
This paper is included in the Proceedings of the
23rd USENIX Conference on File and Storage Technologies.

February 25–27, 2025 • Santa Clara, CA, USA
ISBN 978-1-939133-45-8

Open access to the Proceedings
of the 23rd USENIX Conference on

File and Storage Technologies
is sponsored by

HaSiS: A Hardware-assisted Single-index Store for
Hybrid Transactional and Analytical Processing

Kecheng Huang, The Chinese University of Hong Kong; Zhaoyan Shen, Shandong
University; Zili Shao, The Chinese University of Hong Kong; Feng Chen, Indiana

University Bloomington; Tong Zhang, Rensselaer Polytechnic Institute
and ScaleFlux Inc.

https://www.usenix.org/conference/fast25/presentation/huang

HaSiS: A Hardware-assisted Single-index Store for Hybrid Transactional and
Analytical Processing

Kecheng Huang†, Zhaoyan Shen‡∗, Zili Shao†, Feng Chen§ and Tong Zhang♮φ

†The Chinese University of Hong Kong, ‡Shandong University, §Indiana University Bloomington,
♮Rensselaer Polytechnic Institute and φScaleFlux Inc.

Abstract
Driven by the exploding demands for real-time data analyt-

ics, hybrid transactional and analytical processing (HTAP) has
become a topic of great interest in academia and the database
industry. To address the well-known conflict between optimal
storage formats for online transactional processing (OLTP)
and online analytical processing (OLAP), the conventional
practice employs a mixture of at least two distinct index data
structures (e.g., B+-tree and column-store) and dynamically
migrates data across different index domains. Unfortunately,
such a multi-index design is notably subject to non-trivial
trade-offs among OLTP performance, OLAP performance,
and OLAP data freshness. In contrast to prior work that cen-
tered around exploring the multi-index design space, this work
advocates a single-index design for a paradigm shift towards
much more effectively serving HTAP workloads. This is made
possible by computational storage drives (CSDs) with built-in
transparent compression that are emerging on the commercial
market. The key is to exploit the fact that compression-capable
CSDs enable data management software to purposefully em-
ploy sparsely filled storage data blocks without sacrificing
physical storage capacity. Leveraging this unique feature, we
have developed an HTAP-oriented B+-tree design that can
effectively serve HTAP workloads and in the meantime can
achieve almost instant OLAP data freshness. We have devel-
oped and open-sourced a fully functional prototype. Our re-
sults show that compared to the state-of-the-art solutions, such
a CSD-assisted single-index design can ensure data freshness
and deliver high performance for HTAP workloads.

1 Introduction

Hybrid transactional and analytical processing (HTAP) work-
loads present a critical challenge for database systems [6, 7,
31, 41, 52, 58, 71]. HTAP database management systems are
expected to provide simultaneous services to on-line trans-
actional processing (OLTP) workloads for latency-critical
point queries in complex, multi-access environments [4, 9,

∗Zhaoyan Shen is the Corresponding author

11, 44, 61] and on-line analytical processing (OLAP) work-
loads for throughput-driven decision support and data analy-
sis [16, 19, 21]. Hence, HTAP systems must cohesively con-
sider the OLTP performance, OLAP performance, and OLAP
data freshness. Due to the increasing demands for real-time
data analytics [8, 15, 17, 26, 29, 46, 49, 57, 67], OLAP data
freshness has become a critical metric, especially for domains
such as E-commerce and advertisement [3, 23, 27].

To support HTAP workloads, database management sys-
tems face a grand challenge stemming from the conflicting
needs in storage formats for OLTP and OLAP workloads.
OLTP workloads, characterized by a high volume of concur-
rent and small transactions, predominantly utilize row-based
storage formats where each tuple (or row) is stored contigu-
ously, with all tuples organized and managed through a tree
index structure (e.g., B+-tree [13,20,39]). Conversely, OLAP
workloads, involving extensive column-specific queries across
large datasets, favors columnar storage formats [6, 7] to en-
hance query efficiency and optimize data access throughput.
To accommodate such row vs. column storage format conflict,
a common practice in existing HTAP systems is to adopt a
multi-index design, which employs distinct indexes (e.g., row-
based B+-tree index and column-based index) and dynam-
ically migrate data across different index domains through
processes, such as ETL (Extract, Transform, Load) [37] or
log shipping [17, 26, 31, 41, 67, 71]. This conventional design
approach faces the following two major issues:
• Issue #1: Data freshness. Data migration between dis-
tinct index domains can have a notable impact on the OLAP
data freshness. To realize real-time analytics, OLAP clients
must await the migration of newly ingested updates from the
row-based index into the column-based index. This makes
migration process a synchronous operation, often leading to
significant degradation on the analytics data freshness that
could range from tens of milliseconds to several minutes in
existing systems [26, 31, 71]. Although one may improve the
analytics data freshness by allowing OLAP clients to directly
access the row-based index, conducting immediate, column-
specific retrieval through the row-based index may result in

USENIX Association 23rd USENIX Conference on File and Storage Technologies 305

Table 1: HTAP Design Categories.
Design Approach Implementation Data Copies Storage Data Freshness

multi-index multi-store
ByteHTAP [17], PolarDB-IMCI [67], VEGITO [56],

BatchDB [41], TiDB [31], F1 Lighting [71] 2 Disk-based 20ms to 8min

multi-index single-store SAP HANA [57], Hyper [36], MemSQL [59] 1 Memory-based Instant

single-index single-store HaSiS (our approach) 1 Disk-based Instant
Row page Column pageIndexStore Data

migration Client

......

Row store Column store

OLTP Transactions

OLAP query

(a) multi-index multi-store

e.g., Parquete.g., B+-tree

...

...

E.g., B+-tree

OLTP Transactions OLAP query

(b) multi-index single-store

Log store

Log records:

E.g.,Parquet

Upper
Tier

(Delta
space)

Lower Tier
(Primary
column
store)

Figure 1: HTAP design alternatives.
substantial read amplification and hence prolonged latency.
As a result, the benefits of directly accessing the row-based
index may not necessarily outweigh the losses caused by large
read amplification. Such a dilemma hinders existing HTAP
designs from effectively performing truly real-time analytics.
• Issue #2: Sub-optimal OLTP and OLAP performance.
Cross-index-domain data migration also causes notable per-
formance degradation in HTAP systems. As an I/O-intensive
operation, data migration extracts transactional updates from
the row-based index and merges them into column-based data
segments. It incurs significant data write amplifications, lead-
ing to severe I/O contention and interference with foreground
OLTP/OLAP services. Additionally, migration load increases
with the intensity of OLTP updates, causing an overall perfor-
mance drop under high transactional workload pressure.

In contrast to conventional multi-index design practices,
this work advocates for a paradigm shift towards single-index
HTAP to fundamentally mitigate overheads caused by cross-
index data migration. The key here is to leverage new storage
hardware, other than relying on multiple distinct indexes, to
reconcile the OLTP vs. OLAP storage format conflict. In
particular, we utilize computational storage drives (CSDs)
with built-in transparent compression, which have recently
emerged on the commercial market [32, 53]. Such CSDs cre-
ate an unprecedented opportunity for storage management
software to purposefully employ sparsely filled storage data
blocks without sacrificing physical storage capacity.

Based on this unique opportunity, we have developed a
Hardware-assisted Single-index Store (HaSiS) design for
HTAP with the following three features: (1) Page size and
write amplification decoupling: Under conventional B+-tree
design practice, write amplification is directly proportional
to page size [68, 69]. Hence most OLTP databases adopt
small page size (e.g., 8KB in Oracle [45]/ PostgreSQL [61]
and 16KB in MySQL [44]), which is fundamentally hostile
to OLAP workloads. In contrast, our CSD-assisted B+-tree
design largely relaxes the dependency of write amplifica-
tion on page size. This enables the use of very large page
size (e.g., 128KB) without notably sacrificing OLTP perfor-
mance, which creates a potential for B+-tree to much more
effectively serve OLAP workloads. (2) Sparse intra-page
column packing: Inside each large-size B+-tree page, follow-
ing the PAX design principle [5], the tuples are stored in
the column-based format. Again, leveraging the compression-
capable CSDs, we sparsely pack all the columns to minimize
the storage I/O read amplification under OLAP workloads,
without sacrificing the physical storage capacity. This plays

a key role in enabling our CSD-assisted B+-tree to achieve
high OLAP performance. (3) Per-page clustered storage of
multi-version records: Once again, leveraging the unique prop-
erty of compression-capable CSDs, HaSiS can conveniently
store/index multi-version records on a per-page basis without
using additional metadata or index. This makes it possible to
support multi-version concurrency control without sacrificing
the OLAP speed performance. All the above three features
together ensure the use of a single B+-tree to effectively serve
HTAP workloads with instant OLAP data freshness.

We have implemented a fully functional and open-sourced
prototype of HaSiS [30] and conducted experiments using a
commercially available compression-capable CSD, namely
ScaleFlux CSD-3310 [53, 54]. To demonstrate its effective-
ness, we have compared its performance with (1) a state-of-
the-art HTAP database, TiDB, (2) two baseline implementa-
tions of a row-based store and a column-based store, and (3)
state-of-the-art row/column stores including MySQL, Post-
greSQL, and Parquet. Our evaluation results demonstrate that
HaSiS can achieve instant data freshness, comparable per-
formance compared to TiDB, and preferable performance
compared to baselines and other state-of-the-art solutions.

2 HTAP System Design: State of the Art
HTAP systems need to handle both OLTP and OLAP work-
loads. However, OLTP workloads typically favor row-based
storage format, while OLAP workloads favor column-based
storage format. Therefore, prior work primarily followed a
multi-index design strategy (e.g., mixing row-based B+-tree
index and columnar index) and realized data synchroniza-
tion/consistency via runtime cross-index-domain data migra-
tion. As shown in Table 1, existing multi-index HTAP design
solutions largely fall into two categories: multi-index, multi-
store and multi-index, single-store.

The multi-index, multi-store approach maintains row-based
and column-based data engines separately: an OLTP engine
with a row-based index for transactional updates and an OLAP
engine with a column-based index for analytical queries. Due
to the separate management of data, a transformation process
is necessary to convert row-based data into a column-based
format. In contrast, the multi-index, single-store approach
consolidates row-based and column-based data within a single
system. This approach typically lays a row-based delta tier
on top of the main column-based store to enhance an OLAP
system’s support for OLTP. Here, row-based data serve as
incremental updates (deltas), which are gradually merged into
the main store indexed by a column-based format.

306 23rd USENIX Conference on File and Storage Technologies USENIX Association

User’s
Application

 & OS

NAND
flash

Compression &
Decompression

Flash
control

CSD with transparent compression
Controller

PCIe

HardwareSoftware
Valid user

data All zeros

4 KB Logical Block

LPN PPN

0 3

1 3

2 3

3 4

Page 00
Page 01

Page 02

Page 03 (A)(B)(C)

Page 04

B
lo

ck
 0

1

...
......

Mapping table Flash area

Write(0,A)

Write(1,B)

Write(2,C)

(a) Architecture overview of CSD with transparent compression (b) Internal operations that enable transparent compression

C
o

m
p

re
ss

io
n

e

n
gi

n
e

Valid user
data All zeros

4 KB Logical Block

4 KB Physical Block

FTL with transparent compression

...

...

Virtual
Storage
Space

(e.g., 32TB)

Physical
Storage
Space

(e.g., 4TB)

(c) Large virtual storage space granted by transparent compression

Compressed data

Figure 2: Architecture overview and internal operations of CSD with transparent compression.
• Existing multi-index, multi-store HTAP solutions.
As Cloud-native databases, ByteHTAP [17] and PolarDB-
IMCI [67] realize data migration by shipping redo logs
from OLTP engines to OLAP engines. As shown in Fig-
ure 1(a), upon receiving log records, OLAP engines merge
them into their column-based data stores. VEGITO [56] and
BatchDB [41] also rely on log shipping to realize data migra-
tion between their OLTP and OLAP engines. TiDB [31] and
F1 Lighting [71] are distributed databases designed for HTAP
workloads. They reuse the change log, originally intended for
consensus protocols like Raft, to update column-based stores.

However, log-shipping incurs a data freshness problem
—column store may not be updated in time as transactional
updates are temporarily held in the log. As shown in Table 1,
the reported delays range from tens of milliseconds to several
minutes. Although some systems permit OLAP queries to
retrieve data directly from the row store, this however forces
analytical queries to navigate through multiple index struc-
tures and cause severe read amplification.
• Existing multi-index, single-store HTAP solutions. SAP
HANA [58] is an in-memory database employing a layered
design, which integrates tree-indexed deltas atop its primary
column-based store. Row deltas are periodically merged into
the columnar data in the background. Hyper [36] and Mem-
SQL [59] maintain durable column chunks with in-memory
tree-indexed row stores. Shown in Figure 1(b), these solutions
can provide instant data freshness. However, since the dataset
is distributed across column-based store and row-based delta
store, analytical queries have to access data from both data
sources, resulting in index and read amplification, affecting
query efficiency. Although it can be alleviated by their in-
memory nature, the performance can significantly degrade
when they are forced to handle larger-than-memory datasets.

In this paper, our objective is to achieve instant data fresh-
ness through a single index, while minimizing read amplifica-
tion and ensuring optimal performance for HTAP workloads.

3 Why CSD for Single-Index HTAP?
3.1 CSD with Transparent Compression
Any storage drives capable of executing computational tasks
beyond storage functions can be categorized as CSDs [2, 32,
38, 42, 63, 64, 70, 72, 73]. This work focuses on a special
type of CSD that has a built-in transparent data compression
functionality [53, 54, 70, 72]. As shown in Figure 2(a), the
controller chip inside CSD contains a dedicated hardware en-
gine for (de)compressing individual 4KB LBA (logical block

address) data blocks along the I/O path. Its Flash Transla-
tion Layer (FTL) organizes the storage of variable-length,
post-compression data blocks on flash memory chips. In con-
trast to host-side compression [12, 25, 40], such CSDs relieve
host CPUs from (de)compression and management of post-
compression variable-length data blocks [70, 72]. In ordinary
SSDs, every 4KB data block is mapped to a 4KB physical
page, which is a one-to-one mapping between logical page
numbers (LPNs) and physical page numbers (PPNs). In CSDs
with transparent compression, one 4KB physical page may
contain compressed data blocks of multiple logical pages, an
N-to-one mapping, as shown in Figure 2(b).

Such CSDs have two unique features. First, it exposes a
virtualized logical storage space that can largely surpass its
internal physical storage capacity, similar to the concept of
thin provisioning [14]. This enables users to allocate more
logical storage capacity than what is physically available. Sec-
ond, leveraging the high compressibility of low-entropy data
patterns (e.g., all zeros), data management software could
sparsely fill 4KB LBA blocks (e.g., 1KB real data and 3KB
zeros) without sacrificing true physical storage space, as illus-
trated in Figure 2(c). These features facilitate the decoupling
of user-perceived logical storage space usage from the physi-
cal storage space consumption, creating new opportunities.

3.2 Opportunities Brought by CSD
Aiming at single-index HTAP, this work focuses on making
classical B+-tree to much more effectively serve OLAP work-
loads without notably sacrificing its OLTP competence. How
well a B+-tree can serve OLAP depends on how much it
can reduce its storage I/O read amplification under column-
oriented data access. The first step is to store all the tuples
in column-based format within each B+-tree page, which is
commonly referred to as PAX page format [5]. Let lc denote
the size of one intra-page column, and suppose we must fetch
s consecutive 4KB LBA blocks from storage devices when
reading this intra-page column. The corresponding storage
I/O read amplification is γ = s·4KB

lc
. To reduce γ, we should

(1) increase the value of lc (i.e., the size of intra-page columns)
by storing more tuples in each page, and/or (2) reduce the
value of s by aligning the placement of intra-page columns
with 4KB boundaries. Storing more tuples per page demands
a larger page size. However, conventional wisdom suggests
that a large B+-tree page size leads to high write amplifica-
tion and hence worse OLTP performance. Meanwhile, 4KB-
aligned intra-page column placement induces page storage

USENIX Association 23rd USENIX Conference on File and Storage Technologies 307

...
B+-tree

Massive scan during recovery!

Huge WAL

...

...

B+-tree

preferable recovery
...

Small WAL
Log record

Big leaf page

Delta page

...4KB 4KBActual
records

Leaf page

Storage wastage & Write amplification (WA)!

Conventional SSD Conventional SSD

...

B+-tree

preferable recovery
...

Small WAL

Delta page

...4KB 4KBActual
records

Compressed
away

Leaf page

Storage efficiency & Mitigated WA!

CSD with compression

4KB LBA block

Fetch volume when retrieving column-B

column-C

Conventional SSD
4KB LBA block

column-A column-B

4KB LBA block

Fetch volume when retrieving column-B

CSD with compression
4KB LBA block

column-A column-BAll Zeros All Zeros

Version dataB+-tree
...

...
Update

Page

Index

Conventional SSD

B+-tree
...

Leaf Page

Index

CSD with compression

4KB ...4KB All ‘0’s
Updates to the page

Version space

(a)

(b)

(c)

Figure 3: Illustration of the opportunities brought by CSDs.
space waste. Moreover, given long-running OLAP queries,
B+-tree must be able to effectively store/index a large num-
ber of versioned tuples to maintain its efficacy for serving
OLTP workloads. These issues prevent classical B+-tree from
effectively serving HTAP workloads. Fortunately, the emerg-
ing CSDs with built-in transparent compression bring three
unique opportunities to address these issues.
Opportunity #1: Decoupling write amplification from
page size. To increase B+-tree page size without proportion-
ally increasing write amplification, we could keep more log
records in write-ahead log (WAL) before merging them into
destination pages. In current practice, all B+-tree pages share
a global WAL. Since the global WAL must be scanned during
crash recovery, a larger WAL directly causes a longer crash
recovery time. Nevertheless, practical systems tend to have
stringent requirements for crash recovery time. Intuitively, if
each B+-tree leaf page can have a dedicated storage space,
called delta page, for accumulating its own associated log
records, we could aggressively apply logging to reduce write
amplification, without compromising crash recovery time.

However, since each delta page must occupy one or mul-
tiple 4KB storage blocks to hold log records for only one
B+-tree page, its content would be sparse most of the time,
e.g., one 4KB delta page may contain 0.5KB log records
and 3.5KB zeros. Hence, when B+-tree operates on ordinary
SSDs, sparse delta pages would result in significant physi-
cal storage space waste. As shown in Figure 3(a), replacing
ordinary SSDs with compression-capable CSDs seamlessly
solves the problem: With built-in compression capability,
CSDs naturally compress away the all-zero segment in each
sparsely filled delta page, avoiding wastage of the physical
storage space. Therefore, compression-capable CSDs readily
enable B+-tree to employ very large pages without notably
sacrificing its OLTP competence.
Opportunity #2: Reducing intra-page column read am-
plification. As discussed previously, the placement of each
intra-page column should be aligned with 4KB LBA storage
block boundaries to reduce the value of s and hence reduce
the I/O read amplification. This can be further illustrated in
Figure 3(b): If we compactly pack intra-page columns as in
conventional practice, to read the column-B, we have to fetch

Global
Log

Single Index Space

Hybrid Buffer Pool

Open
segment

Sealed
segment

Adaptive Hybrid-Page Partition

Invalidation-based
Eviction

Hybrid page as basic unit

Map
Table

(a) System Architecture of HaSiS

A
n

al
yt

ic
al

 Q
u

e
ry

A
n

al
yt

ic
al

 Q
u

e
ry

 HTAP services interfacesTransactional
requests

Transactional
requests

Hybrid pages
under unified indexing

Row-based
delta page

Column-based
data page

...

...B+-Tree

(b) Hybrid Page Structure

Data page Delta page
Logical
space

Physical space

0

1
2

8
K

BD
a

ta
 r

eg
io

n

Col#A

...

All Os

Mini page-1

Col#B

All Os

Mini page-2

Internal
indexM

et
a

d
a

ta

Statistics

LB
A

0

1
6

 K
B

LB
A

...

Delta page-1

Tuple#1

Tuple#2

Tuple#N

All Os

Delta page-2

...

Figure 4: Architecture overview of HaSiS.
two 4KB LBA blocks from the storage device even though
the column-B itself is less than 4KB. In contrast, as shown
in Figure 3(b), if the placement of columns is 4KB-aligned,
column-B resides in only one 4KB LBA block, hence read-
ing column-B only incurs the fetch of one 4KB LBA block
from the storage device. Clearly, such 4KB-aligned column
placement introduces content sparsity inside B+-tree pages.
Leveraging its built-in compression capability, CSD can na-
tively accommodate such content sparsity without sacrificing
the physical storage space.
Opportunity #3: Per-page clustered storage of multi-
version records. Existing database management systems
typically allocate global storage space to realize concurrent
multi-version control [10, 18, 35, 50, 60, 62]. The co-existence
of OLTP and OLAP workloads makes it a bigger challenge
to efficiently manage the storage of multi-version records. In
particular, long-running OLAP workloads could cause a long
chain of versioned records spreading over the global storage
space, leading to significant I/O read amplification and hence
system speed performance degradation [28,35,50]. To address
this, one option is to cluster all versioned records on a per-
page basis, which can largely simplify the access/management
of multi-versioned records. However, due to the runtime
workload variation, the amount of per-page multi-version
records can substantially vary from one page to the other
and over time. This can notably complicate the storage man-
agement when using ordinary SSDs. Leveraging the native
thin-provisioning support of compression-capable CSDs, we
could conveniently realize per-page clustered storage of multi-
version records. In Figure 3(c), for each B+-tree page, we
can pre-allocate an over-provisioned virtual space to store
all multi-versioned records, adapting to the varying storage
demand without incurring additional physical storage cost.

4 System Design
In this paper, we present a Hardware-assisted Single-index
Store design solution, named HaSiS, by leveraging the above-
said unique, CSD-enabled opportunities to serve HTAP work-
loads with a single index on a unified, single data store. Un-
like existing multi-index solutions, HaSiS simultaneously
achieves nearly identical performance as dedicated row- and
column-based data stores for TP and AP workloads, while
ensuring instant OLAP data freshness.

308 23rd USENIX Conference on File and Storage Technologies USENIX Association

Figure 4 illustrates the architecture overview of HaSiS.
Though based on the classical B+-tree, HaSiS is OLAP-
friendly while still retaining its high OLTP performance. This
is achieved via several important measures in our designs:
(1) A large page size (e.g., 128KB) is employed for han-
dling OLAP workloads, and the induced negative impact on
write amplification (hence OLTP performance) is mitigated
by persistently buffering log records on the per-page basis in
a dispersed manner; (2) A hybrid page structure, as illustrated
in Figure 4(b), is designed to integrate the row-based data
format for OLTP transactional updates and the column-based
data format with 4KB-aligned placement in the B+-tree pages
to best serve OLAP workloads; (3) The buffer pool manage-
ment is optimized to tackle the memory under-utilization and
buffer pollution problems caused by the use of large page
sizes for OLTP workloads; (4) Multi-version records are clus-
tered on the per-page basis to more effectively accommodate
long-running OLAP workloads. All the core techniques of
HaSiS essentially trade logical storage space for efficacy. The
unique abilities of the emerging CSD hardware enable us to
purposefully make such tradeoffs without inducing wastage
of physical storage space. In the rest of this section, we will
describe each component in detail.

Transactional requests are processed by the hybrid buffer
pool, with corresponding changes persisted in the global log.
These requests are managed by retrieving or rewriting hybrid
pages indexed by a B+-tree. Analytical queries can either
check the buffer pool or directly access hybrid pages to obtain
the most recent data resulting from transactional updates.

4.1 Single-Index, Single-Store
Our main goal is to attain instant data freshness and serve both
OLAP and OLTP workloads in a highly efficient manner. The
key to achieving this goal is to create a single-index, single-
store design to remove the need for maintaining multiple
indexes and migrating data across separated index domains.
However, the prior efforts we witnessed in past decades have
proven that realizing such a design is difficult. This is mainly
due to two critical challenges.

First, OLTP and OLAP workloads feature drastically dis-
tinct access patterns, demanding different data organizations
on storage. Analytical queries generally involve retrieving a
substantial volume of data, thus favoring column-based data
organization. A common practice is to adopt a large granu-
larity (128KB to MBs) as the basic data unit (B+-tree’s leaf
node), which helps reduce the management overhead and fa-
cilitates batched retrieval. In contrast, transactional queries
favor row-based data organization, typically using a small
granularity (8KB or 16KB) to reduce write/read amplifica-
tion caused by in-place updates or retrievals. A single-store
design serving both workloads has to simultaneously accom-
modate the two radically different access patterns, which have
almost opposite demands. Satisfying requirements for one
often unfortunately means missing requirements for the other.

Second, maintaining a single index structure can lead to no-
table contention issues, particularly for OLAP queries. OLTP
operations frequently involve structural modifications to the
index, which are necessary to ensure data consistency and typ-
ically need to be performed exclusively. However, it presents
a significant challenge to read-only OLAP queries, as they
may be routinely blocked or delayed while waiting for the
completion of OLTP’s structural changes. This situation can
significantly impede the efficiency of OLAP queries, as they
are forced to wait, potentially affecting the overall perfor-
mance of the system. Addressing this contention is crucial to
the effectiveness of our indexing strategy.

To tackle these challenges, our key idea is to create a unified
data structure, which organizes data in a carefully designed
hybrid (column-based, OLAP-friendly and row-based, OLTP-
friendly) page as a single-index-addressed unit. Leveraging
the CSD hardware, which provides a virtualized storage space,
we can purposefully create a sparse data structure on storage
to remove undesirable read/write amplification and index
contention. In the following, we will describe the related page
structure, indexing, and buffer pool management designs.

Hybrid Page Structure. The core data structure in HaSiS
is hybrid page, which is an index-addressable storage entity,
functioning as a leaf node of a B+-tree index. As illustrated in
Figure 4(b), the data in a hybrid page is organized in two parts,
a column-based data page and a row-based delta page. The
data page is optimized for handling analytical queries; The
delta page collects transactional data as a small, incremental
log to the column-based data page.

• Column-based Data Page organizes large volumes of
data by columns, which inherits the PAX-page layout [5–
7] and is tailored for analytical queries. Similar to the PAX
page, a column-based data page comprises a data region for
column-based data storage and a metadata region for internal
column data indexing, whereas the data region is divided
into 4KB mini-pages, each of which sparsely manages values
in columns. As shown in Figure 4(b), each mini-page only
stores column values belonging to one specific column (e.g.,
mini-page-1 only holds column values belonging to column-
A). The mini-pages inside the data region are sequentially
allocated in the LBA order on storage, and the column values
in a mini-page are stored consecutively one after another. If a
column value cannot be entirely accommodated at the end of
a mini-page, we move to the next mini-page and continue to
store the value there; The unused mini-page space is filled up
with all zeros, which would be transparently compressed away
by the CSD. With hardware assistance, this sparse storage
structure can effectively reduce read amplifications without
wasting physical storage space.

In the metadata region, an internal index keeps the mapping
between <start key, column name> of a mini-page to its
LBA address in storage. This enables efficient point queries
or small-range scans by directly accessing mini-pages rather
than loading the entire data region. In addition, the meta-

USENIX Association 23rd USENIX Conference on File and Storage Technologies 309

data region also records essential information for B+-tree’s
indexing (e.g., key range and capacity usage for page split
or merge). To eliminate I/Os of metadata retrieval, we cache
the small-sized metadata region of each hybrid page (around
2,670B), along with B+-tree’s index nodes in memory.

• Row-based Delta Page essentially mirrors the row-based
page in relational database systems like MySQL [44] and
PostgreSQL [61], specifically for efficient transactional data
ingestion. As shown in Figure 4(b), the delta page manages
data records (i.e., tuples) by rows, in which all tuples are
stored one after another, sequentially based on the LBA or-
der and acting as a compact, in-situ update log to patch the
column-based data page. Similar to mini-pages, if the delta
page is not fully occupied by tuples, the reserved space is filled
by all zeros, which can be automatically compressed away by
the CSD hardware. When the delta page is completely filled
up, a major compaction operation is triggered to apply the
changes to the column-based data page (see Section 4.3).

In our implementation, a hybrid page includes a 128KB
column-based data page and a 16KB row-based delta page.
As the delta page immediately follows the column data page
on the logical storage space, it enables a hybrid page to be ac-
cessible with only one single I/O operation, streamlining the
process and enhancing the overall system performance. The
current 128:16 ratio works well in our experiments. In situa-
tions where all updates in the delta page have to be temporar-
ily preserved for query, such as due to multi-version control as
described in Section 4.4, the delta page space can be dynam-
ically extended by pre-allocating or dynamically linking to
an additional 128KB LBA space following the existing delta
page. For each hybrid page, we can pre-allocate more than
one delta page to ingest transactional updates. With transpar-
ent compression of the CSD hardware, the over-provisioned
delta-pages would not occupy physical storage space.

Unified Indexing. The hybrid page design facilitates uni-
fied indexing of both transactional updates and column-based
data. As illustrated in Figure 4(a), rather than separately in-
dexing row-based updates and column-based data, a hybrid
page unifies the data page and delta page into a single, index-
addressable storage entity, functioning as the leaf nodes of
a B+-tree index. It enables analytical queries to instantly re-
trieve recently ingested transactional updates with the main
column-based data through a single index search, thus funda-
mentally removing the need for migrating and transforming
data across different index domains.

We further partition hybrid pages based on table relations
to alleviate contention between transactional operations and
analytical queries. Table relations have been widely used
for indexing and organizing data for OLTP and OLAP work-
loads [9,31,44,61]. As illustrated in Figure 4(a), our approach
involves partitioning hybrid pages by tables, with each table
partition housing a dedicated B+-tree index structure. More-
over, when a table grows beyond a certain size threshold, it
can be progressively subdivided into smaller partitions. Given

Hybrid Buffer Pool

...PID addr

Tab1-1 TabN

Partitioned MapTable

...
LRU List Row subpage Column subpage

Cached

dirty Valid Invalid

U
n

ca
ch

ed

Tab1-2

Figure 5: An overview of the hybrid buffer pool design.
that the index volume scales proportionally to the number
of indexed records, we set the partition size limit to 50,000
records, which works well in our experiments. This setting
ensures that the depths of the B+-tree index stay below three
levels, effectively balancing and distributing operations across
different partitions to minimize operational contention.

4.2 Hybrid Buffer Pool
The buffer pool is crucial in HTAP system performance by
caching frequently accessed data in memory for fast access.
As a hybrid page embeds two types of data format, in rows
or columns, for serving hybrid workloads, introducing the
hybrid page into HTAP systems brings two new issues.

First, simply fetching the entire hybrid page into the buffer
pool would occupy an excessive amount of memory space
without yielding corresponding benefits. This is particularly
evident for analytical queries, which typically exhibit minimal
locality. These queries often access large volumes of column
data, which are unlikely to be reused. Holding such data in the
buffer pool would lead to heavy “buffer pollution”. Second,
simply applying the existing flush-based eviction policies can
cause significant write amplification. When a hybrid page is
modified in the buffer pool and marked as “dirty”, an LRU-
based eviction policy would flush the entire hybrid page back
to storage, even for minor updates. This is highly inefficient,
especially considering the large size of a hybrid page.

To overcome these issues, we propose a hybrid buffer pool
design, illustrated in Figure 5. This design incorporates fine-
grained, invalidation-based buffer pool management, allow-
ing for partial reservation of hybrid pages, to mitigate the
memory space wastage and meanwhile address the write am-
plification issue induced by page flushes. This design inte-
grates fundamental data structures commonly found in buffer
pools, including (1) an LRU List that manages hybrid pages
based on their access frequency, and (2) a mapping table that
maintains the indirect association between a hybrid page’s
logical identifier (e.g., node ID allocated based on B+-tree)
and its block address. Specifically, it works as follows.

An in-memory hybrid page comprises two sub-pages,
namely column sub-page and row sub-page, corresponding to
the on-storage column-based page and row-based delta page,
respectively. When fetching an on-storage hybrid page into
memory, rather than loading the entire hybrid page, only the
delta page along with involved 4KB mini-pages that intersect
with the queried rows are retrieved into the hybrid buffer pool.
Upon updating an in-memory hybrid page, we modify the row
sub-page and invalidate relevant column values in the column

310 23rd USENIX Conference on File and Storage Technologies USENIX Association

Data page

C1 C2 Cq

TP write

Minor compaction

Major
compaction

TP read

AP scan

③

Open segment
Global Log

①

 Sealed segment

②

D
el

ta
 p

ag
e

 ...

Hybrid page

R2

R1

RX

...

M1 M3 M4

④

⑤

M5M2

M6

(a) An example for HaSiS critical operations

Data page

C1 C2 Cq

D
el

ta
 P

ag
e-

1

...

Hybrid page

R2

R1

RX

...

M1 M4 M5

M6M2

M3

TS#1::AP scan TS#2::TP write

D
el

ta
 P

ag
e-

2
 R’2

All
Zeros

(b) Multi-version storage of hybrid page

<R1>

<R1>full
COMPLETION

......

Figure 6: Examples of how HaSiS handles HTAP workloads.
sub-page in memory. Considering background compaction
consistently applies updates to the on-storage data pages,
when mini-pages, whether updated by major compaction or
not, are fetched into the buffer pool, the invalidation approach
guarantees that there is only one version for each mini-page
in the hybrid buffer pool. This ensures consistency between
the in-memory and on-storage versions of a hybrid page. Fi-
nally, when evicting an in-memory hybrid page, we simply
discard it, as the most recent version is already maintained on
storage by compaction operations. This eliminates the typical
write amplification issues associated with flushing processes,
making the buffer pool more efficient for HTAP workloads.

4.3 Log and Compaction
A critical challenge in HTAP systems is how to efficiently han-
dle OLTP transactions, which involve massive small, latency-
sensitive transactional updates and insertions. Such operations
often incur high-cost “read-modify-write” operations, causing
significant I/O amplifications and impairing system perfor-
mance. HaSiS tackles this challenge by maintaining a small,
indexed global log and a two-phase compaction process.

Global log. The hybrid page design in HaSiS essentially
manages updates in a dispersed manner. For transactional
updates, changes are made to the corresponding delta pages
within hybrid pages. To further mitigate the write amplifi-
cation of directly rewriting delta pages and decouple fore-
ground operations from storage I/Os, as shown in Figure 6,
a small, centralized global log temporarily accommodates
data changes in an append-only manner. A small in-memory
index keeps track of these temporary updates in the log. Once
the changes are persisted in the global log, the system imme-
diately returns COMPLETION to the client, while the changes
are applied (compacted) to the corresponding hybrid pages
asynchronously. The global log maintains an open segment to
log the updates. When the segment size exceeds a predefined
threshold (e.g., 100MB), it is sealed and a new open segment
is allocated. Changes in the sealed segment are flushed (ap-
plied) to their corresponding hybrid pages via a two-phase
compaction process as described below.

Two-phase compaction. When a sealed segment is gener-
ated, the minor compaction process is triggered to (1) retrieve
all relevant row-based delta pages from storage, (2) append
log records to update these pages in memory in a row-based
manner, and (3) flush the updated delta pages back to storage.
This batched process capitalizes on the parallel processing
capabilities of the CSD with boosted efficiency: retrieving and

flushing multiple delta pages can be conducted in a batched
and parallelized way to fully utilize the storage bandwidth.

If a delta page exceeds its space limit, major compaction
runs to merge the “delta” updates into their corresponding
column-based data pages, reclaiming the delta page space for
future updates. This process involves reading the correspond-
ing mini-pages, applying changes in memory, and flushing
the updated column data pages back to storage.

Different from conventional HTAP solutions that involve
extensive data transfer between row and column storage, this
compaction-based approach significantly mitigates migration
costs with better data freshness and I/O efficiency: (1) Given
the compaction is index-internal and operates in the back-
ground, AP queries can immediately access newly ingested
TP data; (2) As hybrid pages are isolated data entities and in-
dependent from each other, the major compaction can merge
multiple hybrid pages in a batched and parallelized manner
and thus to guarantee I/O performance.

4.4 Operations
In this section, we summarize and illustrate the workflows
of HaSiS for handling OLTP and OLAP workloads via an
example. As shown in Figure 6, a hybrid page contains a delta
page that stores X data records by rows (from R1 to RX), and
a column-based data page that organizes data records in q
columns with one or multiple mini-pages each.

• OLTP writes include transactional updates and insertions.
HaSiS adopts a global log and a two-phase compaction mech-
anism to quickly log changes in the small global log, then
asynchronously append them to the delta pages as a per-page
log, and finally merge them into their final destination, the
column-based data pages. As illustrated in Figure 6(a), an
incoming TP write R1 (Step ①) is recorded as a change log
<R1> in an open segment of the global log in an append-
only manner. After the change log is persisted and the log’s
in-memory index for it is updated, we can directly return suc-
cess to users. As the segment size exceeds the predefined
threshold, it is sealed and scheduled for flushing via minor
compaction (Step ②). If the delta page is full, major com-
paction (Step ③) merges the logged updates, including R1,
from the delta page into the corresponding column page.

• OLTP reads include record lookup or small-range scans
(e.g., selecting a few dozens of records). As shown in Fig-
ure 6(a), ongoing compaction processes periodically integrate
transactional updates into the delta page and subsequently the
column page. As a result, a record in a hybrid page could be
in the delta page, the column data page, or both. To ensure
correct OLTP reads, each read operation has to verify both
pages. However, simply retrieving the entire hybrid page for
OLTP reads can lead to notable read amplification. Our mini-
page design can address this issue with fine-grained access.
As shown in Figure 6(a), rather than retrieving an entire col-
umn page, a TP read (Step ④) only involves a small portion
of mini-pages (e.g., M1, M3, M4), i.e., to serve this request,

USENIX Association 23rd USENIX Conference on File and Storage Technologies 311

we only retrieve the delta page and the involved mini-pages,
rather than retrieving the entire hybrid page. This approach
significantly reduces read amplification.

• OLAP scans. For analytical queries that require scanning
extensive volumes of hybrid pages, HaSiS is designed to ex-
ecute hybrid page retrieval with the least read amplification.
In Figure 6(a), an OLAP scan (Step ⑤) intends to retrieve a
portion of column values from column-q (Cq). We only load
the involved mini pages (M5 and M6) from the column data
page, along with the delta page physically stored alongside it.
As the mini-pages sparsely align attributes of the same col-
umn in 4KB logical blocks without cross-LBA placement, the
read amplification for column-oriented data retrieval can be
significantly reduced. Moreover, leveraging the hybrid page’s
metadata, the query process can be accelerated by conducting
multiple 4KB mini-page reads in a batched-up way.

• Multi-version support. A benefit provided by the hybrid
page design is that delta pages could be leveraged for sim-
plified access/management of multi-versioned records. Fig-
ure 6(b) showcases the multi-version storage supported by
the hybrid page. An AP scan operation starts at timestamp 1
(TS #1) and intends to retrieve data records from the hybrid
page. After TS #1 and before the completion of the AP scan,
another TP write at timestamp 2 (TS #2) intends to rewrite the
record R2 in the hybrid page. Naïvely, the record R2 issued
by the TP write (R′

2) should be persisted into the hybrid page,
as it is the user-issued update that is supposed to be merged
into the hybrid page. However, the new value, R′

2, should re-
main inaccessible to the AP scan, since it is ingested after
the scan operation. Meanwhile, the old version of R2 should
not be overwritten by R′

2, because the old R2 should remain
accessible to the AP scan before its completion.

In this situation, we need to preserve both versions. Lever-
aging the pre-allocated LBA space, we can expand the hybrid
page by allocating or linking a new delta page (Delta Page-2),
such that the new value, R′

2, can be temporarily preserved to
fulfill the TP write, and be merged into Delta Page-1 later
after the completion of the AP scan. In real-world scenarios,
AP scans seeking to gather insights from a large number of
pages typically exhibit no locality. This means that it is rare in
practice that updating a hybrid page is extensively blocked by
AP scans. In Section 5.3, we will demonstrate in experiments
that even in the worst-case scenario, the additional delta page
allocation remains within a reasonable range.

4.5 Summary
Essentially, the core idea of HaSiS is to combine the B+-tree
index with hybrid delta and PAX pages. However, simply
merging these existing techniques cannot fundamentally re-
solve the challenges presented by HTAP workloads. Com-
pared to prior efforts, HaSiS achieves its design goal with
several unique and important measures.

(1) The small global log and the two-phase compaction pro-
cess decouple the processing of transactional and analytical

queries. It allows a TP write to immediately signal success to
users once the write is persisted into the open segment, which
enables “blind updates” in transactional operations without
requiring loading the original page into memory. Combined
with the asynchronized two-phase compaction, the write path
for transactional updates is significantly shortened, speeding
up OLTP requests and reducing interference to OLAP queries.

(2) Emerging CSDs with transparent compression provide
a virtualized storage space, allowing us to purposefully create
a sparse data structure without wasting physical storage space.
Aggressively over-provisioning storage space, such as align-
ing mini-pages in 4KB logical blocks and padding delta pages
with all zeros, enables us to reduce read/write amplifications
with a more efficient data layout on storage.

(3) The single-index, single-store design integrates both
column- and row-based data layouts, which are originally
tailored to two drastically different workloads, to maintain
only one single copy and one single index to address the
data. This fundamentally eliminates the need for a resource-
demanding row-to-column transformation process, making
all persisted data instantly available for analytical queries.

These design elements are the result of deliberate choices
based on careful consideration of the properties of hardware
and software, forming a comprehensive solution that effec-
tively addresses the long-existing HTAP challenges.

5 Evaluation
• Implementation. We have implemented a fully functional
prototype of HaSiS incorporating the single-store single-index
design, the hybrid buffer pool, and the multi-version storage
support. By default, the sizes of the column-based data page
and delta page are set to 128KB and 16KB. For comparison,
we have developed two baseline systems to represent the
optimal performance of the pure column store (CS) and row
store (RS): CS utilizes 128KB PAX pages indexed by a B+-
Tree without employing delta pages where incoming updates
directly overwrite each 128KB PAX page; RS is implemented
based on the pB+-Tree architecture [33] leveraging per-page
logging for blind updates where row-based data records are
organized in 16KB data pages with 16KB per-page logs.

We also conduct comparisons with contemporary HTAP
(TiDB), OLTP (MySQL and PostgreSQL), and OLAP (Par-
quet) designs to provide insights into the performance and
effectiveness of HaSiS in the broader context of existing sys-
tems. All prototypes follow their default settings. We equally
restrict the memory space for each prototype to 10% of the
data set. Considering the weak locality of OLAP queries, we
allow the OLAP queries in HaSiS to bypass the buffer pool.
• Experimental Setup. Our experiments are conducted on
a server equipped with a 22-core 2.2GHz Intel Xeon E5-
2696 v4 CPU, 64GB DDR4 DRAM, and a 7.68TB Scale-
Flux CSD-3310 SSD. The server operates on Ubuntu 20.04
LTS with Linux Kernel 5.15 and Ext4 file system. The CSD-
3310 SSD [53, 54] features a hardware-based zlib compres-

312 23rd USENIX Conference on File and Storage Technologies USENIX Association

(a.1) Average and breakdown delay for OLAP requests (a.2) Average latency (a.3) Physical storage usage

74.1

231.4

109.6

1 2 3
0

100

200Physical Storage
Usage (GB)

Prototype

1/50000
1/20000

1/100001/5000 1/2000 1/1000030
90

120
150

OLTP Throughput (KOPS)

AP:TP request ratio

 HaSiS CS RS

1/50000
1/20000

1/10000 1/5000 1/2000 1/1000
0
3
6

40
OLAP Response Time (Sec)

1/50000
1/20000

1/10000 1/5000 1/2000 1/10000
900

1200
1500

Average I/O Utilization (MB/s)

0 200 400 600 800 1000 12000
300
600
900

1200

Bandwidth Utilization (MB/s)

Time(sec)

 HaSiS-r HaSiS-w CS-r CS-w

10 20 30 40 50 60 70 80
0

50

100

150

200

Clients

 OLTP Throughput (KOPS)

 OLAP Throughput (QPS)

0.0

0.5

1.0

1.5

0 50 100 150 200
0

800
2k
2k
3k

Time (min)

 Compaction Counts
 Throughput (KOPS) Latency (us/op)

0

150

300

450

 Logical Volumes (GB) Physical Volumes (GB)

0 50 100 150 200
0

80

160

240

0

30

60

90

(c.1) Compaction effects and performance of HaSiS during a 200 minutes test (c.2) Throughput of HaSiS with clients from 10 to 80

(b.1) Overall performance and I/O usage under different AP request ratios (b.2) Bandwidth breakdown

85.1

5.21

86.6

17.96

36.4

12.1

2589.7

12.14

0 100 200 300 400 500 6000
1k
2k

Average delay of
OLAP request (us)

Time (sec)

 HaSiS TiDBTiDB_High

TiDB_Low HaSiS_High HaSiS_Low

Insert Update Lookup
Scan_TP

Scan_AP0
500

1k
3M

Average Latency (us/op)

Type

 HaSiS
 TiDB

3.24s/op
3.01s/op

HaSiS_High
HaSiS_Low

TiDB_High
TiDB_Low0

50
100

3k
 Fresh Data Ready Time (us)
 Data Response Time (us)

HaSiS TiDB TiDB(1Copy)

Figure 7: Overall comparison of HaSiS with TiDB and baseline stores.
sion engine that compresses each 4KB block along the in-
ternal I/O path, being seamlessly transparent to the host sys-
tem. This engine operates with low latencies at around 5µs
for (de)compression, which are significantly faster than typi-
cal read latencies (>50µs) and multiple orders of magnitude
shorter than write latencies (>1ms) associated with TLC/QLC
NAND flash memory. In terms of throughput, the drive, ad-
hering to NVMe standards and supporting a PCIe Gen4 x4
interface, delivers high sequential read/write bandwidths (up
to 7.2GB/s and 4.8GB/s), and random 4KB read/write IOPS
(1,450K/380K) across a 100% LBA span. Thus, compression
operations do not affect the system throughput even under
high-intensity workloads. CSD-3310 is in volume production
and widely deployed in data centers globally, demonstrating
its reliability and robust performance in real-world settings.
HaSiS does not rely on specific hardware implementations
of ScaleFlux CSD but rather leverages the transparent com-
pression commonly found in commercial CSDs [22,34]. This
compatibility makes HaSiS a flexible and scalable solution
for modern storage environments.

• Workload. We have developed a benchmark tool to evalu-
ate HaSiS in comparison to the baselines and SOTA solutions.
This tool is capable of converting complex SQL queries, such
as analytical queries, to simple and table-specific SQL re-
quests (e.g., select column-A from table-B where column-A
< X). It helps isolate the I/O execution from interference of
other database-dependent components (e.g., planning and op-
timization) and provides detailed performance metrics, such
as throughput and latency. This tool follows the table layout
of CH-Benchmark [51] where “lineitem/part” table is aligned
to TPC-C setting as “orderline/item” table, respectively.

We issue the TPC-C [65] and TPC-H [66] workloads to
MySQL [44] and then collect the corresponding requests
from InnoDB [43], MySQL’s storage engine. The translated
requests are essentially key-value operations, where the key
is defined by the primary/secondary key following MySQL’s
standard. In this tool, OLTP requests include various transac-
tional operations: (1) Insert for adding records to a table, (2)

Update for rewriting records in a table, (3) Lookup for retriev-
ing specific records, and (4) Scan (a.k.a., “Scan_TP”), for col-
lecting column values from multiple records; OLAP requests
(a.k.a., “Scan_AP”) are groups of translated SQL operations
extracted from TPC-H query plans. The workload distribution
of translated requests strictly follows TPC-C/TPC-H work-
loads. Detailed implementation and benchmark explanation
can be found in our open-source project.
• Method. Before the evaluation, we initiate a warm-up phase
by sequentially populating each store with a TPC-C dataset
containing 500 warehouses, during which the benchmark tool
operates as OLTP clients issuing translated TPC-C requests.
We then evaluate the performance of each prototype with the
benchmark functioning as OLTP and OLAP clients that exe-
cute SQL requests derived from TPC-C and TPC-H requests.
Throughout these experiments, we measure the throughput, la-
tency across all request types, and the delay in serving OLAP
requests for a comprehensive comparative analysis.

5.1 Overall Performance
• Comparison with TiDB. We first demonstrate the data
freshness, overall performance, and storage efficiency of Ha-
SiS and TiDB by issuing both OLTP (16 clients) and OLAP
(8 clients) requests simultaneously (i.e., HTAP workload). We
deploy TiDB in the local test cluster mode by Tiup [47] (one
instance of TiDB, TiKV, PD, and TiFlash). We collect TiDB’s
metrics through [48]. For a fair comparison, we exclude the
Raft log propagation for latency comparison.

As shown in Figure 7(a.1), we quantify the data freshness
of HaSiS and TiDB by the delay of OLAP queries. Besides
data retrieval, in HaSiS, the delay includes the time taken to
register a record into global log’s in-memory index; in TiDB,
it includes its inherent row-to-column transformation [48].
The average delay is tracked per 10 seconds. Notably, HaSiS’s
delay stably spans from 17.31µs to 121.5µs, while that of
TiDB spans from 30.1µs to 2,676.3µs with large fluctuation.
A breakdown analysis for the lowest and highest delays of
HaSiS and TiDB is shown to explain this fluctuation: due to

USENIX Association 23rd USENIX Conference on File and Storage Technologies 313

its row-to-column transformation, TiDB experiences 12.14µs
and 2,589.7µs delay in waiting fresh data before they are
ready for AP query while HaSiS with its single index design
mitigates this wait to 12.1µs and 36.4µs. It highlights HaSiS’s
efficiency: by integrating row-based/column-based data into
hybrid pages and indexing them through a single B+-Tree,
HaSiS can provide (almost) instant data freshness. This makes
HaSiS particularly well-suited for applications in domains
like e-commerce, finance, and real-time monitoring.

HaSiS exhibits comparable latency compared to TiDB
in Figure 7(a.2). For the average latency of Insert/Update
operation, benefiting from the blind update design, HaSiS
only shows 3.77%/3.66% latency degradation compared to
TiDB which adopts LSM-tree as the storage engine. For
Lookup/Scan_TP, HaSiS exhibits 6.90%/1.21% lower latency
compared to TiDB since HaSiS is a B+-Tree design that only
retrieves one page for each data record while the LSM-tree
adopted by TiDB encounters read-amplification. For OLAP
(Scan_AP) performance, although TiDB supports adaptive
configuration (waiting until all data are converted as column-
based ones or directly scanning both row and column data),
TiDB shows a 6.64% longer average latency than HaSiS. Ha-
SiS, with its single index and compaction design, can instantly
retrieve all involved column data. The compaction occurs
lazily, without impacting synchronous OLAP operations.

As a single-store design, HaSiS significantly reduces stor-
age usage compared to the multi-store TiDB in Figure 7(a.3):
HaSiS consumes 74.1GB of physical storage space in total,
which is 67.98% less than TiDB. Compared with a hypotheti-
cal case where TiDB uses only a single copy of row data and
the column store, HaSiS consumes 32.39% less storage space
due to its more efficient data layout design.
• Comparison with Baselines. We then demonstrate the
performance and I/O efficiency of HaSiS and baseline designs
(CS and RS) in different ratios of OLTP and OLAP requests.

Performance isolation. Figure 7(b.1) evaluates the OLTP
/OLAP performance isolation of HaSiS, RS and CS. By vary-
ing the AP:TP ratio (i.e., the ratio of the number of OLAP
requests to OLTP requests), we evaluate the impact of increas-
ing OLAP requests on the OLTP performance. As shown,
HaSiS shows consistent stability in OLTP throughput and
OLAP response time. In contrast, RS and CS exhibit no-
table performance fluctuations as the volume of AP requests
rises. While initially RS slightly outperforms HaSiS in OLTP
throughput at lower request ratios (below 1/10000), its per-
formance declines with an increase in OLAP requests. This
trend is also seen in OLAP performance. The observed per-
formance interference in other systems stems from severe
I/O contention and I/O amplification. HaSiS demonstrates an
increasing trend in bandwidth utilization with the growing
AP volumes, indicating its scalability potential. Conversely,
when CS handles OLTP and RS handles OLAP, severe I/O
amplification can saturate available bandwidth, consequently
leading to I/O contentions limiting the scalability of both RS

Q1 Q3 Q5 Q6 Q7 Q10 Q12 Q14 Q16 Q17 Q18 Q22
0

8

16 Query Reponse Time (sec)

Query

 HaSiS CS Parquet
 HaSiS RS MySQL PgSQL

0
80

160
 Throughput (KOPS)

Insert Update Lookup Scan
0

300
600

3000 Latency (us/op)

Type

(a) OLTP

(b) OLAP

Figure 8: Performance under OLTP and OLAP workloads.
and CS. As shown in Figure 7(b.2), HaSiS efficiently manages
OLTP writes (HaSiS-w) with lower bandwidth compared to
CS which requires more bandwidth for writes (CS-w). With
increasing AP requests, CS struggles to manage AP queries
(CS-r) due to bandwidth constraints.

Performance of compaction. Figure 7(c.1) demonstrates
the performance of HaSiS considering the impact of back-
ground compaction. We quantify the minor and major com-
paction occurrences and the associated logical and physical
I/Os over a 200-minute test duration. Meanwhile, we measure
the average throughput and latency of foreground operations
collected at 10-minute intervals. As shown, background com-
pactions exhibit a consistent triggering pattern and the per-
formance stays rather stable throughout the long test. These
findings aptly illustrate HaSiS’ capability to effectively decou-
ple performance from background I/O-intensive operations.
Although logical I/Os induced by compactions are significant,
the actual physical I/Os are only 23.1%-40.6% of logical ones.

Scalability. Figure 7(c.2) illustrates HaSiS’s scalabil-
ity. We measure OLTP/OLAP throughputs by increasing
concurrent clients from 10 to 80. As shown, HaSiS’s
OLTP/OLAP throughputs linearly scale up from 10 clients
(110.7KOPS/0.32QPS) to 50 clients (168.9KOPS/1.5QPS).
The performance increment diminishes when exceeding 50
clients since the storage bandwidth and computation resources
of the experiment platform become the system bottleneck.

5.2 Performance of OLTP and OLAP
• Transactional Operations (OLTP). We compare the OLTP
performance of HaSiS with two representative OLTP systems,
MySQL and PostgreSQL, in terms of average throughput and
latency shown in Figure 8(a). We also involve RS, which
adopts the per-page logging for blind updates, as the ideal
performance baseline. The results show that HaSiS achieves
competitive performance even compared to RS, and superior
performance relative to MySQL and PostgreSQL.

HaSiS demonstrates slightly lower throughputs of In-
sert/Update/Lookup compared to RS that employs a 16KB
row page with less write amplification during major com-
paction, as opposed to HaSiS which needs to rewrite a larger
128KB column page. However, leveraging modern NVMe
SSDs capable of efficiently managing batched I/Os, the over-
head can be minimized to within 5.11% (throughput) and
5.82% (latency). For Scan operations, HaSiS outperforms RS
in both throughput (49.36%) and latency (26.92%). This ad-
vantage stems from HaSiS’s capability of executing sub-page
queries on large column pages, whereas RS requires multiple
random retrievals of smaller (16KB) data pages.

314 23rd USENIX Conference on File and Storage Technologies USENIX Association

HaSiS PAX-through No-mini0
20
40

0

80

160
Throughput (KOPS)

OLTP-read
OLTP-write

 Hit Ratio (%)

Query Time (sec)
 OLAP

0
2
4
6

Prototype
(a) Space and I/O amplification (b) Effects considering (b.1) buffer pool ratio and (b.2) cache policy

(b.1)

0.2 0.4 0.6 0.80

50

100

150

200

AP Projection

Space Usage (GB):
 Logical Physical

0

50

100

150

 OLTP Throughput (KOPS)

500K 200K 100K 50K 25K
0

30
60

1.2M
2.4M

0

50

100

 OLTP Throughput (KOPS)

 OLAP Execution Time (sec) 0
5
10
15
20

Partition size

Locked Duration (us):
 OLTP OLAP

50MB 100MB 200MB 500MB 1000MB
0

70

140
0

80

160

 OLTP Throughput (KOPS)

 OLAP Response Time (sec)

0

2

4

6

Segment Size

 Recovery Time (ms)

(c) Effects of OLAP projections

(e) Effects of partition sizes (f) Effects of segment sizes

0
8

16
 OLAP Execution Time (sec)

10
:1

50
:1

10
0:

1
20

0:
1

50
0:

1

10
:1

50
:1

10
0:

1
20

0:
1

50
0:

1

10
:1

50
:1

10
0:

1
20

0:
1

50
0:

1

Q10 Q5 Q3

0
80

160
 OLTP Throughput (KOPS)

TP ratio

Query Type 0 1 2 3 4 50

85
90
95

100

0 1 2 3 4 50

85
90
95

100

0 1 2 3 4 50

85
90
95

100

A
cc

um
ul

at
ed

Pe

rc
en

ta
ge

 (%
)

Number of Delta Pages

10:1 50:1 100:1 200:1 500:1

Q3 Q5 Q10

(g) Performance considering TP repeating ratios

 OLTP
Throughput (KOPS)
 OLAP
Response Time (sec)

16 32 64 128 256 512 102420480

50

100

150

Page Size (KB)
0

10

20

30

(b.2)
(d) Effects of page sizes

1% 5% 10% 20% 50%
0

20

40
0

80

160
 OLTP Throughput (KOPS)

 OLAP Execution Time (sec)

 Hit Ratio (%)

0

2

4

6

Buffer Pool Ratio (%)

(h) Delta page allocations

Logical Size
Physical Size
Logical Size
Physical Size

34.66

160.69
126.94

128.9

137.76

112.6
0.64 0.51

1.14

13.26

12.49

88.27 107.8361.2 71.4

110.7

0.41 0.33 1.1

12.87

HaSiS RS CS TiDB
0

100

200

300

Prototype

-50

0

50
Physical I/O Amplification Factor

Storage Space Usage (GB)
Column
Storage

Row
Storage

Others

Figure 9: Effects of HaSiS optimizations.
• Analytical Operations (OLAP). Figure 8(b) illustrates the
efficiency of HaSiS in handling analytical queries compared
with CS and Parquet. Parquet is a widely used column format
known for its performance in analytical queries on large-
volume datasets. We choose 12 representative query plans
from the TPC-H and translate them into SQL queries. These
query plans do not include the ultra-long queries designed for
full-table scans that simulate breakdown report tasks. HaSiS
demonstrates marginal performance overhead compared to
both CS (less than 7.71%) and Parquet (less than 7.12%)
across all query types. The CS approach facilitates selective
access to relevant column values within each 128KB page
for less read amplification. Parquet employs a condensed
data structure optimized for large datasets. In line with them,
HaSiS adopts PAX-based column pages to store the majority
of the data. When accessing a column page, only a sparse delta
page needs to be additionally retrieved. These sparse delta
pages, being highly compressible and contiguously stored,
add minimal overhead to read performance.

5.3 Effects of Optimizations
• Space usage and I/O amplification. Figure 9(a) com-
pares the logical/physical space usage and physical I/O am-
plification of HaSiS with RS, CS and TiDB. HaSiS requires
164.2GB/74.1GB of logical/physical storage space. The larger
logical space (15.4% more than CS) is due to the allocation
of sparse pages dedicated to processing transactional updates.
However, using CSD with transparent compression can ef-
ficiently compress these sparse delta pages. As a result, the
physical space requirement of HaSiS is only marginally higher
(by 2.16%) than that of CS. For a detailed comparison, due to
the sparse management of column data, HaSiS occupies more
logical space (14.5%) than TiDB in column storage. After
compression, the column storage space of HaSiS is 55.3% of
that of TiDB. Moreover, HaSiS demonstrates the lowest level
of physical I/O amplification, which stands at 37.4%, 42.5%
and 69.5% of that observed in RS, CS and TiDB.
• Effects of the hybrid buffer pool. Figure 9(b.1) illustrates
the linear increments of OLTP/OLAP performance and hit
ratio of HaSiS across different buffer pool ratios (1% to 50%
relative to the dataset size). This growth becomes negligible
when the ratio exceeds 10%, given the insignificant locality

of TPC-C. The OLAP performance remains consistent across
all scenarios as we allow OLAP queries, which also show
poor locality, to bypass the buffer pool, making them largely
unaffected by buffer pool size changes.

Figure 9(b.2) shows the effectiveness of the hybrid buffer
pool. For comparison, we disable the bypassing of OLAP
queries (“PAX-through”) and the mini-page-based hybrid
page (“No-mini”) that directly uses the entire hybrid page as
the basic I/O unit. HaSiS delivers preferable OLTP/OLAP
performance and hit ratios compared to PAX-through and
No-mini. PAX-through shows the worst hit ratio and perfor-
mance as it allows OLAP queries (rarely re-accessed) to go
through the buffer pool, leading to severe pollution and I/O
contention. Without mini-pages and the invalidation-based
approach, hybrid pages have to be frequently evicted from the
buffer pool, leading to sub-optimal performance.
• Effects of multi-version storage. Figure 9(c) shows the
space usage and performance considering the multi-version
storage by varying the OLAP projection. A higher projection
indicates a broader range of column values (i.e., more hybrid
pages) being retrieved. As depicted, the logical space usage
increases with the increment of AP projection, due to the ad-
ditional allocation of delta pages for reserving history records
being accessed by OLAP queries. However, leveraging the
in-storage compression of CSD which is capable of compress-
ing these sparse over-provisioned delta pages, the physical
space usage remains stable (70.1GB to 78.2GB) despite the
increase in AP projection. Meanwhile, the OLTP throughput
remains stable regardless of the increasing AP projection.
• Effects of page size. Figure 9(d) shows the OLTP/OLAP
performance considering different column page sizes (from
16KB to 2048KB) of HaSiS. The delta page remains 16KB for
all cases. As shown, increasing column page size contributes
to reduced OLAP latency (larger batches during OLAP scan),
but leads to worse OLTP throughput (higher write amplifi-
cation during OLTP updates), and vice versa. Therefore, we
choose 128KB, which achieves the balanced OLTP and OLAP
performance, as the default column page size for HaSiS.
• Effects of parallelism. Figure 9(e) illustrates the effects of
partition sizes, from 500K (e.g., if more than 500K records are
indexed by one B+-Tree, it is partitioned as two trees) to 25K.
As shown, with the finer-grained partition, both OLTP and

USENIX Association 23rd USENIX Conference on File and Storage Technologies 315

Table 2: Performance and space usage under CSD and SSD.

Device
TP Throughput

(KOPS)
AP Response
Time (sec/op)

Space Usage
(GB)

CSD-3310 139.6 3.12 71.2
SN570-SSD 139.4 3.11 168.7

OLAP performance improves due to better parallelism, which
is achieved by finer-grained locking, as a smaller partition
allows a fewer number of partitions to be accessed per opera-
tion: the measured lock duration time of OLTP and OLAP is
reduced from 61.7µs/op (µs per operation) to 3.14µs/op and
2.31s/op (second per operation) to 1.12s/op, respectively.
• Effects of segment. Figure 9(f) shows the effects of the seg-
ment size (from 50MB to 1,000MB) of the global log, in terms
of performance and recovery time. The observed increase in
OLTP performance is significant (91.2%) when increasing
the segment size to 100MB, and then it diminishes when it is
larger than 100MB, as the benefits of accumulating temporary
transactional updates diminish. The OLAP performance is
stable (variance up to 2.64%). The recovery time of HaSiS
climbs from 4.1ms to 155.5ms with increasing segment size.
The larger the segment is, the more temporary logs need to be
replayed during recovery, resulting in a longer recovery time.
• Performance under heavy-hitter workloads. Extremely
overlapping OLTP and OLAP requests could cause a blocking
effect between TP and AP operations. To exhibit the worst-
case behaviors of HaSiS, we manually insert OLTP updates
into TPC-C requests at different TP repeating ratios, from
10:1 to 500:1. Under the 10:1 case, for example, we insert
one OLTP update identical to one of the previous ten OLTP
requests. By doing so, we arbitrarily create “hot zones” un-
dergoing intensive OLTP updates and are retrieved (blocked)
by currently running OLAP queries. We choose Q10, Q5,
and Q3 from the TPC-H workloads (from large to skewed
scan range). In Figure 9(g), in Q3, OLTP/OLAP performance
improves since fewer delta pages are required to temporarily
maintain the blocked updates, as shown in Figure 9(h). Q5
and Q10 exhibit similar trends. Note that this case (rarely oc-
curs in practice) only demonstrates the worst-case behaviors
as analytical queries normally exhibit no localities.

• Effects of CSD. We demonstrate the effect of close integra-
tion of HaSiS and CSD by deploying HaSiS on a CSD and
comparing with that on a 1TB Western Digital SN570 NVMe
SSD. Shown in Table 2, by leveraging high bandwidths of
modern SSDs, HaSiS, benefiting from its compaction-enabled
batched I/Os, demonstrates superior OLTP/OLAP perfor-
mance with both CSD and NVMe SSDs. However, without
transparent compression, HaSiS on a normal SSD consumes
over twice physical storage space due to the sparsely man-
aged per-page logs, highlighting that CSD with transparent
compression plays an essential role in the HaSiS design. In
addition, HaSiS can scale effectively across multiple CSDs,
leveraging their combined bandwidth and extended sparse
data management capabilities. Thus, HaSiS can handle in-
creasing workload demands and larger datasets while main-
taining high performance and storage efficiency.

6 Other Related Work

Proteus [1] and FSM [8] dynamically adjust the row/column
data format in adaptation to workload changes. Dziedzic
et al. [24] proposes to adaptively allocate CPU resources
between OLTP or OLAP tasks depending on workload de-
mands. These solutions tend to have a prolonged period for
data reorganization or resource reallocation, which impacts
data freshness and system speed performance. P-Tree [60]
is an in-memory column-based store that only merges in-
dex changes when transactional updates necessitate modi-
fications to the global index layout. It can achieve instant
data freshness and efficient index utilization, which however
may compromise OLTP performance since each update re-
quires time-consuming exclusive reorganization of the index.
CedarDB [55], assuming row pages are hot and column pages
are cold, may result in performance inefficiencies: OLTP
updates to column pages and OLAP queries on row pages
could cause significant write and read amplification. Tobias
et al. [63] proposed an update-aware Near Data Processing
(NDP) architecture that accumulates host-side update deltas
and shares them with computational storage for in-situ OLAP
execution. AIDE [38] proposed an intermediate-layer method
for databases to offload vendor-specific OLAP executions
to computational storage. Considering the ever-changing na-
ture of data, these NDP solutions, which offload computation-
heavy OLAP tasks to in-storage computing, still have to face
the challenge of maintaining data freshness.

7 Conclusion
This paper presents HaSiS that effectively harnesses the capa-
bilities of emerging Computational Storage Devices (CSDs)
with built-in transparent compression. HaSiS addresses the
longstanding trade-off between data freshness and perfor-
mance in HTAP systems by leveraging CSD’s ability to create
sparse data structures on storage without impacting physical
capacity. We propose a single-index design to achieve instant
data freshness and a hybrid page approach to decouple OLTP
performance from OLAP efficiency. The efficacy of HaSiS
has been thoroughly evaluated and validated through com-
prehensive experiments on a commercially available CSD
platform equipped with built-in transparent compression.

Acknowledgments
We thank our shepherd, Liuba Shrira, and the anonymous
reviewers for their constructive feedback and insightful com-
ments. The work described in this paper is supported by the
grants from the Research Grants Council of the Hong Kong
Special Administrative Region, China (GRF 14202123, GRF
14200224), US NSF grants (CCF-2210755, CCF-2312509,
CCF-2210754, CCF-2312508), the National Key R&D Pro-
gram of China (Grant 2023YFB2703600), and the National
Natural Science Foundation of China (Grant 62272271).

316 23rd USENIX Conference on File and Storage Technologies USENIX Association

References

[1] Michael Abebe, Horatiu Lazu, and Khuzaima Daud-
jee. Proteus: Autonomous Adaptive Storage for Mixed
Workloads. In ACM International Conference on Man-
agement of Data (SIGMOD), pages 700–714, USA,
2022. ACM.

[2] Alberto Lerner and Philippe Bonnet. Not your
Grandpa’s SSD: The Era of Co-Designed Storage De-
vices. In ACM International Conference on Manage-
ment of Data (SIGMOD), pages 2852–2858, China,
2021. ACM.

[3] Alejandro Vera Baquero and Ricardo Colomo Palacios
and Owen Molloy. Real-time Business Activity Moni-
toring and Analysis of Process Performance on Big-data
Domains. Telematics Informatics, 33(3):793–807, 2016.

[4] Amazon. Aurora. https://aws.amazon.com/rds/
aurora/, 2025.

[5] Anastassia Ailamaki and David J. DeWitt and Mark
D. Hill and Marios Skounakis. Weaving Relations for
Cache Performance. In International Conference on
Very Large Data Bases (VLDB), pages 169–180, Italy,
2001. Morgan Kaufmann.

[6] Apache. Apache ORC. https://orc.apache.org/,
2025.

[7] Apache. Apache Parquet. https://parquet.apache.
org/, 2025.

[8] Joy Arulraj, Andrew Pavlo, and Prashanth Menon.
Bridging the Archipelago between Row-Stores and
Column-Stores for Hybrid Workloads. In ACM Interna-
tional Conference on Management of Data (SIGMOD),
pages 583–598, USA, 2016. ACM.

[9] Hillel Avni, Alisher Aliev, Oren Amor, Aharon Avitzur,
Ilan Bronshtein, Eli Ginot, Shay Goikhman, Eliezer
Levy, Idan Levy, Fuyang Lu, Liran Mishali, Yeqin Mo,
Nir Pachter, Dima Sivov, Vinoth Veeraraghavan, Vladi
Vexler, Lei Wang, and Peng Wang. Industrial Strength
OLTP Using Main Memory and Many Cores. Proc.
VLDB Endow., 13(12):3099–3111, 2020.

[10] Hal Berenson, Philip A. Bernstein, Jim Gray, Jim
Melton, Elizabeth J. O’Neil, and Patrick E. O’Neil. A
Critique of ANSI SQL Isolation Levels. In ACM Interna-
tional Conference on Management of Data (SIGMOD),
pages 1–10, USA, 1995. ACM Press.

[11] Nils Boeschen and Carsten Binnig. GaccO - A GPU-
accelerated OLTP DBMS. In ACM International Confer-
ence on Management of Data (SIGMOD), pages 1003–
1016, USA, 2022. ACM.

[12] Peter A. Boncz, Thomas Neumann, and Viktor Leis.
FSST: Fast Random Access String Compression. Proc.
VLDB Endow., 13(11):2649–2661, 2020.

[13] Gerth Stølting Brodal and Rolf Fagerberg. Lower
bounds for external memory dictionaries. In Annual
ACM-SIAM Symposium on Discrete Algorithms (SODA),
pages 546–554, USA, 2003.

[14] Burger, Charlie and Spagnolo, Paul. Accelerate with
IBM Storage: DS8880/DS8880F Thin Provisioning.
IBM Washington Systems Center—Storage, page 89,
2017.

[15] Wei Cao, Feifei Li, Gui Huang, Jianghang Lou, Jianwei
Zhao, Dengcheng He, Mengshi Sun, Yingqiang Zhang,
Sheng Wang, Xueqiang Wu, Han Liao, Zilin Chen, Xi-
aojian Fang, Mo Chen, Chenghui Liang, Yanxin Luo,
Huanming Wang, Songlei Wang, Zhanfeng Ma, Xin-
jun Yang, Xiang Peng, Yubin Ruan, Yuhui Wang, Jie
Zhou, Jianying Wang, Qingda Hu, and Junbin Kang.
PolarDB-X: An Elastic Distributed Relational Database
for Cloud-Native Applications. In IEEE International
Conference on Data Engineering(ICDE), pages 2859–
2872, Malaysia, 2022. IEEE.

[16] Hongzhi Chen, Bowen Wu, Shiyuan Deng, Chenghuan
Huang, Changji Li, Yichao Li, and James Cheng. High
Performance Distributed OLAP on Property Graphs
with Grasper. In ACM International Conference on Man-
agement of Data (SIGMOD), pages 2705–2708, USA,
2020. ACM.

[17] Jianjun Chen, Yonghua Ding, Ye Liu, Fangshi Li,
Li Zhang, Mingyi Zhang, Kui Wei, Lixun Cao, Dan
Zou, Yang Liu, Lei Zhang, Rui Shi, Wei Ding, Kai Wu,
Shangyu Luo, Jason Sun, and Yuming Liang. Byte-
HTAP: ByteDance’s HTAP System with High Data
Freshness and Strong Data Consistency. Proc. VLDB
Endow., 15(12):3411–3424, 2022.

[18] Christian Riegger and Tobias Vinçon and Robert
Gottstein and Ilia Petrov. MV-PBT: Multi-Version In-
dexing for Large Datasets and HTAP Workloads. In
International Conference on Extending Database Tech-
nology, (EDBT), pages 217–228, Denmark, 2020. Open-
Proceedings.org.

[19] Clickhouse. Query billions of rows in milliseconds.
https://clickhouse.com/, 2025.

[20] Douglas Comer. The ubiquitous b-tree. ACM Comput.
Surv., 11(2):121–137, 1979.

[21] Björn Daase, Lars Jonas Bollmeier, Lawrence Benson,
and Tilmann Rabl. Maximizing Persistent Memory
Bandwidth Utilization for OLAP Workloads. In ACM

USENIX Association 23rd USENIX Conference on File and Storage Technologies 317

https://aws.amazon.com/rds/aurora/
https://aws.amazon.com/rds/aurora/
https://orc.apache.org/
https://parquet.apache.org/
https://parquet.apache.org/
https://clickhouse.com/

International Conference on Management of Data (SIG-
MOD), pages 339–351, CHINA, 2021. ACM.

[22] DapuStor. DapuStor R610X. https://www.dapustor.
com/product/14.html, 2025.

[23] Dhruba Borthakur and Jonathan Gray and Joydeep
Sen Sarma and Kannan Muthukkaruppan and Nico-
las Spiegelberg and Hairong Kuang and Karthik Ran-
ganathan and Dmytro Molkov and Aravind Menon and
Samuel Rash and Rodrigo Schmidt and Amitanand S.
Aiyer. Apache Hadoop Goes Realtime at Facebook. In
ACM International Conference on Management of Data
(SIGMOD), pages 1071–1080, Greece, 2011. ACM.

[24] Adam Dziedzic, Jingjing Wang, Sudipto Das, Bolin
Ding, Vivek R. Narasayya, and Manoj Syamala.
Columnstore and B+ tree - Are Hybrid Physical De-
signs Important? In ACM International Conference on
Management of Data (SIGMOD), pages 177–190, USA,
2018. ACM.

[25] Facebook. Zstandard Compression. https://
facebook.github.io/zstd/, 2023.

[26] Nuno Faria, José Pereira, Ana Nunes Alonso, Ricardo
Vilaça, Yunus Koning, and Niels Nes. TiQuE: Improv-
ing the Transactional Performance of Analytical Sys-
tems for True Hybrid Workloads. Proc. VLDB Endow.,
16(9):2274–2288, 2023.

[27] Gilad Mishne and Jeff Dalton and Zhenghua Li and
Aneesh Sharma and Jimmy Lin. Fast Data in the Era
of Big Data: Twitter’s Real-time Related Query Sugges-
tion Architecture. In ACM International Conference
on Management of Data (SIGMOD), pages 1147–1158,
USA, 2013. ACM.

[28] Gui Huang and Xuntao Cheng and Jianying Wang and
Yujie Wang and Dengcheng He and Tieying Zhang and
Feifei Li and Sheng Wang and Wei Cao and Qiang Li. X-
Engine: An Optimized Storage Engine for Large-scale
E-commerce Transaction Processing. In Proceedings
of the 2019 International Conference on Management
of Data (SIGMOD, pages 651–665, The Netherlands,
2019. ACM.

[29] Guoliang Li and Chao Zhang. HTAP Databases: What
is New and What is Next. In International Conference
on Management of Data (SIGMOD) , pages 2483–2488,
USA, 2022. ACM.

[30] HaSiS. Implementation. https://github.com/
ericaloha/Hasis, 2025.

[31] Dongxu Huang, Qi Liu, Qiu Cui, Zhuhe Fang, Xiaoyu
Ma, Fei Xu, Li Shen, Liu Tang, Yuxing Zhou, Meng-
long Huang, Wan Wei, Cong Liu, Jian Zhang, Jianjun

Li, Xuelian Wu, Lingyu Song, Ruoxi Sun, Shuaipeng
Yu, Lei Zhao, Nicholas Cameron, Liquan Pei, and Xin
Tang. TiDB: A Raft-based HTAP Database. Proc. VLDB
Endow., 13(12):3072–3084, 2020.

[32] Yunxin Huang, Aiguo Song, Chao Guo, and Yafei Yang.
ASIC design of LZ77 compressor for computational stor-
age drives. Electronics Letters, 59(22):e13000, 2023.

[33] Huang, Kecheng and Shen, Zhaoyan and Shao, Zili and
Zhang, Tong and Chen, Feng. Breathing New Life into
an Old Tree: Resolving Logging Dilemma of B+-tree
on Modern Computational Storage Drives. Proceedings
of the VLDB Endowment, 17(2):134–147, 2023.

[34] IBM. IBM FCM-V3. https://www.ibm.com/
docs/en/flashsystem-7x00/8.5.0?topic=
to-flashcore-modules, 2025.

[35] Jong-Bin Kim and Jaeseon Yu and Jaechan Ahn and
Sooyong Kang and Hyungsoo Jung. Diva: Making
MVCC Systems HTAP-Friendly. In International Con-
ference on Management of Data (SIGMOD), pages 49–
64, USA, 2022. ACM.

[36] Kemper, Alfons and Neumann, Thomas. HyPer: A Hy-
brid OLTP&OLAP Main Memory Database System
based on Virtual Memory Snapshots. In IEEE Interna-
tional Conference on Data Engineering (ICDE), pages
195–206, Germany, 2011. IEEE, IEEE.

[37] Tirthankar Lahiri, Shasank Chavan, Maria Colgan, Di-
nesh Das, Amit Ganesh, Mike Gleeson, Sanket Hase,
Allison Holloway, Jesse Kamp, Teck-Hua Lee, Juan
Loaiza, Neil MacNaughton, Vineet Marwah, Niloy
Mukherjee, Atrayee Mullick, Sujatha Muthulingam,
Vivekanandhan Raja, Marty Roth, Ekrem Soylemez, and
Mohamed Zaït. Oracle Database In-Memory: A Dual
Format In-memory Database. In IEEE International
Conference on Data Engineering (ICDE), pages 1253–
1258, South Korea, 2015. IEEE Computer Society.

[38] Kitaek Lee, Insoon Jo, Jaechan Ahn, Hyuk Lee, Hwang
Lee, Woong Sul, and Hyungsoo Jung. Deploying Com-
putational Storage for HTAP DBMSs Takes More Than
Just Computation Offloading. Proc. VLDB Endow.,
16(6):1480–1493, 2023.

[39] Justin J. Levandoski, David B. Lomet, and Sudipta Sen-
gupta. The Bw-Tree: A B-tree for new hardware plat-
forms. In IEEE International Conference on Data Engi-
neering (ICDE, Australia, 2013.

[40] Linux. Linux Gzip Compression. https://linuxize.
com/post/gzip-command-in-linux/, 2022.

318 23rd USENIX Conference on File and Storage Technologies USENIX Association

https://www.dapustor.com/product/14.html
https://www.dapustor.com/product/14.html
https://facebook.github.io/zstd/
https://facebook.github.io/zstd/
https://github.com/ericaloha/Hasis
https://github.com/ericaloha/Hasis
https://www.ibm.com/docs/en/flashsystem-7x00/8.5.0?topic=to-flashcore-modules
https://www.ibm.com/docs/en/flashsystem-7x00/8.5.0?topic=to-flashcore-modules
https://www.ibm.com/docs/en/flashsystem-7x00/8.5.0?topic=to-flashcore-modules
https://linuxize.com/post/gzip-command-in-linux/
https://linuxize.com/post/gzip-command-in-linux/

[41] Darko Makreshanski, Jana Giceva, Claude Barthels, and
Gustavo Alonso. BatchDB: Efficient Isolated Execu-
tion of Hybrid OLTP+OLAP Workloads for Interactive
Applications. In ACM International Conference on Man-
agement of Data (SIGMOD), pages 37–50, USA, 2017.
ACM.

[42] Mark Wilkening and Udit Gupta and Samuel Hsia and
Caroline Trippel and Carole-Jean Wu and David Brooks
and Gu-Yeon Wei. RecSSD: Near Data Processing for
Solid State Drive based Recommendation Inference. In
ACM International Conference on Architectural Support
for Programming Languages and Operating Systems
(ASPLOS), pages 717–729, USA, 2021. ACM.

[43] Oracle. InnoDB Storage Engine. https://dev.mysql.
com/doc/refman/8.4/en/innodb-introduction,
2025.

[44] Oracle. MySQL. https://www.mysql.com/, 2025.

[45] Oracle. Oracle Database. https://www.oracle.com/
database/, 2025.

[46] Pezzini, Massimo and Feinberg, Donald and Rayner,
Nigel and Edjlali, Roxane. Hybrid Transac-
tion/Analytical Processing will Foster Opportunities
for Dramatic Business Innovation. Gartner, Available
at https://www.gartner.com/doc/2657815/hybrid-
transactionanalyticalprocessing-foster-opportunities,
pages 4–20, 2014.

[47] PingCAP. TiDB: Deploy a local test clus-
ter. https://docs.pingcap.com/tidb/stable/
quick-start-with-tidb, 2025.

[48] PingCAP. TiDB: Key metrics description.
https://docs.pingcap.com/tidb/stable/
grafana-overview-dashboard, 2025.

[49] Aunn Raza, Periklis Chrysogelos, Angelos-Christos G.
Anadiotis, and Anastasia Ailamaki. Adaptive HTAP
through Elastic Resource Scheduling. In ACM Interna-
tional Conference on Management of Data (SIGMOD),
pages 2043–2054, USA, 2020. ACM.

[50] Rebecca Taft and Irfan Sharif and Andrei Matei and
Nathan VanBenschoten and Jordan Lewis and Tobias
Grieger and Kai Niemi and Andy Woods and Anne
Birzin and Raphael Poss and Paul Bardea and Amruta
Ranade and Ben Darnell and Bram Gruneir and Justin
Jaffray and Lucy Zhang and Peter Mattis. CockroachDB:
The Resilient Geo-Distributed SQL Database. In Pro-
ceedings of the 2020 International Conference on Man-
agement of Data (SIGMOD), pages 1493–1509, USA,
2020. ACM.

[51] Richard L. Cole and Florian Funke and Leo Giak-
oumakis and Wey Guy and Alfons Kemper and Ste-
fan Krompass and Harumi A. Kuno and Raghunath
Othayoth Nambiar and Thomas Neumann and Meikel
Poess and Kai-Uwe Sattler and Michael Seibold and
Eric Simon and Florian Waas. The mixed workload
ch-benchmark. In International Workshop on Test-
ing Database Systems (DBTest), page 8, Greece, 2011.
ACM.

[52] SAP. SAP HANA. https://www.sap.cn/products/
technology-platform/hana/what-is-sap-hana.
html, 2025.

[53] Scaleflux. Computational storage drive with built-in
transparent compression. https://scaleflux.com/,
2025.

[54] Scaleflux. ScaleFlux 3000-series SSDs. https://
scaleflux.com/products/csd-3000/, 2025.

[55] Tobias Schmidt, Dominik Durner, Viktor Leis, and
Thomas Neumann. Two Birds With One Stone: De-
signing a Hybrid Cloud Storage Engine for HTAP. Proc.
VLDB Endow., 17(11):3290–3303, 2024.

[56] Sijie Shen, Rong Chen, Haibo Chen, and Binyu Zang.
Retrofitting High Availability Mechanism to Tame Hy-
brid Transaction/Analytical Processing. In USENIX
Symposium on Operating Systems Design and Im-
plementation (OSDI) , pages 219–238, USA, 2021.
USENIX Association.

[57] Vishal Sikka, Franz Färber, Anil K. Goel, and Wolfgang
Lehner. SAP HANA: The Evolution from a Modern
Main-Memory Data Platform to an Enterprise Applica-
tion Platform. Proc. VLDB Endow., 6(11):1184–1185,
2013.

[58] Vishal Sikka, Franz Färber, Wolfgang Lehner,
Sang Kyun Cha, Thomas Peh, and Christof Bornhövd.
Efficient transaction processing in SAP HANA database:
the end of a column store myth. In ACM International
Conference on Management of Data (SIGMOD), pages
731–742, USA, 2012. ACM.

[59] SingleStore, Inc. SingleStore (MemSQL). https://
www.singlestore.com/, 2025.

[60] Yihan Sun, Guy E. Blelloch, Wan Shen Lim, and An-
drew Pavlo. On Supporting Efficient Snapshot Isolation
for Hybrid Workloads with Multi-Versioned Indexes.
Proc. VLDB Endow., 13(2):211–225, 2019.

[61] The PostgreSQL Global Development Group. Post-
greSQL. https://www.postgresql.org/, 2025.

USENIX Association 23rd USENIX Conference on File and Storage Technologies 319

https://dev.mysql.com/doc/refman/8.4/en/innodb-introduction
https://dev.mysql.com/doc/refman/8.4/en/innodb-introduction
https://www.mysql.com/
https://www.oracle.com/database/
https://www.oracle.com/database/
https://docs.pingcap.com/tidb/stable/quick-start-with-tidb
https://docs.pingcap.com/tidb/stable/quick-start-with-tidb
https://docs.pingcap.com/tidb/stable/grafana-overview-dashboard
https://docs.pingcap.com/tidb/stable/grafana-overview-dashboard
https://www.sap.cn/products/technology-platform/hana/what-is-sap-hana.html
https://www.sap.cn/products/technology-platform/hana/what-is-sap-hana.html
https://www.sap.cn/products/technology-platform/hana/what-is-sap-hana.html
https://scaleflux.com/
https://scaleflux.com/products/csd- 3000/
https://scaleflux.com/products/csd- 3000/
https://www.singlestore.com/
https://www.singlestore.com/
https://www.postgresql.org/

[62] Thomas Neumann and Tobias Mühlbauer and Alfons
Kemper. Fast Serializable Multi-Version Concurrency
Control for Main-Memory Database Systems. In ACM
International Conference on Management of Data (SIG-
MOD), pages 677–689, Australia, 2015. ACM.

[63] Tobias Vinçon and Christian Knödler and Leonardo
Solis-Vasquez and Arthur Bernhardt and Sajjad Tamimi
and Lukas Weber and Florian Stock and Andreas Koch
and Ilia Petrov. Near-Data Processing in Database Sys-
tems on Native Computational Storage under HTAP
Workloads. Proc. VLDB Endow., 15(10):1991–2004,
2022.

[64] Tobias Vinçon and Christian Knödler and Leonardo
Solis-Vasquez and Arthur Bernhardt and Sajjad Tamimi
and Lukas Weber and Florian Stock and Andreas Koch
and Ilia Petrov. Near-Data Processing in Database Sys-
tems on Native Computational Storage under HTAP
Workloads. Proc. VLDB Endow., 15(10):1991–2004,
2022.

[65] TPC. TPC-C benchmark. https://www.tpc.org/
tpcc/, 2025.

[66] TPC. TPC-H benchmark. https://www.tpc.org/
tpch/, 2025.

[67] Jianying Wang, Tongliang Li, Haoze Song, Xinjun Yang,
Wenchao Zhou, Feifei Li, Baoyue Yan, Qianqian Wu,
Yukun Liang, Chengjun Ying, Yujie Wang, Baokai Chen,
Chang Cai, Yubin Ruan, Xiaoyi Weng, Shibin Chen,
Liang Yin, Chengzhong Yang, Xin Cai, Hongyan Xing,
Nanlong Yu, Xiaofei Chen, Dapeng Huang, and Jian-
ling Sun. PolarDB-IMCI: A Cloud-Native HTAP
Database System at Alibaba. Proc. ACM Manag. Data,
1(2):199:1–199:25, 2023.

[68] Jing Wang, Hanzhang Yang, Chao Li, Yiming Zhuan-
sun, Wang Yuan, Cheng Xu, Xiaofeng Hou, Minyi Guo,
Yang Hu, and Yaqian Zhao. Boosting Data Center Per-
formance via Intelligently Managed Multi-backend Dis-
aggregated Memory. In International Conference for
High Performance Computing, Networking, Storage, and
Analysis (SC), page 37, USA, 2024. IEEE.

[69] Wang, Jing and Li, Chao and Mei, Junyi and He, Hao
and Wang, Taolei and Wang, Pengyu and Zhang, Lu and
Guo, Minyi and Wu, Hanqing and Chen, Dongbai and
Liu, Xiangwen. HyFarM: Task Orchestration on Hybrid
Far Memory for High Performance Per Bit. In IEEE
International Conference on Computer Design (ICCD),
pages 33–41, 2022.

[70] Xubin Chen and Ning Zheng and Shukun Xu and Yifan
Qiao and Yang Liu and Jiangpeng Li and Tong Zhang.
KallaxDB: A Table-less Hash-based Key-Value Store on

Storage Hardware with Built-in Transparent Compres-
sion. In International Workshop on Data Management
on New Hardware (DaMoN), pages 3:1–3:10, China,
2021. ACM.

[71] Jiacheng Yang, Ian Rae, Jun Xu, Jeff Shute, Zhan Yuan,
Kelvin Lau, Qiang Zeng, Xi Zhao, Jun Ma, Ziyang Chen,
Yuan Gao, Qilin Dong, Junxiong Zhou, Jeremy Wood,
Goetz Graefe, Jeffrey F. Naughton, and John Cieslewicz.
F1 Lightning: HTAP as a Service. Proc. VLDB Endow.,
13(12):3313–3325, 2020.

[72] Yifan Qiao and Xubin Chen and Ning Zheng and Jiang-
peng Li and Yang Liu and Tong Zhang. Closing the B+-
tree vs. LSM-tree Write Amplification Gap on Modern
Storage Hardware with Built-in Transparent Compres-
sion. In USENIX Conference on File and Storage Tech-
nologies (FAST), pages 69–82, USA, 2022. USENIX
Association.

[73] Zhe Yang and Youyou Lu and Xiaojian Liao and Youmin
Chen and Junru Li and Siyu He and Jiwu Shu. λ-IO: A
Unified IO Stack for Computational Storage. In USENIX
Conference on File and Storage Technologies(FAST),
pages 347–362, USA, 2023. USENIX Association.

320 23rd USENIX Conference on File and Storage Technologies USENIX Association

https://www.tpc.org/tpcc/
https://www.tpc.org/tpcc/
https://www.tpc.org/tpch/
https://www.tpc.org/tpch/

	Introduction
	HTAP System Design: State of the Art
	Why CSD for Single-Index HTAP?
	CSD with Transparent Compression
	Opportunities Brought by CSD

	System Design
	Single-Index, Single-Store
	Hybrid Buffer Pool
	Log and Compaction
	Operations
	Summary

	Evaluation
	Overall Performance
	Performance of OLTP and OLAP
	Effects of Optimizations

	Other Related Work
	Conclusion

