scalable Communication
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Scalable Communication
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Scalable Communication
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Scalable Communication
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Efficient Request Transmission

» RFUSE utilizes the ring buffer structure similar to the io_uring interface,
specifically to meet the needs of the FUSE framework.

Ring Channel
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Efficient Request Transmission
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Efficient Request Transmission
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Efficient Request Transmission
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Efficient Request Transmission
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Efficient Request Transmission
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Efficient Request Transmission
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Full Compatibility with FUSE

* The modifications to make use of the ring channels:

e The FUSE kernel driver

* The layer of libfuse that handles message communication

= No modifications of all FUSE APls exposed to developers

« Both high-level FUSE API and low-level FUSE API
« Splicing I/O interface

struct fuse operations
.getattr = ..
.readlink
.mkdir

.

* Users do not need to rewrite their FUSE-based filesystem code when

using RFUSE.

struct fuse lowlevel ops {
.init = .
.destroy
. Llookup

.
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Evaluation Setup

Hardware Setup

Machine
CPU
DRAM
Disk
OS

Linux Kernel

Frameworks tested
+ FUSE (v3.10.5)

Dell PowerEdge R750xs

2 x Intel(R) Xeon(R) Silver 4316 CPUs (80 logical cores)

DDR4 256GB

2TB Fadu Delta PCle 4.0 SSD

Ubuntu 20.04.3 LTS

v5.15.0

« EXTFUSE [1] : Extended FUSE using eBPF

- RFUSE
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Evaluation Setup

» Userspace filesystem tested
* NullFS: a very simple filesystem which only supports the LOOKUP on the root directory

« StackFS: a stackable filesystem that forwards incoming filesystem operations to an underlying
in-kernel filesystem

NullFS StackFS
Application User library Application User library
VFS Device File VFS Device File EXT4
Page Cache | = , Page Cache | | :
/dcache |~ Driver / dcache Driver )

<NullFS> <StackFS>
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Latency Breakdown

= CREAT() on root directory of NullFS, which promptly returns without performing

any action

Egg;;e;(:gsswitch + path lookup Szgi%arr:qreq Ocontext switch + path lookup Oprepare req + enqueue req

O context switch + daemon execution @ send reply + context switch 0 daemon execution B dequeue reply

O prepare return m wake up app + return Oprepare return Ereturn to app
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Latency Breakdown

= CREAT() on root directory of NullFS, which promptly returns without performing
any action

» RFUSE demonstrates a 53% lower latency than FUSE

Egg;;e;(:gsswitch + path lookup Szgi%arr:qreq Ocontext switch + path lookup Oprepare req + enqueue req

O context switch + daemon execution @ send reply + context switch 0 daemon execution B dequeue reply
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Latency Breakdown

= CREAT() on root directory of NullFS, which promptly returns without performing
any action

» RFUSE demonstrates a 53% lower latency than FUSE

1. No context switches when processing requests and replies

W context switch + path lookup Cprepare req Ocontext switch + path lookup Oprepare req + enqueue req
@ copy args B send req Odaemon execution O dequeue repl
O context switch + daemon execution @ send reply + context switch 9 Py
O prepare return m wake up app + return Oprepare return mreturn to app
4.7 2.8 |0.05 8.3
FUSE 199 RFUSE 108 129.65us
' us ! ! L L ! ; US

0 50 100 150 200 250 300 0 50 100 150 200 250 300
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Latency Breakdown

= CREAT() on root directory of NullFS, which promptly returns without performing
any action

» RFUSE demonstrates a 53% lower latency than FUSE

1. No context switches when processing requests and replies
2. Low wake-up overhead within the kernel driver
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B copy args B sendreq Odaemon execution Odequeue repl
O context switch + daemon execution @ send reply + context switch 9 Py
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Latency Breakdown

= CREAT() on root directory of NullFS, which promptly returns without performing
any action

» RFUSE demonstrates a 53% lower latency than FUSE

1. No context switches when processing requests and replies
2. Low wake-up overhead within the kernel driver
3. Short execution time for path traversal to verify the existence of subdirectories

O context switch + path lookup O prepare req O context switch + path lookup Oprepare req + enqueue req
B copy args B sendreq Odaemon execution Odequeue repl
O context switch + daemon execution @ send reply + context switch 9 Py
O prepare return B wake up app + return Dprepare return Wreturn to app
6 [2217 181 [ua] 7s 47 | 28 [0.05 8.3
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Throughput (GB/s)
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* FIO benchmark on StackFS while increasing the number of threads
« Sequential I/O with 128KB size
 Random I/O with 4KB size
« 128GB file size in total
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Workload

Description

MWCL
MWCM
MRDL
MRDM
MWUL
MWUM
MRPL
MRPM
MRPH

Metadata Operation Scalability

FXMARK benchmark on StackFS

Create empty files in a private directory
Create empty files in a shared directory
Enumerate a private directory

Enumerate a shared directory

Unlink empty files in a private directory
Unlink empty files in a shared directory
Open and close private files in a directory
Open and close arbitrary files in a directory
Open and close the same file in a directory
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Workload Description

MWCL Create empty files in a private directory

d oge MWCM Create empty files in a shared directory
Metadata Operation Scalability @ |m=ei
MRDM Enumerate a shared directory

MWUL Unlink empty files in a private directory

MWUM Unlink empty files in a shared directory

MRPL Open and close private files in a directory
u FXMARK benCh mark On StaCkFS MRPM Open and close arbitrary files in a directory
MRPH Open and close the same file in a directory
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In the paper...

More Details about RFUSE:

Transmission of ring channel Information
Memory usage of ring channels
Compatibility with FUSE

More Experiment Results:

FIO benchmark on Fuse-nfs
Comparison with emulated XFUSE
Macro benchmarks

Factor analysis of RFUSE
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Abstract

With the advancement of storage devices and the increasing
scale of data, filesystem design has transformed in response to
this progress. However, implementing new features within an
in-kernel filesystem is a challenging task due to development
complexity and code security concerns. As an alternative,
userspace filesystems are gaining attention, owing to their
ease of development and reliability. FUSE is a renowned
framework that allows users to develop custom filesystems
in userspace. However, the complex internal stack of FUSE
leads to notable performance overhead, which becomes even
more prominent in modern hardware environments with high-
performance storage devices and a large number of cores.

In this paper, we present RFUSE, a novel userspace filesys-
tem framework that utilizes scalable message communication
between the kernel and userspace. RFUSE employs a per-core
ring buffer structure as a communication channel and effec-
tively minimizes transmission overhead caused by context
switches and request copying. Furthermore, RFUSE enables
users to utilize existing FUSE-based filesystems without mak-
ing any modifications. Our evaluation results indicate that
RFUSE demonstrates comparable throughput to in-kernel
filesystems on high-performance devices while exhibiting
high scalability in both data and metadata operations.

1 Introduction

Traditionally, filesystems have been implemented within the
OS kernel, primarily for direct-attached block devices, such as
Hard Disk Drives (HDDs) or Solid State Disks (SSDs). With
the advent of next-generation storage devices, there have been
significant shifts in filesystem design. Since these emerging
storage devices offer high performance and unique data ac-
cess interfaces, there have been proposals for new filesystems
specifically tailored to those innovative hardware advance-
ments. For Non-Volatile Memory (NVM) [6], which offers
low-latency performance comparable to main memory, many
filesystems are designed to support Direct-Access (DAX)
mode. This mode eliminates redundant memory copying and
facilitates direct access to NVM [24,26, 38, 39]. Filesystems

optimized for Zoned-Namespace (ZNS) SSDs [11] actively
control data placement, ensuring alignment with the device’s
interface that mandates sequential data writes [16,31].

Furthermore, the explosive growth in data scale has led
to the development of various distributed storage solutions.
These storage platforms offer finely tuned APIs that are opti-
mized for their internal architectures. Consequently, the cus-
tomization of filesystems to enhance performance for spe-
cific workloads and platforms has become a prevalent prac-
tice [5,8,10,17,37,41].

Yet, developing and modifying an in-kernel filesystem is
challenging. Developers must possess a deep understanding
of intricate kernel subsystems, including page cache, memory
management, block layers, and device drivers, among others.
Additionally, there is a risk of inadvertently misusing complex
kernel interfaces. This inherent complexity often leads to
insecure implementations of in-kernel filesystems, rendering
them vulnerable to critical issues, including system crashes.
In addition, efforts to integrate specialized functionalities into
existing in-kernel filesystems can intensify these challenges.

Alternatively, userspace filesystems are gaining attention in
both industry and academia owing to their notable advantages.
They offer greater reliability and safety since programming
errors won’t compromise the whole system. They can also
leverage mature user-level libraries and debugging tools, sim-
plifying filesystem maintenance. Userspace filesystems are
easily portable across different operating systems, in contrast
to in-kernel filesystems which are intrinsically tied to a spe-
cific OS kernel interface.

FUSE [36] is a framework that allows users to develop
custom filesystems without requiring kernel-level modifica-
tions. It enables filesystem operations to be implemented in
userspace, making it easier to develop and maintain special-
ized filesystems for various purposes, including filesystems
for new types of storage devices, networked or distributed
filesystems, or user-specific data storage. FUSE has gained
popularity for its flexibility and compatibility, making it a
valuable tool for building user-level filesystem extensions.

However, FUSE is often criticized for the significant over-
head it incurs due to its complex software stack. Each FUSE
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Conclusion

» RFUSE: A userspace filesystem framework designed to support a scalable

communication between the kernel and userspace

» RFUSE can provides high-performance and scalability on a modern

hardware environment

= Source code is available at Github: https://github.com/snu-csl/rfuse
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https://github.com/snu-csl/rfuse
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