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Background

◼ Stream processing has become a major region  
⚫ By 2025, nearly 30 percent of the data will be real-time [1]

⚫ One organization will have many stream applications for their business

◼ Resource Inefficiency of the traditional big data stream processing 
⚫ Users must allocate resources according to traffic peak

⚫ Once users creates a cluster, the total amount of resources 

(e.g., CPU cores) cannot be modified
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Timeline of the CPU usage. Gray area shows unused 

CPU resources.

[1] David Reinsel – John Gantz – John Rydning, "The Digitization of the World From Edge to Core", Nov. 2018, 

Goal: Improvement of resource efficiency in an environment 

where multiple applications with different latency 

requirements exist
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Challenges

Improving resource efficiency of the stream platform is difficult because

◼ Different latency requirements 
⚫ Stream applications have various latency SLAs that must be observed

◼ Unexpected traffic patterns 
⚫ Input data rate often varies suddenly 

⚫ Sometimes, users must allocate extra resources to cope with it

◼ Optimization for multi-applications environment 
⚫ Improving the resource efficiency of every cluster is needed to minimize the platform cost 

⚫ Prior studies did not address the problem
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Proposal: Multi-application platform

◼ Accommodate multiple applications in one Spark cluster 
⚫ This design enables finest granularity resource management

⚫ Resource reallocation can be completed with lower latency

◼ Latency-aware task scheduler 
⚫ Determine the priority of each application to observe applications' latency SLAs
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Proposal: Architecture Overview

◼ Scheduling pools
⚫ Applications are assigned to dedicated scheduling pools 

⚫ Scheduled in the task level granularity

◼ Executors 
⚫ Just runs assigned tasks (do not care what applications are)

◼ API
⚫ Fully compatible with Apache Spark
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Proposal: Latency-aware task scheduler

◼ Scheduler designs
⚫ White box: Estimating the necessary resources 

• Difficult to apply to stream applications because data rate varies in time

⚫ Black box: Using only metrics (we chose this design)

• Monitor the latency and manipulate resource allocation

◼ How Black box design works
⚫ Utilized existing Spark task-level scheduler 

1, resourceOffer is issued when an Executor 

has available resources

2, Task scheduler calculates priorities of the 

each task in each application

3, The scheduler allocates resources according

to the priorities
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Proposal: Latency-aware task scheduler

Ps Priority of Jobs

Tc Current Time

Ts Submission time of Jobs

Ls Latency SLA of Jobs

◼ Implemented 3 algorithms
⚫ Earliest Deadline First (EDF), Priority based EDF, Process time Estimation

⚫ Goal: Determine the priority of the tasks of each application to observe SLAs

◼ EDF
1,  Scheduler calculates 𝑃𝑠 for each Job of each application

• 𝑃𝑠 = 𝑇𝑐 − 𝑇𝑠 − 𝐿𝑠
• Equal to the negation of the remaining time

• Larger value has higher priority

2,  Find the biggest 𝑃𝑠 in each pool as the representative value

3,  Resources are allocated in order of the pool with the largest representative 
value

• A resource allocation unit is TaskSet, which is a group of tasks and is a 
component of the Job 
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Proposal: Latency-aware task scheduler

Ps Priority of Jobs

Tc Current Time

Ts Submission time of Jobs

Ls Latency SLA of Jobs

◼ Priority based EDF (PT)
⚫ Added potential priority 𝑝𝑠 of the application 𝑠

• e.g., anomaly detection may have higher priority than aggregation for 
visualization

• The equation is modified as follows

• 𝑃𝑠 =
𝑇𝑐− 𝑇𝑠

𝐿𝑠
𝑝𝑠

◼ Processing time estimation (EST)

⚫ Added estimated job execution time  𝐹 𝐼 𝑠, 𝑇𝑠

• F() is an estimation function, and 𝐼 𝑠, 𝑇𝑠 is the input data rate

• In this paper, F() is defined through the measurement of the actual latency   

• The equation is modified as follows

• 𝑃𝑠 =
𝑇𝑐− 𝑇𝑠+𝐹 𝐼 𝑠,𝑇𝑠

𝐿𝑠
𝑝𝑠

Submission Deadline

Ts Ts + LsTc

Remaining Time

Current Time
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Evaluation

◼ Testbed Environment
⚫ 5 servers Hadoop cluster with YARN (Specifications are shown in the table)

⚫ Kafka as the data source and sink

◼ Applications
⚫ 3 types of connected car applications (Parsing, Searching, and Windowing)

⚫ 3 copies of each type application (total 9 applications)

◼ Comparison with
⚫ Compared EDF

⚫ Priority based EDF

⚫ Process time estimation (EST)

⚫ Default Spark (run applications separately)

CPU Xeon E5-2620v4 (8Core) x 2

Memory 128 GB DDR4

Storage 15 TB of HDD, 128 GB of SSD

Network 10 Gb

OS CentOS 6.9
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Evaluation

Required minimum number of CPU cores to 

fulfil applications‘ SLAs

Same performance with 64% 

(25/39) CPU cores
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Evaluation
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Conclusion

◼ Summary

⚫ Goal: resource efficient stream processing 

⚫ Accommodating multiple applications

• Scheduling in the same cluster enables quick reallocation and fine-grained control

⚫ Latency-aware schedulers

• Task-level granularity schedulers  

◼ Future Work 

⚫ Tradeoff between resource efficiency and isolation

⚫ Consideration on other resources (e.g., memory)
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Thank you!

Contact : yu-morisawa@kddi-research.jp

masaki-suzuki@kddi-research.jp

kitahara@kddi-research.jp


