
© IBM Corporation & Barcelona Supercomputing Center (BSC)IBM Cloud

Presented by:

AI4DL: Mining Behaviors of Deep Learning
Workloads for Resource Management
12th USENIX Workshop on Hot Topics in Cloud Computing, July 2020

Josep Lluís Berral
josep.berral@bsc.es

Josep L. Berral, Chen Wang, Alaa Youssef

Barcelona Supercomputing Center
IBM – Container Cloud Platform

© IBM Corporation & Barcelona Supercomputing Center (BSC)IBM Cloud

Context (Background & Motivation)

• Background

– Concepts:
• Cloud-native DL workloads
• Efficient resource usage

– Problem to tackle: Better workload management/provisioning
– Our Environment: Containers for Deep Learning training applications

• Motivation
– Increasing use of DL services on the Cloud

• Not just inference but training!
– DL platforms over Cloud

• Different providers
• Resources changing/increasing over time…

– Containers allow higher usage/sharing of machines
• Must manage better to avoid competition/underprivison

Learn about the workload → Make better decisions

• Resource management: “How many resources should I allocate for that job?”
• Auto-Scaling: “Increase/decrease container provisioning?”

© IBM Corporation & Barcelona Supercomputing Center (BSC)IBM Cloud

• In this work:
– Discover behavior phases from resource usage metrics → CRBM for multi-dimensional time-series
– Estimate resource demand from phase information → Statistical information
– Devise container auto-scaling policies for DL workloads → Based on phase identification + stats

• Basic Questions:

Introduction

“Can we identify common
behaviors in workloads?”

(Characterization / Phase discovery)

“Can we exploit that to
properly provision?”

(Learning phase characteristics)

© IBM Corporation & Barcelona Supercomputing Center (BSC)IBM Cloud

Previous Work

• Workload characterization and learning

– Previous work:
• Use of data mining techniques to model workloads (ALOJA project) *
• Characterization / Detection of Phases (Hi-EST project) **

– Related work:
• Focus on direct resource prediction / continuous modeling

– Problems with burstiness / variability and sudden behaviors
– Phase-modeling to detect “shapes” rather than punctual values

• Use of Time-Series techniques
– Systems with high variability are better modelled by “periods” (here with phases)
– Adaptive modeling may require constant learning. Here we try to reduce model update to extremely novel workloads

• Reactive methods
– Constant adaption of resources. Here we leverage anticipation or recognition of current trend

* “ALOJA: A Framework for Benchmarking and Predictive Analytics in Big Data Deployments” http://dx.doi.org/10.1109/TETC.2015.2496504
** “Automatic Generation of Workload Profiles using Unsupervised Learning Pipelines” http://dx.doi.org/10.1109/TNSM.2017.2786047

Modeling towards Optimal Configuration for
Hadoop/Spark

http://dx.doi.org/10.1109/TETC.2015.2496504
http://dx.doi.org/10.1109/TNSM.2017.2786047

© IBM Corporation & Barcelona Supercomputing Center (BSC)IBM Cloud

Methodology

• Characterization to DL containerized workloads

– Training and Inference process:

Workload
(Application traces &

monitoring)

Learn model to discover
phases on resource

demand
Get statistics per phase

Learn phase sequences

Phase model & Statistics

Execution Tree or Graph

New application
running

Learning

Training Dataset

New Data

Detect phase and
allocate resources

Phase detection
model

Runtime

Potential phase forecasting

© IBM Corporation & Barcelona Supercomputing Center (BSC)IBM Cloud

1. Phase Discovery and Detection
• Discover different behaviors on resource demand
• Build a model capable to identify those on-line
• Keep the behavior statistics for next provisioning

– Example:

Phase Discovery and Detection

Collected Information per phase:

• Green Phase
• Warm up / Low resource demand

• Blue phase
• Low memory / Low CPU

• Red Phase
• CPU w. variation / High Memory

• Gray Phase
• High CPU & Mem demand

© IBM Corporation & Barcelona Supercomputing Center (BSC)IBM Cloud

Phase Discovery and Detection

– Conditional Restricted Boltzmann Machines (CRBM)

– Clustering methods

– Characterization through Phases

Understand workloads

Retrieve statistics for phaseIdentification of ”behavior
pattern” (phase)

Encoding of current
footprint into “hash code”

Ex
ec

ut
io

n

Ti
m

e

Resources

Sl
id

in
g

w
in

do
w

co
de Clustering

Hyper-params
(k = num. phases)

Ph
as

e
ID

Phase
statistics

Hyper-params (num.
neurons, learning rate…)

CR
BM

Forecasting
Model

Tree/graph of Exec. Phases
(trained from executions)

• Find similar “codes” → similar “behaviors along time”
• E.g. k-means method (“k” with best cluster cohesion, SSW)

• Multi-dimensional Time-series “encoder”
• “Code” shares similarity among similar inputs

• Each phase has characteristics “mean”, “st.dev”, “min/max”, …
• Each workload is represented by a sequence of phases

© IBM Corporation & Barcelona Supercomputing Center (BSC)IBM Cloud

Modeling Executions as Phase-series

2. Modeling Executions as Phase-series
• Prototypes (or common workloads by phase-sequence)
• Tree/Graph probabilistic representation

– Executions by similarity. Example:

© IBM Corporation & Barcelona Supercomputing Center (BSC)IBM Cloud

Modeling Executions as Phase-series

• Prototype representation
– Probabilistic tree form

• Jump from phase to phase
• Considering phase lengths in “bins”

Describe sequences of phases by “tree”.

Observations

- Spawn of tree
- Variability in our workload
• Reduced set of standard executions

- Branches with high probability
• Consistency on executions
• Our prototypes

© IBM Corporation & Barcelona Supercomputing Center (BSC)IBM Cloud

Modeling Executions as Phase-series

• Prototype representation

– Graph representation
• E.g. State-graph or Markov Chain

– Solve problems found in trees:
• Alternate sequences of phases
• Different lengths in different executions
• “Convergence” in variations in middle-execution

Phase2

Phase5

Phase1

Phase2

Phase2

Phase5

Phase1

Phase2

“i” times

“j” times

Phase2

Phase5

Phase1

Phase2

Phase4

Phase2

Phase5 Phase1

Phase4

© IBM Corporation & Barcelona Supercomputing Center (BSC)IBM Cloud

Resource Provisioning Policies

3. Resource Provisioning Policies
• Dynamic vs. Adaptive vs. Phase-based policies

– Types of Policies:

• Dynamic Policies: “We know a priori the load for next time-window”
• Adaptive Policies: “We observe what happened last time-window, use that same information”
• Phase-based Policies: “From last time-window, we detect the current phase and its expected stats”

– Statistic Values

• Using “mean + 2 standard deviation”: Provide the container the expected 95th percentile ceiling, to avoid outliers
• Using “maximum observed”: Provide the container the maximum observed

– Not in phase-based policy, to avoid carrying the “global maximum observed per phase”

• Here we can consider a tolerance margin between 0-10% for any policy

© IBM Corporation & Barcelona Supercomputing Center (BSC)IBM Cloud

Experiments

• Evaluation benchmark:
– IBM DLaaS services, with +5500 containers

• Set-Up
– Traces for DLaaS (Deep Learning as a Service) Kubernetes containers from IBM Watson ML services
– Telemetry: recording of CPU & Memory demands and usage each 15 seconds.

– Dataset division
• Training dataset: Create and validate models, CRBMs, clustering, … → Handy set for experimentation (5000 execs)
• Testing dataset: Test the method with new data → Large data set (550 execs)

• Training Environment
– CRBM package (R-cran + C + OpenBlas + GSL) + k-Means from R-base
– Code also available in Python, open source in https://github.com/HiEST/AI4DL

https://github.com/HiEST/AI4DL

© IBM Corporation & Barcelona Supercomputing Center (BSC)IBM Cloud

Experiments: Phase Behavior

• Identification of behaviors for each phase
– Phase discovery + prototype discovery (CPU and Memory)

• Variability and behavior for each detected phase
• Discovered 6 major prototypes (here the 3 principal ones) X-axis: TIME (15 sec. PHASES)

Y-axis: CPU & MEM USAGE

© IBM Corporation & Barcelona Supercomputing Center (BSC)IBM Cloud

Experiments

• Representation of Phase
sequences

– Graph & Tree
• Tree: Observed 6 prototypes

(branches) concentrating ~90% of
executions

• Also we observe their variations

– Phase changes
• Some phases are stable (easy to

follow)
• Others are clearly “temporary” phases

(constant switch between phases)

© IBM Corporation & Barcelona Supercomputing Center (BSC)IBM Cloud

Experiments

• Phase-based resource provisioning
– Re-scheduling window

• 10 minutes (here by system policy)

– Evaluation dataset:
• Consumption tested over the full dataset of +550

executions longer than 10 minutes

– Consumption close to “a-priori” policies
• Improvement over adaptive policies
• Saving up to 30% on CPU/Memory consumption in

total

– Quality of service
• Fulfillment of 95% of CPU/Memory demand

– Allowing over/under-provisioning margin between a -10% /
+10%

• No degradation compared to “prev.step” policy:
– Same amount of OOM/CPU Throttling scenarios
– 2 out of this 5% unfulfilled are bursts or “outliers”

© IBM Corporation & Barcelona Supercomputing Center (BSC)IBM Cloud

Conclusions

• Approach & Contribution

– Discover behavior phases from resource usage metrics
• Use of CRBM encoding + Clustering method

– Estimate resource demand from phase information
• Study diversity of behaviors on resources demand

– Devise container auto-scaling policies for DL workloads
• Resource allocation strategy according to specific statistics

• Codification of DLaaS applications into “behaviors” (i.e. phases)
• Finding prototypes and phase-sequences (graph/tree representations)

• Knowledge from applications
• Specific resource demands in determined execution moments

• Leverage a-priori information from identified phases
• Better heuristic to know in advance resource demands

© IBM Corporation & Barcelona Supercomputing Center (BSC)IBM Cloud

Conclusions

• Discussion:
– Different bottlenecks in Workloads

• E.g. network and storage
– Sophistication of policies

• How to leverage phase information, or add new info
– Forecasting Phases

• Additional information for graph transitions
• Time in the current phase towards observing a change?
• MX with N-memory to avoid Loss of prototype information?

– Updatability of models!
• Do we choose models easy to adapt?

• Future Work
– Phase forecasting in workloads

• Refine prediction of future phases
– Refine resource allocations strategy per phase

• E.g. advance resource scheduling from a-priori phase changes
• E.g. slow reduction of provisioning to prevent hysteresis and reduce re-provision rounds

– Containerized services for ML inference
• Also other kinds of workload!

© IBM Corporation & Barcelona Supercomputing Center (BSC)IBM Cloud

Presented by:

Thank you for your attention
Any questions?

Josep Lluís Berral
josep.berral@bsc.es

