
Just In Time Delivery: Leveraging Operating Systems Knowledge
for Better Datacenter Congestion Control

Amy Ousterhout
MIT CSAIL

Adam Belay
MIT CSAIL

Irene Zhang
Microsoft Research

Abstract
Network links and server CPUs are heavily contended
resources in modern datacenters. To keep tail latencies
low, datacenter operators drastically overprovision
both types of resources today, and there has been
significant research into effectively managing network
traffic [4, 19, 21, 29] and CPU load [22, 27, 32]. However,
this work typically looks at the two resources in isolation.

In this paper, we make the observation that, in the
datacenter, the allocation of network and CPU resources
should be co-designed for the most efficiency and the best
response times. For example, while congestion control
protocols can prioritize traffic from certain flows, this
provides no benefit if the traffic arrives at an overloaded
server that will only queue the request.

This paper explores the potential benefits of such a co-
designed resource allocator and considers the recent work
in both CPU scheduling and congestion control that is best
suited to such a system. We propose a Chimera, a new
datacenter OS that integrates a receiver-based congestion
control protocol with OS insight into application queues,
using the recent Shenango operating system [32].

1 Introduction
In modern datacenters, completing a user request involves
traversing many distributed nodes and network links. For
example, constructing a Facebook page may require con-
tacting up to 2,000 memcached nodes [31]. If any of these
links are congested, or if requests must wait before being
handled by a busy CPU core, the user response is delayed.

To keep user response times low, especially the long
tail of response times, datacenter operators drastically
overprovision both the network and CPU. For example,
average link utilization in datacenters over intervals
of 1-5 minutes is typically less than 1% [8, 36]. CPUs
are similarly under-utilized, operating at utilizations

of 10-66% [6, 7, 22, 24–26, 35, 39]. Because a large
fraction of the total cost of ownership of a datacenter
can be attributed to servers and network links [6],
overprovisioning in this way is quite costly.

Much research has explored how to maintain good per-
formance at higher utilization; however, the existing work
focuses on only one of the network and the CPU. For
example, Heracles [27], PerfIso [22], and Shenango [32]
maintain good performance at higher CPU utilization by
increasing isolation between colocated applications. In
the network domain, several approaches [4, 19, 21, 29]
enable networks to be run at higher utilization while
preserving good performance, by prioritizing traffic that
is presumed to be more urgent (typically shorter flows).

This paper takes a more holistic approach. We argue
that networks should not optimize to deliver traffic as fast
as possible, but they should aim to deliver it just in time
for the CPU to process it. Today, a congested network
may prioritize a given flow, forcing other flows to queue,
only to have that flow arrive at a server that is busy
handling other requests. In this case, overall performance
could have been improved if the network had been aware
of the server’s busyness.

In this paper, we consider the question how can we
co-design congestion control with operating system CPU
scheduling to optimize for both utilization and end-to-end
response latencies? We discuss the benefits of such a co-
design (§2) and explore the design options in achieving
it (§3). Then, we propose Chimera, a new datacenter OS
(§4). Chimera leverages the recent Shenango operating
system [32], which has visibility into application-level
queues, and integrates it with a receiver-driven congestion
control protocol to adjust network scheduling in response
to endhost queueing. We conclude with a discussion of
the open problems in co-designing congestion control
with CPU scheduling, including how CPU scheduling



could be adjusted in response to network congestion (§5).

2 Benefits of Codesign
Here we identify two potential benefits of co-designing
congestion control with CPU scheduling.

2.1 Reducing End-to-End Response Latencies

Consider two applications running on the same server.
Application A has a short backlog of requests waiting
to be handled; Application B has a long backlog. Now
consider two flows destined for this server: a long flow for
A and a short flow for B. Any congestion control scheme
that implements shortest remaining processing time
(SRPT), such as pFabric [4] or Homa [29], will prioritize
the short flow for B, causing it to arrive at the server first.
Assuming that B processes requests in FIFO order, the
requests in that flow will sit in B’s queue until B is able
to drain the backlog of other requests. At the same time,
the long flow for A is needlessly delayed. In this case,
switching the transmission order of these two flows would
improve the end-to-end response time for the requests in
the long flow and would have no impact on the end-to-end
response time for the requests in the short flow.

This example demonstrates that optimizing flow
scheduling for conventional network-centric objectives
such as minimizing flow completion time with SRPT [4,
5, 18, 29], meeting flow arrival deadlines [21, 37, 38], or
achieving fairness across flows [20] may be a reasonable
heuristic in many cases, but can produce suboptimal
response times for the end-to-end application.

2.2 Increasing Resource Utilization

Suppose a compute-heavy application, such as Spark
or MapReduce, and a network-heavy application, such
as a video upload application, run on the same server.
We would like to allocate enough network bandwidth
to the compute-heavy application in order for it to keep
the CPUs on the server busy while leaving all remaining
bandwidth available for the network-intensive applica-
tion. With existing approaches such as Differentiated
Services [9], we could strictly prioritize the network
traffic of the compute-heavy application over that of the
network-heavy application. This would ensure that the
compute-heavy application was always able to receive
incoming messages with more work to do and could keep
its CPUs occupied. However, this may waste bandwidth
on requests that will just sit in queues, or worse be
cancelled entirely if they take too long to complete [14].
With QJump [19], we could prioritize the compute-heavy
traffic while also rate limiting it, but how would we
decide on the correct rate limit? Too high of a limit and
we return to the situation described above, and too low

of a limit would cause CPU cores to sit idle. The best rate
likely varies over time depending on the workload.

Ideally applications receiving network traffic would be
able to apply backpressure to senders, indicating when
they were congested. In TCP, receive windows were
originally designed for this purpose, in order to indicate
to senders when a receiver did not have enough avail-
able memory to accept more traffic. However, servers
today typically allocate ample memory for receive socket
buffers, and applications rapidly dequeue requests from
these buffers and move them to internal queues. There-
fore, in practice, receive windows rarely limit transmission
rates. Worse still, the amount of data queued in a network
socket is only loosely related to the amount of computa-
tional work needed to process it. In summary, there is a sig-
nificant opportunity to apply scheduler information about
the busyness of CPUs to adjust network-level flow control.

Today, datacenter network operators address these
types of problems by overprovisioning network resources,
deploying 10, 40, or 100 Gbits/s links that sit underuti-
lized. If instead networks could prioritize traffic based on
applications’ ability to handle it, networks could be provi-
sioned with lower capacity, significantly reducing costs.

3 Design Decisions
To achieve these benefits, we propose leveraging OS
information about how busy an application is to improve
congestion control. Rather than reinvent the wheel,
we build upon existing congestion control schemes.
Many congestion control algorithms today make explicit
decisions about which flows to prioritize over others,
but they do so using heuristics about what will produce
the best network-level performance [4, 5, 17–21, 29], not
end-to-end application performance. Instead, we modify
these algorithms to use information about the busyness
of servers to choose which flows to prioritize. To do so,
we must make the following design decisions:

• What types of congestion control schemes are best
suited for this purpose? (§3.1)

• What metric(s) should endhosts use to expose
application busyness? (§3.2)

• How can information about application busyness be
measured? (§3.3)

• What should congestion control schemes do with
this information? (§4.2)

3.1 Receiver-Driven Congestion Control

Congestion control schemes can be broadly grouped into
four categories, based on how they decide which flows
get to use network resources at any given time:



• Implicit: Schemes such at TCP, DCTCP [2], and
HULL [3] do not explicitly choose to prioritize one
flow over another; flow rates are adjusted based on
packet drops or marks.

• Sender-driven: Sender-driven schemes set the prior-
ities of packets at sending endhosts, based on appli-
cation priorities (e.g., QJump [19]) or on flow sizes
(e.g., pFabric [4], PIAS [5]). Network switches then
enforce these priorities, but the priorities themselves
are determined by the senders without input from the
network or the receiving endhosts.

• In-network: In in-network approaches, senders ad-
vertise some information about their demands, and
switches along network paths decide what rate to
allocate to each flow based on the congestion they
observe locally [17, 21, 23, 30].

• Receiver-driven: In receiver-driven approaches
such as pHost [18], NDP [20], and Homa [29], re-
ceiving endhosts decide how to mediate between
competing traffic demands from different senders. In
these approaches, senders must still make decisions
about how to prioritize different flows, for example
when two receivers both permit transmissions from
the same endhost simultaneously. However, only in
receiver-driven approaches do the receivers partici-
pate in prioritization at all.

Of these four types, receiver-driven approaches are
uniquely suited to our need because only receivers have
the potential to access information about the busyness
of all destination applications for all flows traversing a
given congested downlink. This protocol design makes it
possible to decide how to prioritize different flows using
this information.

3.2 Potential to Make Progress as a Busyness Metric

Ideally, how should endhosts measure application busy-
ness? Equivalently, what metric for application busyness
best enables the example benefits described in Section §2?

For both examples, what we really want to know is, if
each application could be given more work to do, which
would make the most progress in the short run? We call
this an application’s potential to make progress. In the
first example, knowing that application B could make
little progress in the near future with an additional request
would allow congestion control to prioritize flows for
application A first. For the second example, knowing at
what times the compute-bound application had enough
work to keep its cores occupied and at what times it
didn’t would allow congestion control to allocate just

enough bandwidth to the compute-bound application and
grant the rest to the network-intensive application.

What is a quantitative metric for potential to make
progress? In virtualized or containerized environments
in which applications are granted a dedicated set of cores
to run on, estimating CPU utilization over those cores
may provide a good proxy for potential to make progress;
applications with many idle cycles can probably process
incoming requests in a more timely manner.

Other systems such as IX [33], Arachne [34], and
Shenango [32] dynamically reallocate cores across
applications. These systems themselves have visibility
into the busyness of different applications; the difference
between the number of cores allocated to an application
and the maximum number of cores it is allowed to have
allocated indicates its potential to make use of additional
cores by processing incoming requests.

However, neither of these approaches will work for ap-
plications that are bottlenecked on resources other than
CPU. For example, if an application is bottlenecked on
disk accesses, additional requests will not allow it to make
more progress. Similarly, real applications such as Mem-
cached often suffer from lock contention at high enough
request rates; allowing more traffic to reach such an appli-
cation similarly does not enable it to complete more work.

Alternatively, we could observe how long an applica-
tion queues requests before it handles them. For example,
are incoming packets languishing in socket buffers or
in userspace packet queues? However, queueing delay
alone cannot distinguish applications based on how much
progress a single request might enable; given two appli-
cations with equal queueing delay, the application with
longer service times will make better use of the CPUs.

Therefore, a quantitative metric for potential to make
progress should consider two factors: (1) how soon
additional work will be handled and (2) how much that
work will utilize the CPU for application-level work. One
option that incorporates both of these is:

potential to make progress=
cpu_usage_per_request

queueing_delay
where cpu_usage_per_request represents the average
number of CPU cycles used by an application for each re-
quest, and queueing_delay represents how long requests
queue before an application begins handling them.

3.3 Measuring Potential to Make Progress

Assuming that potential to make progress, as defined
above, is the best metric for exposing application
busyness, how can a receiving endhost expose this to
congestion control algorithms? Queueing delay may
be hard to measure if packets for a given application



are distributed across many different sockets or if
applications dequeue packets from socket buffers only
to let them wait in application-level queues. Estimating
queueing delay requires visibility into all sources of
application-level work, whether they are queued packets,
queued requests, or queued threads.

Unlike commodity operating systems, Shenango [32]
exposes this information. In Shenango, a centralized
component called the IOKernel has visibility into thread
and packet queues for all applications, and can observe
how long items queue for (Shenango uses this information
to decide how many cores to allocate to applications).
Specifically, the IOKernel’s congestion detector peeks
into these queues every 5µs, enabling it to estimate queue-
ing delays for threads and packets to a precision of 5µs;
the largest delay across thread and packet queues for an
application could be used as the queueing delay estimate.
In Shenango, the IOKernel also tracks how many cores
each application uses at any given time and runtimes could
expose the number of processed requests to the IOKernel,
enabling it to estimate cpu_usage_per_request.

4 Co-designing Congestion Control and
CPU Scheduling in a Datacenter OS

We propose a new datacenter OS, Chimera, that includes
a congestion control protocol informed by the CPU
scheduler. Chimera is based on Shenango [32], a
recent research operating system with insight into
application-level queuing.

4.1 OS Design

While Shenango exposes information about application
busyness, it does not provide support for receiver-driven
congestion control. At the same time, existing receiver-
driven congestion control algorithms have no visibility
into application busyness. Chimera integrates the key fea-
tures of these two sets of existing work, thereby enabling
the co-design of congestion control and CPU scheduling.

Existing receiver-driven congestion control algorithms
such as pHost [18], NDP [20], and Homa [29] vary in
the mechanisms they employ. However, at their core,
all of these protocols share a key feature, which is that
receiving endhosts send GRANT packets (called PULL
packets in NDP or tokens in pHost) in order to control
the flow of incoming packets.

Shenango’s IOKernel monitors application progress,
but does not provide any mechanism for controlling
the relative priority of traffic for different applications.
Instead, the IOKernel processes bursts of packets from
the NIC in FIFO order and application runtimes run
their own network stacks which independently react to
network congestion.

IOKernel	

Grant	
Arbiter	

App	1	

Congestion	
Detector	

App	2	

NIC	queues	

allocated	
cores	

packet	
queues	

grant	
queue	

data	
packet	

grant	
packet	

core	

Figure 1: Proposed design: integrate awareness of application
busyness, as in Shenango, with the GRANT feature of receiver-
driven congestion control approaches. This enables congestion
control to prioritize packets based on application-level objectives
rather than local network-level objectives.

Figure 1 shows how Chimera integrates the GRANT
mechanism described above into Shenango’s IOKernel.
Chimera adds an additional queue for each application
called the grant queue. The grant queue provides the
IOKernel with information about the amount of ingress
data each application would like to receive. This design
allows each application’s network stack to offer grants
to the IOKernel for each pending incoming flow, without
any rate-limiting. The IOKernel takes these GRANT
packets and passes them to the grant arbiter, which then
prioritizes the sending of GRANT packets based on
the policies described below (§4.2). It relies directly on
information about application busyness provided by the
IOKernel’s modified congestion detector (§3.3). These
GRANT packets clock the flow of incoming traffic, as in
existing receiver-driven approaches to congestion control.
In this way, Chimera is able to schedule network traffic
according to end-to-end application metrics in addition
to network-level objectives.

4.2 Policy

Once empowered with the knowledge of each applica-
tions’ potential to make progress, as well as a list of
pending flows, how should Chimera’s grant arbiter decide
which flows to prioritize?

The grant arbiter sorts GRANTs into priority order,
based on the potential to make progress of the correspond-
ing application, with those with the greatest potential to
make progress assigned the highest priority. There may
also be multiple incoming flows for each application; to
determine the relative priority of these flows, the grant
arbiter falls back on a simple policy such as FIFO. An
alternative is to apply a network-centric heuristic such
as SRPT, as used by prior work.

Sending endhosts may receive GRANT packets from
multiple receivers simultaneously, and must also decide
how to prioritize flows relative to each other. In existing



receiver-driven congestion control algorithms, senders
typically address this by implementing the same policy
as receivers (e.g., SRPT). In Chimera, GRANT messages
could be augmented to include the flow’s potential to
make progress, so that sending endhosts could also prior-
itize outgoing flows based on potential to make progress.

5 Open Problems
How should we modify the CPU scheduling policy?
So far, our focus has been on controlling and prioritizing
traffic flows in the datacenter network to meet the
demands of the application running on a set of CPU
cores. However, we could also adjust the number of
cores dedicated to each application based on information
about network congestion and demands. For example,
if the network path for the outgoing traffic generated
by an application is congested, CPU resources could be
reallocated to another application running on the same
server until the backlog drains. As another example, if the
congestion control protocol decides to give more priority
to flow A because flow B is heading to an application that
already has many queued requests, then the OS could pre-
emptively allocate more cores to flow A. These could both
potentially be achieved in Chimera by providing feedback
from the grant arbiter back to Shenango’s core arbiter.

Can we prioritize requests in the application’s critical
path? A high-level user request within a datacenter
typically results in many RPCs to different services such
as caching tiers and databases [10]. Some of these RPCs
will be on the critical path for that user request, meaning
that increasing the latency of that RPC by X would
increase the response time for the user request by X as
well. However, many of these requests will not lie on the
critical path. These requests have some associated slack,
S>0, meaning that they could take up to S microseconds
longer to complete without impacting the response time
for the high-level request at all.

Our discussion of Chimera so far has focused on an
individual network flow and its destination application.
However, a network that was able to prioritize requests
that were on the critical path of a high-level request
(S=0) over those that were not could improve end-to-end
response latencies. While some prior work has used
slack in network scheduling, it computes slack time
for each individual network flow in order to mimic a
given scheduling algorithm’s behavior [28], rather than
considering how each flow contributes to constructing
a high-level user response. Other work has proposed
using slack to prioritize server processing across different
requests [10]. Chimera may provide a framework for
using slack to determine request priority both in the

network and at the endhosts. Furthermore, in estimating
request slack, Chimera could incorporate information
about the application-level queueing that requests will
encounter once they arrive at their destination.

How should we handle congestion in the core of the
network? Because recent work has argued that most
congestion happens at the end links [15, 29], we focus
on balancing contending traffic to and from end hosts.
However, networks that are less overprovisioned may also
experience congestion at core switches; these networks
may benefit from in-network prioritization of traffic across
applications based on application busyness. For example,
if some of the traffic through a core router was for a high-
priority application but arriving at a server that was not
able to keep up with its incoming requests, we could pri-
oritize a lower-priority application running on a different
server that was able to make more progress. How can we
communicate application busyness to switches, and how
should they prioritize traffic based on this information?

6 Related Work
Many existing congestion control schemes carefully
prioritize some flows over others [4, 5, 17–21, 29], but
the objectives that they optimize for, such as shortest
flow first, flow deadlines, and fairness across flows,
only consider the network. Unlike these approaches, we
consider the behavior of the network and the endhosts
when deciding how to schedule network traffic, in
order to optimize the end-to-end application. Existing
approaches to coflow scheduling (e.g., [1, 11–13]) or to
scheduling all of the RPCs associated with a high-level
user request together (e.g., Baraat [16]), consider groups
of related flows, but similarly only focus on the network
dynamics and do not consider how they may be impacted
by queueing that occurs at endhosts.

7 Conclusion
Significant existing work has explored how to balance
demands on limited CPU and network resources. How-
ever, none of this work has considered the two resources
together. In this paper, we describe the benefits of a more
holistic approach to reducing end-to-end application
latency and increasing resource utilization. We explore
the design for such a system and propose a solution,
called Chimera, that uses receiver-driven congestion
control and the Shenango OS scheduler. While there
are still open problems to be solved, we believe the
co-design of network congestion control and OS CPU
scheduling has significant advantages over solutions that
only consider these layers in isolation.



8 Discussion
We are interested to hear feedback regarding our proposed
design. For example, are there simpler solutions that
achieve the same goal? We anticipate that this paper will
spark discussions about the potential benefits and draw-
backs of co-design, what types of workloads may or may
not benefit from co-design, and whether there are other
ways to improve end-to-end application performance
when considering the entire system holistically.

The most controversial part of the paper is the idea
that better prioritization of network traffic could allow
network links to be operated at higher utilization with
similar or improved performance. The significant
overprovisioning of network links in datacenters today
suggests that this may be the case, but a quantitative
study of real datacenter traffic would enable estimates of
exactly how much benefit the co-design we propose could
provide. This paper does not address how to optimize
for performance of high-level user requests instead of
individual RPCs, how to adapt OS scheduling to consider
network congestion, or how to handle congestion in the
core of the network (§5). Finally, Chimera focuses on
settings in which both CPU and network are contended
resources; in clusters in which one of these two resources
is in ample supply, it will not be beneficial.

References
[1] S. Agarwal, S. Rajakrishnan, A. Narayan, R. Agar-

wal, D. Shmoys, and A. Vahdat. Sincronia:
Near-Optimal Network Design for Coflows. In
SIGCOMM, 2018.

[2] M. Alizadeh, A. Greenberg, D. A. Maltz, J. Padhye,
P. Patel, B. Prabhakar, S. Sengupta, and M. Sridha-
ran. Data Center TCP (DCTCP). In SIGCOMM,
2010.

[3] M. Alizadeh, A. Kabbani, T. Edsall, B. Prabhakar,
A. Vahdat, and M. Yasuda. Less is More: Trading a
little Bandwidth for Ultra-Low Latency in the Data
Center. In NSDI, 2012.

[4] M. Alizadeh, S. Yang, M. Sharif, S. Katti, N. McK-
eown, B. Prabhakar, and S. Shenker. pFabric:
Minimal Near-Optimal Datacenter Transport. In
SIGCOMM, 2013.

[5] W. Bai, L. Chen, K. Chen, D. Han, C. Tian, and
H. Wang. Information-Agnostic Flow Scheduling
for Commodity Data Centers. In NSDI, 2015.

[6] L. A. Barroso, J. Clidaras, and U. Hölzle. The
Datacenter as a Computer: An Introduction to the

Design of Warehouse-Scale Machines. Synthesis
Lectures on Computer Architecture, 2013.

[7] L. A. Barroso and U. Hölzle. The Case for Energy-
Proportional Computing. IEEE Computer, 2007.

[8] T. Benson, A. Akella, and D. A. Maltz. Network
Traffic Characteristics of Data Centers in the Wild.
In IMC, 2010.

[9] S. Blake, D. Black, M. Carlson, E. Davies, Z. Wang,
and W. Weiss. An Architecture for Differentiated
Services. RFC 2475, 1998.

[10] M. Chow, D. Meisner, J. Flinn, D. Peek, and T. F.
Wenisch. The Mystery Machine: End-to-end
Performance Analysis of Large-scale Internet
Services. In OSDI, 2014.

[11] M. Chowdhury and I. Stoica. Coflow: A Networking
Abstraction for Cluster Applications. In HotNets,
2012.

[12] M. Chowdhury and I. Stoica. Efficient Coflow
Scheduling Without Prior Knowledge. In
SIGCOMM, 2015.

[13] M. Chowdhury, Y. Zhong, and I. Stoica. Efficient
Coflow Scheduling with Varys. In SIGCOMM,
2014.

[14] J. Dean and L. A. Barroso. The Tail at Scale.
Communications of the ACM, 2013.

[15] A. Dixit, P. Prakash, Y. C. Hu, and R. R. Kompella.
On the Impact of Packet Spraying in Data Center
Networks. In INFOCOM, 2013.

[16] F. R. Dogar, T. Karagiannis, H. Ballani, and A. Row-
stron. Decentralized Task-Aware Scheduling for
Data Center Networks. In SIGCOMM, 2014.

[17] N. Dukkipati and N. McKeown. Why Flow-
Completion Time is the Right Metric for Congestion
Control. SIGCOMM CCR, Jan. 2006.

[18] P. X. Gao, A. Narayan, G. Kumar, R. Agarwal,
S. Ratnasamy, and S. Shenker. pHost: Dis-
tributed Near-Optimal Datacenter Transport Over
Commodity Network Fabric. In CoNEXT, 2015.

[19] M. P. Grosvenor, M. Schwarzkopf, I. Gog, R. N.
Watson, A. W. Moore, S. Hand, and J. Crowcroft.
Queues Don’t Matter When You Can JUMP Them!
In NSDI, 2015.



[20] M. Handley, C. Raiciu, A. Agache, A. Voinescu,
A. W. Moore, G. Antichi, and M. Wójcik. Re-
architecting datacenter networks and stacks for low
latency and high performance. In SIGCOMM, 2017.

[21] C. Y. Hong, M. Caesar, and P. Godfrey. Finishing
Flows Quickly with Preemptive Scheduling. In
SIGCOMM, 2012.

[22] C. Iorgulescu, R. Azimi, Y. Kwon, S. Elnikety,
M. Syamala, V. R. Narasayya, H. Herodotou,
P. Tomita, A. Chen, J. Zhang, and J. Wang.
PerfIso: Performance Isolation for Commercial
Latency-Sensitive Services. In USENIX ATC, 2018.

[23] L. Jose, L. Yan, M. Alizadeh, G. Varghese, N. McK-
eown, and S. Katti. High Speed Networks Need
Proactive Congestion Control. In HotNets, 2015.

[24] J. M. Kaplan, W. Forrest, and N. Kindler. Revolu-
tionizing Data Center Energy Efficiency. Technical
report, McKinsey & Company, 2008.

[25] R. Kapoor, G. Porter, M. Tewari, G. M. Voelker,
and A. Vahdat. Chronos: Predictable Low Latency
for Data Center Applications. In SOCC, 2012.

[26] J. Leverich and C. Kozyrakis. Reconciling
High Server Utilization and Sub-millisecond
Quality-of-Service. In EuroSys, 2014.

[27] D. Lo, L. Cheng, R. Govindaraju, P. Ranganathan,
and C. Kozyrakis. Heracles: Improving Resource
Efficiency at Scale. In ISCA, 2015.

[28] R. Mittal, R. Agarwal, S. Ratnasamy, and S. Shenker.
Universal Packet Scheduling. In NSDI, 2016.

[29] B. Montazeri, Y. Li, M. Alizadeh, and J. Ousterhout.
Homa: A Receiver-Driven Low-Latency Transport
Protocol Using Network Priorities. In SIGCOMM,
2018.

[30] K. Nagaraj, D. Bharadia, H. Mao, S. Chinchali,
M. Alizadeh, and S. Katti. NUMFabric: Fast and

Flexible Bandwidth Allocation in Datacenters. In
SIGCOMM, 2016.

[31] R. Nishtala, H. Fugal, S. Grimm, M. Kwiatkowski,
H. Lee, H. C. Li, R. McElroy, M. Paleczny, D. Peek,
P. Saab, D. Stafford, T. Tung, and V. Venkataramani.
Scaling Memcache at Facebook. In NSDI, 2013.

[32] A. Ousterhout, J. Fried, J. Behrens, A. Belay, and
H. Balakrishnan. Shenango: Achieving High
CPU Efficiency for Latency-sensitive Datacenter
Workloads. In NSDI, 2019.

[33] G. Prekas, M. Primorac, A. Belay, C. Kozyrakis, and
E. Bugnion. Energy Proportionality and Workload
Consolidation for Latency-critical Applications. In
SoCC, 2015.

[34] H. Qin, Q. Li, J. Speiser, P. Kraft, and J. Ousterhout.
Arachne: Core-Aware Thread Management. In
OSDI, 2018.

[35] C. Reiss, A. Tumanov, G. R. Ganger, R. H. Katz,
and M. A. Kozuch. Heterogeneity and Dynamicity
of Clouds at Scale: Google Trace Analysis. In
SoCC, 2012.

[36] A. Roy, H. Zeng, J. Bagga, G. Porter, and A. C.
Snoeren. Inside the Social Network’s (Datacenter)
Network. In SIGCOMM, 2015.

[37] B. Vamanan, J. Hasan, and T. Vijaykumar. Deadline-
Aware Datacenter TCP (D2TCP). SIGCOMM, 2012.

[38] C. Wilson, H. Ballani, T. Karagiannis, and A. Row-
stron. Better Never than Late: Meeting Deadlines
in Datacenter Networks. In SIGCOMM, 2011.

[39] X. Zhang, E. Tune, R. Hagmann, R. Jnagal,
V. Gokhale, and J. Wilkes. CPI2: CPU performance
isolation for shared compute clusters. In EuroSys,
2013.


	Introduction
	Benefits of Codesign
	Reducing End-to-End Response Latencies
	Increasing Resource Utilization

	Design Decisions
	Receiver-Driven Congestion Control
	Potential to Make Progress as a Busyness Metric
	Measuring Potential to Make Progress

	Co-designing Congestion Control and CPU Scheduling in a Datacenter OS
	OS Design
	Policy

	Open Problems
	Related Work
	Conclusion
	Discussion

