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Abstract

Overlay networks are the de facto networking technique for
providing flexible, customized connectivity among distributed
containers in the cloud. However, overlay networks also in-
cur non-trivial overhead due to its complexity, resulting in
significant network performance degradation of containers.
In this paper, we perform a comprehensive empirical perfor-
mance study of container overlay networks which identifies
unrevealed, important parallelization bottlenecks of the kernel
network stack that prevent container overlay networks from
scaling. Our observations and root cause analysis cast light
on optimizing the network stack of modern operating systems
on multi-core systems to more efficiently support container
overlay networks in light of high-speed network devices.

1 Introduction

As an alternative to virtual machine (VM) based virtualiza-
tion, containers offer a lightweight process-based virtualiza-
tion method for managing, deploying and executing cloud
applications. Lightweight containers lead to higher server
consolidation density and lower operational cost in cloud data
centers, making them widely adopted by industry — Google
even claims that “everything at Google runs in containers” [4].
Further, new cloud application architecture has been enabled
by containers: services of a large-scale distributed applica-
tion are packaged into separate containers, automatically and
dynamically deployed across a cluster of physical or virtual
machines with orchestration tools, such as Apache Mesos [1],
Kubernetes [12], and Docker Swarm [7].

Container overlay networks are the de facto networking
technique for providing customized connectivity among these
distributed containers. Various container overlay network ap-
proaches are becoming available, such as Flannel [8], Weave
[20], Calico [2] and Docker Overlay [6]. They are gener-
ally built upon the tunneling approach which enables con-
tainer traffic to travel across physical networks via encapsu-
lating container packets with their host headers (e.g., with the
VxLAN protocol [19]). With this, containers belonging to a
same virtual network can communicate in an isolated address

space with their private IP addresses, while their packets are
routed through “tunnels” using their hosts public IP addresses.
Constructing overlay networks in a container host can be
simply achieved by stacking a pipeline of in-kernel network
devices. For instance, for a VXLAN overlay, a virtual network
device is created and assigned to a container’s network names-
pace, while a tunneling VXLAN network device is created
for packet encapsulation/decapsulation. These two network
devices are further connected via a virtual switch (e.g., Open
vSwitch [15]). Such a container overlay network is also exten-
sible: various network policies (e.g., isolation, rate limiting,
and quality of service) can be easily added to either the virtual
switch or the virtual network device of a container.
Regardless of the above-mentioned advantages, container
overlay networks incur additional, non-trivial overhead com-
pared to the native host network (i.e., without overlays). Re-
cent studies report that overlay networks achieve 50% less
throughput than the native and suffer much higher packet
processing latency [28,29]. The prolonged network packet
processing path in overlay networks can be easily identified as
the main culprit. Indeed, as an example in the above VXLAN
overlay network, a packet traverses three different namespaces
(i.e., the container, overlay and host) and two kernel network
stacks (the container and host) in both sending and receiv-
ing ends, leading to high per-packet processing cost and long
end-to-end latency. However, our investigation reveals that
the causes of high-overhead and low-efficiency of container
network overlays are much complicated and multifaceted:
First, the high-performance, high-speed physical network
devices (e.g., 40 and 100 Gbps Ethernet) require the kernel
to quickly process each packet (e.g., 300 ns for a 40 Gbps
network link). However, as stated above, the prolonged packet
path in container overlay networks slows down the per-packet
processing speed with multiple network devices involved.
More critically, we observe that modern OSes only provide
parallelization of packet processing at the per-flow level (in-
stead of per-packet); thus, the maximum network throughput
of a single container flow is limited by the processing capa-
bility of a single core (e.g., 6.4 Gbps for TCP in our case).



Container
Layer 7 Applications

NAPI I&
Scheduler : vBridge
Layer 2 @ P
IRQ sora, @O

IRQ Coalescing| } IRQ
DMA

Figure 1: Illustration of data receiving path in Linux kernel.

Further, the combination of multi-core CPUs and multi-
queue network interface cards (NIC) allows packets of differ-
ent flows to route to separate CPU cores for parallel process-
ing. Unfortunately, container overlay networks are observed to
produce poor scalability — the network throughput increases
by 4x with 6x number of flows. In addition, under the same
throughput (e.g., 40 Gbps with 80 flows), overlay networks
consume much more CPU resources (e.g., 2 ~ 3 times). Our
investigation finds that this severe scalability issue is largely
due to the inefficient interplay by kernel among pipelined,
asynchronous packet processing stages — an overlay packet
traverses among the contexts of one hardware interrupt, three
software interrupts and the user-space process. With more
flows, the hardware also becomes inefficient with poor cache
efficiency and high memory bandwidth.

Last, research has long observed inefficiency in the kernel
network stack for flows with small packet sizes. We observe
that such inefficiency becomes more severe in container over-
lay networks which achieve as low as 50% packet processing
rate of that in the native host (e.g., for UDP packets). We find
that, in addition to prolonged network path processing path,
the high interrupt request (IRQ) rate and the associated high
software interrupt (softirq) rate (i.e., 3x of IRQs) impair the
overall system efficiency by frequently interrupting running
processes with enhanced context switch overhead.

In this paper, we perform a comprehensive empirical per-
formance study of container overlay networks and identify
the above-stated new, critical parallelization bottlenecks in
the kernel network stack. We further deconstruct these bottle-
necks to locate their root causes. We believe our observations
and root cause analysis will cast light on optimizing the kernel
network stack to well support container network stacks on
multi-core systems in light of high-speed network devices.

2 Background & Related Work

In this section, we introduce the background of network
packet processing (under Linux) and the existing optimiza-
tions for network packet processing.

Network Packet Processing. Packet processing traverses

NICs, kernel space, and user space. Taking receiving a packet
as an example (Figure 1): When a packet arrives at the NIC,
it is copied (via DMA) to the kernel ring buffer and triggers a
hardware interrupt (IRQ). The kernel responds to the interrupt
and starts the receiving path. The receiving process in kernel
is divided into two parts: the top half and the bottom half. The
top half runs in the context of a hardware interrupt, which
simply inserts the packet in the per-CPU packet queue and
triggers the bottom half. The bottom half is executed in the
form of a software interrupt (softirq), scheduled by the kernel
at an appropriate time later and is the main routine that the
packet is processed through the network protocol stack. After
being processed at various protocol layers, the packet is finally
copied to the user space buffer and passed to the application.

Container Overlay Networks. Overlay networks are a com-
mon way to virtualize container networks and provide cus-
tomized connectivity among distributed containers. Container
overlay networks are generally based on a tunneling tech-
nique (e.g., VXLAN): When sending a container packet, it
encapsulates the packet in a new packet with the (source and
destination) host headers; when receiving an encapsulated
container packet, it decapsulates the received packet to re-
cover the original packet and finally delivers it to the target
container application by its private IP address.

As illustrated in Figure 1, the overlay network is created by
adding additional devices, such as a VXLAN network device
for packet encapsulation and decapsulation, virtual Ethernet
ports (veth) for network interfaces of containers, and a virtual
bridge to connect all these devices. Intuitively, compared to
the native host network, a container overlay network is more
complex with longer data path. As an example in Figure 1, re-
ceiving one container packet raises one IRQ and three softirqs
(by the host NIC, the VXLAN, the veth separately). In conse-
quence, the container packet traverses three network names-
paces (host, overlay and container) and two network stacks
(container and host). Inevitably, it leads to high overhead of
packet processing and low efficiency of container networking.

Optimizations for Packet Processing. There is a large body
of work targeting at optimizing the kernel for efficient packet
processing. We categorize them into two groups:

(1) Mitigating per-packet processing overhead: Packet pro-
cessing cost generally consists of two parts: per-packet cost
and per-byte cost. In modern OSes, per-packet cost dominates
in packet processing. Thus, a bunch of optimizations have
been proposed to mitigate per-packet processing including in-
terrupt coalescing and polling-based approaches which reduce
the number of interrupts [21,23,27]; packet coalescing which
reduces the number of packets that need to be processed by
kernel network stacks (e.g., Generic Receive Offload [9] and
Large Receive Offload [13]); user-space network stacks which
bypass the OS kernel thus reducing context switches [10];
and data path optimizations [22,24-26].

(2) Parallelizing packet processing path: High-speed net-
work devices can easily saturate one CPU core even with
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Figure 2: Function call graph along the TCP receiving path.

the above optimizations. This is especially true in virtualized
overlay networks. To leverage multi-core systems, a set of
hardware and software optimizations have been proposed to
parallelize packet processing. Parallelism can be achieved
using the hardware approach — a single physical NIC with
multi-queues, each mapping IRQs to one separate CPU core
with Receive Side Scaling (RSS) [18]. Even without the NIC
support, Receive Packet Steering (RPS) [17] can achieve the
same RSS functionality in a software manner. Both RSS an
RPS use hash functions (based on packet IP addresses and
protocol ports) to determine the target CPU cores for packets
of different flows. As we will show shortly, none of these
approaches work effectively in container overlay networks.

3 Evaluation of Container Overlay Networks

In this section, we perform empirical studies to illustrate
parallelization bottlenecks of the kernel network stack for
container overlay networks.

3.1 Experimental Settings

We conducted experiments with three network configurations

as follows:

e The Native Case. Applications were running in the na-
tive host (i.e., no containers), and communicated with each
other using the host IP addresses associated with the physi-
cal network interface — the traditional configuration in a
non-virtualization, non-overlay environment.

e The Linux Overlay Case: In this “transitional” case, we
added one VXLAN software device attached to the host
interface. Applications were still running in the native host,
but communicated first through the VXLAN tunneling and
then the host interface. We configured such a VXLAN
device using the iproute?2 toolset [14].

e The Docker Overlay Case: A Docker [5] overlay net-
work was created to route container packets among hosts.
Applications were running in Docker containers and com-
municated with each other using the containers’ private IP
addresses associated with the virtual interfaces (i.e., veth).
A Linux bridge connected all local containers’ veths and a
VxLAN device (attached to the host interface). The Docker
overlay network requires a key-value database to store host
network information and we chose consul-0.5.2 [3] as the
key-value store.

Notice that the packet processing path becomes longer from
the native case to the docker overlay case.

Testbed Configurations. All experiments were conducted
on two server machines each equipped with one Xeon E5-
2630 v4 CPU (2.2 GHz and 10 physical cores with hyper-
threading enabled — 20 virtual cores) and 64 GB mem-
ory. They were directly connected via a 40 Gb Mellanox
ConnectX-3 Infiniband Network Interface Controller with the
multi-queue technique enabled (16 packet queues). We ran
Docker-18.06 [5] on Linux-16.04-4.4, and used iperf3 [11]
as the benchmark applications. We have tuned the Linux net-
work stack with all software optimizations enabled. To mimic
a real setup, the MTU (maximum transfer unit) was set to
1,500 bytes by default. For all TCP and UDP experiments,
the TCP packet size was set to 128 KB while the UDP packet
size was set to 8 KB by default, unless otherwise stated. All
experimental results were averaged over five or more runs.

3.2 Performance Results and Analysis

A Single Flow. First, we measure the TCP and UDP through-
put using a single pair of iperf client and server residing on
two machines separately.

Figure 3 shows the TCP throughput, while Figure 5 shows
the UDP throughput. More specifically, the native case can
reach around 23 Gbps for TCP and 9.3 Gbps for UDP. The
Linux overlay performs a little better than the Docker overlay:
in the Linux overlay, the TCP throughput reaches 6.5 Gbps,
and the UDP reaches 4.7 Gbps. In comparison, in the Docker
overlay case, the TCP throughput reaches around 6.4 Gbps,
while the UDP throughput reaches only 3.9 Gbps. Compared
to the native case, the throughput of the Docker overlay drops
by 72% for TCP and 58% for UDP. As the packet processing
path gets longer, the single pair bandwidth performance gets
lower for both TCP and UDP cases.

The reason why the Docker overlay achieves much lower
throughput than the native shows that: it consumes much
higher CPU cycles for processing each packet. As plotted
in Figure 4 (CPU usage breakdown for TCP) and Figure 6
(CPU usage breakdown for UDP), in the single flow case, the
docker overlay consumes the same (or more) CPU usage with
much less throughput, compared to the native case '. Figure 2
shows the function call stack along the TCP receiving path
— the highlighted areas refer to the extra time spent in the
functions of the overlay networks. It clearly demonstrates that
the network processing path in the docker overlay network is
much longer than the native case leading to extra CPU usage.

A question arises after we observe that the iperf client and
server in the user space consume little CPU far away from
occupying one single core: why cannot the throughput keep
scaling by consuming more CPU resources? Upon deeper in-
vestigation, we found that existing parallelization approaches

"Each machine has in total 20 virtual cores — 5% CPU usage means that
a single core has been exhausted.
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Figure 5: UDP throughput.

(e.g., RSS or RPS) work at the per-flow level, as they de-
cide the core for packet processing based on the flow-level
information (i.e., IP addresses and/or port number). Hence,
packets of the same flow are processed by the kernel on the
same core — including all the softirqs triggered by all the
network devices (i.e., the host interface, VXLAN and veth).
As the docker overlay incurs longer packet processing path,
it easily saturates one CPU core — as shown in Figure 4 and
Figure 6, the CPU consumed by the kernel (i.e., the sum of
the system and softirq parts) saturates one core.

Multiple Flows. As a single flow is far away from fully uti-
lizing a 40 Gbps network link in the Docker overlay case, we
tried to use multiple flows to saturate the network bandwidth
by scaling the number of flows — we ran multiples pairs of
iperf clients and servers from 1 to 80; each iperf client or
server was running in a separate container.

As shown in Figure 3, we observe that the native case
quickly reaches the peak throughput, ~37 Gbps under TCP
with only two pairs. However, the TCP throughput in the two
overlay cases grows slowly as the pair number increases —
the throughput increase by 4x (6.4 Gbps to 25 Gbps) with
6x number of pairs (1 pair to 6 pairs). Though all three cases
can saturate the whole 40 Gbps network bandwidth (with 80
flows), under the same throughput (e.g., 40 Gbps) overlay
networks consume much more CPU resources (e.g., around
2.5 times) than the native case.

This raises another question: why does the overlay network
not scale well with multiple flows given that in this situa-
tion both RSS and RPS take effect (i.e., we did observe that
packets of different flows were assigned with different CPU
cores)? Our investigation shows that such a bad scalability
is largely due to the inefficient interplay of many packet pro-

Pair Number of Iperf Connection

Figure 6: CPU usage breakdown on the iperf server side (the receiver) for UDP.

cessing tasks — IRQs, three different softirq contexts, and
user-space processes. Too frequent context switches among
these tasks greatly hurt the CPU cache efficiency, resulting in
much higher memory bandwidth. For example, the Docker
overlay case consumes 2x memory bandwidth with 50% net-
work throughput with 7 pairs (not depicted in the figures).
Such inefficiency can also be observed in Figure 4, though
the total throughput does not scale, the CPU usage keeps in-
creasing as the number of flow pairs increases — the kernel
is just busy with juggling numerous tasks.

We observe the similar (and even worse) scalability in
the UDP case ” as illustrated in Figure 5 with the exception
that the throughput of the native case keeps flat regardless of
the flow numbers. The reason is that, in the native case, all
UDP flows share the same flow-level information (i.e., same
source and destination IP addresses); the RSS and RPS cannot
distinguish them and assign all flows on the same core which
is fully occupied. In contrast, in the overlay networks, the
RSS and RPS can distinguish the packets of different flows by
looking at the inner header information containing the private
IP addresses of containers which are different among flows.

Small Packets. It is evident that most packets in the real
world have small sizes (e.g., 80% < 600 bytes [16]). The
inefficient packet processing will negatively impact the perfor-
mance of real-world applications. We conducted experiments
to show the performance impact of overlay networks on small
packets by varying the packet sizes of a single flow from 64
bytes to 8 KB. As illustrated in Figure 7, the Docker overlay
performs a bit worse with small packet sizes (64 bytes to 1

2We cannot collect performance data after 7 pairs for the Docker overlay
case, as the system becomes very unstable due to high packet drop rate.
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Figure 11: Interrupt number with varying packet sizes (UDP).

KB) than the native under TCP in terms of packet processing
rate; the gap becomes wider as the packet size increases. Fur-
ther, as shown in Figure 8, the Docker overlay consumes less
CPU due to lower packet processing rate *

The more significant inefficiency is observed in the UDP
case: In Figure 9, we observe that the Docker overlay achieves
as low as 50% packet processing rate of that in the native
case with lower CPU usage (Figure 10). The Linux overlay
case performs better than the Docker overlay but still worse
than the native. Correspondingly, we observe that the IRQ
number increases dramatically in the Docker overlay case —
10x of that in the TCP case. In addition, much more softirgs
are observed in Figure 11, ~3x of the IRQs. It is because
again, one IRQ can trigger (at most) three softirqs in the
Docker overlay case. Note that, multiple softirgs can*“merge”
within one softirq, as long as they are processed in a timely
manner (i.e., all processed under the context of one softirq
and counted once). Notice that, more softirqs indicate that

3The Docker overlay is more CPU efficient than the Linux overlay under
small packet sizes, as (we observed that) the kernel CPU scheduler intends
to put the user-space iperf processes on the same core — that also performs
kernel-level packet processing — more often in the Docker overlay case.
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Figure 10: CPU usage breakdown on the iperf server side (the receiver) for UDP.

either the IRQ number is large or the process of softirgs is
frequently interrupted (multiple softirqs cannot merge) — the
Docker overlay case falls in the latter category.

4 Insights and Conclusions

We have presented the performance study of container overlay
networks on a multi-core system with high-speed network de-
vices, and identified three critical parallelization bottlenecks
in the kernel network stack which prevent overlay networks
from scaling: (1) the kernel does not provide per-packet level
parallelization preventing a single container flow from achiev-
ing high network throughput; (2) the kernel does not effi-
ciently handle various packet processing tasks preventing
multiple container flows from easily saturating a 40 Gbps net-
work link; and (3) the above two parallelization bottlenecks
become more severe for small packets, as the kernel fails to
handle a large number of interrupts which disrupts the overall
system efficiency.

These parallelization bottlenecks urge us to develop a more
efficient kernel network stack for overlay networks by con-
sidering the following several questions: (1) Is it feasible to
provide packet-level parallelization for a single network flow?
Though probably not necessary in the native case, it becomes
imperative in the overlay networks as the achieved throughput
of a single flow is still very low (limited by a single CPU core).
(2) How can the kernel perform a better isolation among mul-
tiple flows especially for efficiently utilizing shared hardware
resources (e.g., CPU caches and memory bandwidth). This
is particularly important as one server can host tens or even
hundreds of light-weight containers. It becomes more chal-
lenging to handle small packets under overlay networks. (3)
Can the packets be further coalesced with optimized network
path for reduced interrupts and context switches?



Discussion Topic

By presenting our observations in container overlay networks,
we are looking to receive feedback that can gauge the impor-
tance of these observed bottlenecks considering real cloud
containerized applications. We are aware of that there is a
large body of work addressing the inefficient network packet
processing issue with either optimizing existing operating
systems (OS), or renovating OSes with a clean-slate design,
or completely bypassing the OSes with a user-space approach.
However, in our work, we aim to first have a thorough un-
derstanding about the inefficiencies of conventional OSes
particularly for container overlay networks. With this, we
plan to generate discussions about whether we should keep
improving the conventional kernel network stack following
an evolutionary concept by retrofitting existing OSes with the
new technology for better adoptability and compatibility.
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