
Copyright(C) 2020 KDDI Research, Inc. All Rights Reserved.

Resource Efficient Stream Processing Platform with
Latency-Aware Scheduling Algorithms

Yuta Morisawa, Masaki Suzuki, Takeshi Kitahara

KDDI Research, Inc.

Copyright(C) 2020 KDDI Research, Inc. All Rights Reserved. 2

Background

◼ Stream processing has become a major region
⚫ By 2025, nearly 30 percent of the data will be real-time [1]

⚫ One organization will have many stream applications for their business

◼ Resource Inefficiency of the traditional big data stream processing
⚫ Users must allocate resources according to traffic peak

⚫ Once users creates a cluster, the total amount of resources

(e.g., CPU cores) cannot be modified

0

50

100

C
P

U

Timeline of the CPU usage. Gray area shows unused

CPU resources.

[1] David Reinsel – John Gantz – John Rydning, "The Digitization of the World From Edge to Core", Nov. 2018,

Goal: Improvement of resource efficiency in an environment

where multiple applications with different latency

requirements exist

Copyright(C) 2020 KDDI Research, Inc. All Rights Reserved. 3

Challenges

Improving resource efficiency of the stream platform is difficult because

◼ Different latency requirements
⚫ Stream applications have various latency SLAs that must be observed

◼ Unexpected traffic patterns
⚫ Input data rate often varies suddenly

⚫ Sometimes, users must allocate extra resources to cope with it

◼ Optimization for multi-applications environment
⚫ Improving the resource efficiency of every cluster is needed to minimize the platform cost

⚫ Prior studies did not address the problem

Copyright(C) 2020 KDDI Research, Inc. All Rights Reserved. 4

Proposal: Multi-application platform

◼ Accommodate multiple applications in one Spark cluster
⚫ This design enables finest granularity resource management

⚫ Resource reallocation can be completed with lower latency

◼ Latency-aware task scheduler
⚫ Determine the priority of each application to observe applications' latency SLAs

App App App App

Infra

App App App App

Infra

Copyright(C) 2020 KDDI Research, Inc. All Rights Reserved. 5

Proposal: Architecture Overview

◼ Scheduling pools
⚫ Applications are assigned to dedicated scheduling pools

⚫ Scheduled in the task level granularity

◼ Executors
⚫ Just runs assigned tasks (do not care what applications are)

◼ API
⚫ Fully compatible with Apache Spark

Spark Driver

Scheduling Pools

Allocating

A1

B1

C1

A2

B2

C2

…

…

…

Task

scheduler

TaskSetExecutor

Executor

Executor

A1

B1

A2 C1

Executor B2 C2

Copyright(C) 2020 KDDI Research, Inc. All Rights Reserved. 6

Proposal: Latency-aware task scheduler

◼ Scheduler designs
⚫ White box: Estimating the necessary resources

• Difficult to apply to stream applications because data rate varies in time

⚫ Black box: Using only metrics (we chose this design)

• Monitor the latency and manipulate resource allocation

◼ How Black box design works
⚫ Utilized existing Spark task-level scheduler

1, resourceOffer is issued when an Executor

has available resources

2, Task scheduler calculates priorities of the

each task in each application

3, The scheduler allocates resources according

to the priorities

Spark Driver

Scheduling Pools

A1

B1

C1

A2

B2

C2

…

…

…

Task

scheduler

Executor

Executor

Executor

Executor

(1) send resourceOffer

(2) determine

priority

(3) Allocate

resources

Copyright(C) 2020 KDDI Research, Inc. All Rights Reserved. 7

Proposal: Latency-aware task scheduler

Ps Priority of Jobs

Tc Current Time

Ts Submission time of Jobs

Ls Latency SLA of Jobs

◼ Implemented 3 algorithms
⚫ Earliest Deadline First (EDF), Priority based EDF, Process time Estimation

⚫ Goal: Determine the priority of the tasks of each application to observe SLAs

◼ EDF
1, Scheduler calculates 𝑃𝑠 for each Job of each application

• 𝑃𝑠 = 𝑇𝑐 − 𝑇𝑠 − 𝐿𝑠
• Equal to the negation of the remaining time

• Larger value has higher priority

2, Find the biggest 𝑃𝑠 in each pool as the representative value

3, Resources are allocated in order of the pool with the largest representative
value

• A resource allocation unit is TaskSet, which is a group of tasks and is a
component of the Job

Submission Deadline

Ts Ts + LsTc

Remaining Time

Current Time

Job

TaskSet TaskSet

Task

Copyright(C) 2020 KDDI Research, Inc. All Rights Reserved. 8

Proposal: Latency-aware task scheduler

Ps Priority of Jobs

Tc Current Time

Ts Submission time of Jobs

Ls Latency SLA of Jobs

◼ Priority based EDF (PT)
⚫ Added potential priority 𝑝𝑠 of the application 𝑠

• e.g., anomaly detection may have higher priority than aggregation for
visualization

• The equation is modified as follows

• 𝑃𝑠 =
𝑇𝑐− 𝑇𝑠

𝐿𝑠
𝑝𝑠

◼ Processing time estimation (EST)

⚫ Added estimated job execution time 𝐹 𝐼 𝑠, 𝑇𝑠

• F() is an estimation function, and 𝐼 𝑠, 𝑇𝑠 is the input data rate

• In this paper, F() is defined through the measurement of the actual latency

• The equation is modified as follows

• 𝑃𝑠 =
𝑇𝑐− 𝑇𝑠+𝐹 𝐼 𝑠,𝑇𝑠

𝐿𝑠
𝑝𝑠

Submission Deadline

Ts Ts + LsTc

Remaining Time

Current Time

Copyright(C) 2020 KDDI Research, Inc. All Rights Reserved. 9

Evaluation

◼ Testbed Environment
⚫ 5 servers Hadoop cluster with YARN (Specifications are shown in the table)

⚫ Kafka as the data source and sink

◼ Applications
⚫ 3 types of connected car applications (Parsing, Searching, and Windowing)

⚫ 3 copies of each type application (total 9 applications)

◼ Comparison with
⚫ Compared EDF

⚫ Priority based EDF

⚫ Process time estimation (EST)

⚫ Default Spark (run applications separately)

CPU Xeon E5-2620v4 (8Core) x 2

Memory 128 GB DDR4

Storage 15 TB of HDD, 128 GB of SSD

Network 10 Gb

OS CentOS 6.9

Copyright(C) 2020 KDDI Research, Inc. All Rights Reserved. 10

Evaluation

Required minimum number of CPU cores to

fulfil applications‘ SLAs

Same performance with 64%

(25/39) CPU cores

0

5

10

15

20

25

30

Parsing Searching Windowing all

Separating Proposal

0

0.5

1

1.5

2

2.5

3

3.5

Separating EDF FAIR FIFO EST PT

C
P

U
 T

im
e
 p

e
r

co
re

(1
0

1
1

 n
s

)

CPU time per core during experiment

2x the utilization

Copyright(C) 2020 KDDI Research, Inc. All Rights Reserved. 11

Evaluation

0

0.5

1

1.5

2

2.5

mean max mean max mean max

Parsing Searching Windowing

N
o
rm

a
li

z
e
d

 L
a

te
n

cy

EDF FAIR FIFO EST PT

The latency normalized by the latency of the

default Spark

Achieved smaller latency

1

10

100

1000

10000

100000

1000000

EDF FIFO PT EST FAIR

R
e
co

rd
s

(1
0

3
)

The number of records violated latency SLAs

when the platform was overloaded

1/1000 SLA violation

Copyright(C) 2020 KDDI Research, Inc. All Rights Reserved. 12

Conclusion

◼ Summary

⚫ Goal: resource efficient stream processing

⚫ Accommodating multiple applications

• Scheduling in the same cluster enables quick reallocation and fine-grained control

⚫ Latency-aware schedulers

• Task-level granularity schedulers

◼ Future Work

⚫ Tradeoff between resource efficiency and isolation

⚫ Consideration on other resources (e.g., memory)

Copyright(C) 2020 KDDI Research, Inc. All Rights Reserved. 13

Thank you!

Contact : yu-morisawa@kddi-research.jp

masaki-suzuki@kddi-research.jp

kitahara@kddi-research.jp

