
Static Call Graph Construction in AWS Lambda Serverless Applications

Matthew Obetz, Stacy Patterson, Ana Milanova
Rensselaer Polytechnic Institute

Abstract
We present new means for performing static program anal-
ysis on serverless programs. We propose a new type of call
graph that captures the stateless, event-driven nature of such
programs and describe a method for constructing these new
extended service call graphs. Next, we survey applications
of program analysis that can leverage our extended service
call graphs to answer questions about code that executes on a
serverless platform. We present findings on the applicability
of our techniques to real open source serverless programs. Fi-
nally, we close with several open questions about how to best
incorporate static analysis in problem solving for developing
serverless applications.

1 Introduction

Serverless computing is a model where developers pay to ex-
ecute stateless, event-driven functions in the cloud [32]. This
new paradigm offers highly elastic scaling for applications by
executing application code in virtual containers that may be
shared across multiple function invocations and moved seam-
lessly between physical servers [29]. As a result, serverless
platforms encourage microservice-oriented designs, where
serverless functions are deployed separately and accomplish
tasks cooperatively. To accomplish this, these services pass
messages and subscribe to notifications about events that
occur on platform services, such as writes to databases or
distributed filesystems [36].

The unique features of this platform have caused a rapid
increase in interest from developers in industry who seek to
reduce the overhead associated with maintenance and moni-
toring of traditional servers [3]. However, as developers have
begun programming applications for the serverless platform,
they have encountered a noticeable gap in tooling [40]. Com-
mon questions include how to trace executions during debug-
ging, how to measure application performance, and how to
verify program correctness and security. Program analysis
seeks to answer these questions by building tools to investi-
gate program behavior. While significant progress has been
made toward answering these questions for traditional pro-
grams, the tools they have produced have not been extended
to the domain of serverless computing. Recent work has sug-
gested that static analysis may also be a beneficial tool for

answering questions such as how to provision and allocate
serverless resources [22].

Call graph construction is a necessary first step toward
developing a wide range of tools for analysis of serverless
applications. A call graph is a directed graph where each node
represents a function, and each edge represents a point of
control flow where one function invokes another [12]. Call
graph construction is an instrumental part of many program
analyses, such as those for identifying and eliminating unused
code [23] and those for detecting potential software vulnera-
bilities [33] or malicious behavior [6], all of which can greatly
aid in refining serverless code.

General approaches to call graph construction exist for the
languages used in serverless programs. However, these ap-
proaches traverse a program from an identified entrypoint,
generating summaries of encountered functions. Calls be-
tween functions are resolved using a set of rules that make
simplifying assumptions about context or control flow. By con-
trast, serverless programs are fundamentally event-driven [31].
This means that approaches to generate an accurate call graph
must be able to resolve not only function calls, but also re-
solve implicit state transfer that occurs, for example, when a
function writes to a message queue or database service, and
that service has an event trigger configured to execute more
code once the write is completed. These call graph construc-
tion approaches must also be able to parse events, which are
often declared in an external file with a platform-specific for-
mat. As such, standard approaches to building call graphs will
generate an incomplete view of the application that fails to
describe the higher-level interconnectivity of microservices.

To address this gap, we propose a new approach to call
graph construction for serverless applications that augments
graphs with information about relationships between server-
less functions and the platform services with which they inter-
act. We introduce the notion of an extended service call graph,
which extends the traditional call graph to include new classes
of nodes. These new nodes represent the platform services
written to or read by application code to produce control flow
that spans multiple disconnected parts of a program. To con-
struct this more complete view of a serverless application, we
describe novel means of statically capturing event declarations
and locating method calls within programs that cause these
events to fire, with focus on applications written in Javascript
for the AWS Lambda platform. We choose Javascript as it is
the most common language for AWS Lambda programs.



Specifically, the contributions of this work are:
• We propose a novel conception of call graphs that better

fits the serverless paradigm and opens new opportunities
for static analysis for the serverless platform.

• We describe how platform services that affect program
control flow should be represented in the extended service
call graph.

• We survey applications of static analysis that can provide
useful information for serverless programs.

• We present preliminary data on the structure and feature set
of real-world serverless programs written in Javascript, and
organize these programs into a set of benchmarks for static
analysis. Preliminary results suggest that static analysis is
effective for the analysis of serverless programs.

Related work Without access to techniques for reasoning
statically about serverless programs, some have opted to con-
sider dynamic runtime analyses to visualize program struc-
ture [27, 28], track the flow of sensitive information [1], or
measure resource costs [39]. These tools operate by inject-
ing instructions into a program or modifying its runtime to
instrument realtime monitoring that allows the analysis to
collect information about the behavior of code [35]. Like all
dynamic analyses, they require substantial modification and
directed exercising of public interfaces to produce results.
Since executing programs over an exhaustive set of inputs
is generally impractical, these tools offer only a partial view
of an application [7]. Perhaps more significantly, the code
to execute the dynamic analysis must be colocated with the
application on the cloud, resulting in significant execution
costs to collect results for an analysis [8, 28]. This suggests
that these analyses cannot serve as a general replacement for
static analysis in situations where a more comprehensive view
of application behavior is required.

The remainder of this paper is organized as follows. Sec-
tion 2 provides background on serverless applications and call
graphs. We discuss how call graphs are extended to support
the new classes of nodes that we define in Section 3, then
describe how this new model improves several applications of
call graphs in Section 4. We establish benchmarks to evaluate
our methods and future static analyses in Section 5, and we
close with a discussion of open questions in Section 6.

2 Background

Serverless Architecture Serverless applications consist of
a set of libraries that export publicly accessible functions. This
collection of serverless functions is deployed to an environ-
ment managed by a serverless provider, who will ephemerally
provision computational resources to execute these functions
as they are invoked. To fully capitalize on the opportuni-
ties for scaling that this provides, developers typically divide
their code into several microservices, where each serverless
function operates as an independent, modular unit that com-

Listing 1: Sample fragment of a Serverless Framework YAML
configuration file. Each entrypoint of the program is named
and given a handler that specifies a filepath and method to be
invoked. The events collection for each method describes ser-
vices that can trigger the handler. In this case, the entrypoints
are listenForUserInput, which observes web requests, and
listenToSNSTopic, which observes the Amazon Simple No-
tification Service.
functions:
listenForUserInput:
handler: sourceFile.handler
events:
- http:

path: /endpoint
method: post

listenToSNSTopic:
handler: secondFile.handler
events:
- sns:
arn:aws:sns:us-east:xxx:mytopic

municates with other microservices by passing messages [38].
Because a microservice contains only the minimal code to
execute its specific task, several serverless functions may be
chained together to complete what appears externally as a
single action.

To specify when serverless functions should be invoked, a
configuration file is deployed alongside application code. This
file identifies specific functions to act as handlers for one or
more events. When one of these events takes place, the associ-
ated function is triggered. For AWS Lambda applications, two
common formats for the configuration are CloudFormation
templates [17] and Serverless Framework templates [21], both
of which are YAML files that list a collection of resources
that should be packaged for deployment. We present relevant
portions of a sample YAML file for a serverless application
in Listing 1 and a sample event handler in Listing 2.

3 Defining Serverless Call Graphs

Suitability of Static Analysis. There are certain features of
programming languages that interfere with the ability to create
precise and efficient static analysis tools. As such, we need
to better understand whether serverless programs regularly
employ these features to determine if static analysis is well-
suited to this domain. The following observations are based on
study of real-world serverless programs that will be explored
further in Section 5.

In particular, static analysis struggles to compute precise
results efficiently when programs grow very large, or when
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Figure 1: Comparison of traditional call graph and extended service call graph, using the sample application from Listing 1.
Pictured at left is the result of call graph analysis on each entrypoint individually; flow from the entrypoint to SDK libraries
can be detected, but information about where those libraries may cause other serverless functions to execute is lost. At right we
introduce nodes representing functionality hosted on AWS which interacts with code. Using the extended service call graph, it
becomes possible to track flow of data from the source of user interaction with a public API (the GET /endpoint) to a sink where
outgoing email is served through the Amazon Simple Email Service.

Listing 2: Sample fragment of serverless code from
sourceFile.js, loaded by listenForUserInput in List-
ing 1. This sample accepts a web request and publishes its
content to the "mytopic" Simple Notification Service topic.
Note that the ARN of the SNS Topic is a string literal passed
in to publish(), behavior which is common in serverless
programs. This allows for static detection of the resource that
is being accessed.
let aws = require("aws-sdk")
let sns = aws.SNS()

exports.handler = function(ev,ctx,r) {
sns.publish({
Message: ev.body ,
TopicArn:

"aws:sns:us-east:xxx:mytopic"
})
}

a program loads a large number of external libraries. Fortu-
nately, serverless platforms impose strict limits on function
execution time, encouraging developers to ensure that calls
made to external libraries are infrequent and not excessively
deep. In practice, we have found that programs contain only
a few hundred reachable lines of code for each individual
serverless function. When applications grow more complex,
this complexity is expressed by adding additional serverless
functions, rather than expanding the few that exist. This size
is well below even the limits placed by serverless providers,
and suggests that microservice-oriented designs may be an

even stronger influence on function length than platform limi-
tations.

Static analysis likewise cannot analyze certain interpreted
language features, such as when code is stored as a string
and then loaded with an eval() function. However, in most
serverless programs, the only unknown strings that could be
evaluated in this way are function parameters provided di-
rectly by users. We find such dynamic behavior is uncommon
in serverless programs, likely because few users are trusted
enough to execute arbitrary code. From these observations,
we conclude that static analysis has potential as a promising
tool for reasoning about serverless applications.

Extended Service Call Graphs. Traditional callgraphs
contain only a single type of node, representing functions
that may be executed throughout the lifetime of an applica-
tion [11]. Even when the concept of call graphs has been
applied to microservice architectures, previous work has not
considered representation of control flow that travels through
external services [26]. Since this type of control flow is cen-
tral to the serverless programming model, it is necessary to
develop call graphs that explictly incorporate these external
services.

We propose a new type of call graph for serverless ap-
plications that we call an extended service call graph. The
extended service call graph includes a node for each func-
tion, but also nodes specific to the serverless platform. To
date, these serverless-specific nodes include: 1) public API
endpoints, 2) information stores (such as database tables, mes-
sage queues, notification topics, and object storage buckets),
3) scheduled tasks, and 4) outgoing email. We aim to extend
this list to accommodate the full range of serverless features.



We briefly describe how we construct the extended service
call graph below. In the next section, we provide examples of
how information may flow through services, and thus, why it
is necessary to include this flow in call graphs.

To build the extended service call graph for Javascript AWS
Lambda programs, we first traverse the configuration file
provided with the application to identify the location of all
functions that may serve as entrypoints to the program. We
generate a call graph node for each of these entrypoints. In
addition, for every defined event that may trigger a given
function, we immediately generate a node representing this
event identified by the Amazon Resource Name [34] included
in the configuration. We then add an edge from the event to the
associated entrypoint. Once this pre-processing is complete,
we iterate a list of discovered entrypoints and perform call
graph construction for each.

To capture the effect of third party libraries without expand-
ing the analysis to include their full source code, we propose
the implementation of transfer functions for public methods
in the library. These functions provide a high level summary
of the effects a library has without the complexity of a full im-
plementation, allowing such stateful libraries to be precisely
analyzed. We demonstrate an example of this simplification
in Listing 3.

Listing 3: Summary functions for ajv, an imported external
library. In its full implementation, ajv stores named JSON
objects with the addSchema function, then validates that new
objects have the same structure as a particular named schema
with the validate function. Though the full implementation
is stateful, we can summarize the effects of the entire library
by stating that validate will always return either true or
false.
function AJV() {}
AJV.prototype.validate=function(n,s) {

return make(’AnyBool ’);
};
AJV.prototype.addSchema=function(n,s) {
};

We must also collect edges that point from serverless func-
tions to services. To do so, we treat the AWS SDK library as
a special analysis object when we statically detect that it is
imported. Then, when we encounter a method call that would
write to a service, we produce a corresponding edge in the
graph. To determine which specific resource is being accessed,
we track the set of possible values that could flow into the
identifying parameters of the SDK method. In order for this
technique to produce precise results, the resource name must
be defined as a string literal or constructed from known values
elsewhere in the program. However, we find that this is nearly
universally the case for real world programs we have ana-
lyzed, and that accepting resource names as external inputs is
rare.

A simplified example of an extended service call graph is
shown in Figure 1, alongside the corresponding traditional
call graph. The standard call graph in Figure 1(a) cannot
capture information flow from the potentially sensitive user
input at GET endpoint to the potentially dangerous sink at
Outgoing Email; in contrast, the extended service call graph
in Figure 1(b) captures the link through service SNS Topic.
We note that our extended service call graph may still miss
some edges. In particular, we cannot capture program flows
that require direct human intervention, such as a lambda send-
ing an email to an administrator requesting that they manually
trigger a web endpoint. However, we claim that such flows
would be difficult to capture in any program analysis, includ-
ing ones that utilize dynamic instrumentation.

4 Applications

To further highlight the benefits of our approach, we now
discuss potential uses of an extended service call graph to
perform static analysis on serverless clouds.

Information flow and security analysis. An important ap-
plication of static analysis is detecting leakage of sensitive
information to untrusted sinks. Serverless applications that
interface with mobile phones or sensor devices may request
that users upload personal information such as location data.
Using standard methods of call graph construction, flow of
sensitive inputs can be tracked only within the boundaries of
the original entrypoint function. If the sensitive information
flows through a platform service before reaching a poten-
tially dangerous sink, the leak will not be detected, as the link
from source to sink through the service is not captured in
the call graph. Conversely, in extended service call graphs,
an information flow analysis may define special semantics
for functions connected to service nodes, allowing the anal-
ysis to trace flow of sensitive information to other parts of
the program where these leaks may occur, as illustrated in
Figure 1.

Resource estimation. Determining the computational re-
sources required by programs that execute in the cloud is an
active area of research [10]. Accurate estimation of the space,
computing power, and running time required for a serverless
function to execute is paramount for developers who wish to
correctly provision containers for their code. The ability to
accurately gauge bandwidth required to pass data between
functions is also crucial to making informed decisions about
task placement in geo-distributed computing platforms.

The platform services that interact with serverless appli-
cations typically operate over highly structured data, which
allows for precise determination of its size. When these esti-
mates are coupled with the extended service call graph, we
envision it is possible to accurately predict the size of inputs



to and outputs from serverless functions. This allows leverage
of existing techniques to estimate resources used by various
microservices across a serverless application as a function of
their input size [14].

Documentation. Call graphs have previously been ex-
plored as a method for documenting source code by visually
demonstrating to developers function usage across a code-
base [37]. These methods have been expanded to include
generation of supplemental documentation derived from the
call graph, for example by analyzing the structure of a call
graph to infer method importance and generate verbal descrip-
tions of functions [30]. We have observed that some serverless
applications include manually drawn graphs conveying this in-
formation [5, 20], suggesting that developers find this style of
documentation useful. In our testing, we are able to statically
produce comparable graphs that display the same network of
functions and services, but with additional guarantees that our
extended service call graph reflects the current state of the
code.

Structural analysis and dead code elimination. Research
suggests that improving structural attributes of code, such as
increasing cohesion and reducing coupling, may have a direct
impact on code maintainability and the resulting software
quality and performance [2]. Among the simplest of these
transformations is the elimination of unused code. Building
a separate call graph for each serverless function, without
capturing the flow between them, will fail to detect if there are
functions that never execute. By including additional context
from the extended service call graph, it becomes possible to
detect functions that trigger off of a dormant platform service
by identifying disconnected subgraphs. One can also detect
a platform service that is written to but never accessed by
identifying service nodes with no outbound edges. Both of
these conditions may indicate maintainability problems and a
need to perform refactoring of associated code.

5 Applicability on Real World Programs

To investigate the ability of our tool to produce call graphs for
real applications, we pull samples from the AWS Serverless
Application Repository [18]. This repository features a large
collection of serverless programs, written by volunteer sub-
mitters, that can be easily deployed directly from the AWS
control panel. Of the applications hosted in the repository, we
were able to access source code for 146 projects. Of these, 64
were written in Javascript, 57 were written in Python, and the
remainder were written in a variety of other languages, com-
monly Java, Go, or a typed variant of Javascript. We analyze
the Javascript packages in the repository.

Of the 64 Javascript applications available, 15 include in-
structions for manual configuration or shell scripts in lieu

of providing a declarative configuration file. Though it is
still possible to detect places in the program where platform
services are accessed, our tool is unable to statically deter-
mine event triggers configured for these systems. As such,
we cannot generate complete extended service call graphs for
these packages, even with the use of our analysis tool. An-
other 13 of the remaining applications are triggered using an
API gateway, but do not make any other apparent use of plat-
form services. These programs can be adequately analyzed
using existing techniques for call graph construction, which
is subsumed by our analysis. Therefore, no value is added by
generating an extended service call graph and we choose to
omit these applications.

For the 36 remaining applications available in the reposi-
tory that use platform services in some way and provide con-
figuration files, we note some additional characteristics. The
majority are single serverless functions that fetch data from
one platform service, transform it some way, and then publish
it to a different platform service. While potentially unremark-
able on their own, we find that many of these packages appear
intended to abstract some small, reusable task that might be
desirable in a larger application, for instance, encrypting up-
loaded files before storing them in an S3 bucket [25]. As such,
analysis of these serverless ‘libraries’ will still have value for
serverless platform providers who wish to statically guarantee
properties about what tasks a serverless function performs or
to implement a permission-based security model.

Seven of these 36 packages are applications with complex
chains where data is transferred between serverless functions
and services. These are ideal targets for static analysis, as they
offer the greatest opportunities for uncovering unintended or
notable behavior. We find that in all of these applications,
static resolution of the identifiers for resources accessed by
application code is possible. Consequently, for all the appli-
cations that contain interesting control flow, constructing an
extended service call graph statically using our method will
produce a result identical to one constructed manually.

Currently, we focus our attention on extending our tool
to support the full set of language features that serverless
programmers employ. Our tool currently parses only a subset
of the seven complete applications described above. However,
we are actively working on the implementing the full set of
features to support all programs contained in the application
repository. We plan to open source the tool.

6 Discussion

Open Issues. Call graphs are a vital first step in performing
several types of static analysis. However, defining new classes
of nodes that connect serverless applications into a single
graph does not completely describe how these nodes behave
in situations where they are required to transfer more nuanced
information about state. Further exploration is necessary to
determine how services such as DynamoDB tables can be



modeled to precisely capture a safe over-approximation of
the data that may be read out of a table when it is updated
by a serverless function. This issue is further compounded by
application frameworks such as GraphQL [15], which abstract
the data model and obscure which tables are being accessed.
Additionally, work done for this paper has been specific to
the AWS Lambda platform. Study toward the applicability
of these methods to other serverless platforms such as Open-
Whisk [4] and Google Cloud Functions [19] is warranted,
including closer examination of the modes of configuration
for these platforms.

Risks. While regard for serverless computing from industry
has been optimistic, the technology that powers these plat-
forms is still in its infancy. There are not yet many large
scale open source serverless projects or benchmarks avail-
able. This leaves program analysts with few sufficiently com-
plex applications to test the efficacy of their tools. Given the
enterprise-oriented and pay-to-execute nature of most server-
less implementations, there is potential that high quality open
source benchmarks may be slow to materialize, hindering
research efforts in the field. Similarly, the rapid evolution of
this technology means that analysis tools may have limited
applicability by the time they reach the public if the serverless
paradigm undergoes substantial change in the future.

There is also risk that fundamental limitations of static
analysis may make answering certain types of questions in-
tractable for serverless programs. Notably, these programs
tend to be written in interpreted scripting languages such as
Python and NodeJS [3], which heavily feature abstract con-
structs that have historically limited static analyses, such as
first-class functions, untyped objects, and file imports that are
resolved at runtime [9]. This limits the ability to use existing
tools for Javascript analysis [13, 16, 24], as these tools tend to
have difficulty scaling to large programs or do not support the
full set of modern Javascript features. There is potential that
tools created specifically for the serverless platform may suf-
fer from similar setbacks, though the current set of available
programs suggest this is not the case.

Need for Applications. In this paper, we leverage observed
properties of serverless applications to devise a novel method
for constructing call graphs that represent the entire structure
of these programs. Validation of the utility of the extended
service call graph model, and of the applicability of static
analysis as a whole, requires determining the degree to which
these properties hold across a variety of real-world applica-
tions. As such, the program analysis community would benefit
from the availability of larger open source serverless appli-
cations that could serve as suitable benchmarks, as well as
additional information about real and envisioned use cases
for serverless computing. These applications and information
can also provide guidance about the types of analyses and
tooling that will be most useful to the serverless community.
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