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Abstract
The more we know about the resource usage patterns of work-
loads, the better we can allocate resources. Here we present a
methodology to discover resource usage behaviors of contain-
ers training Deep Learning (DL) models. From monitoring,
we can observe repeating patterns and similitude of resource
usage among containers training different DL models. The
repeating patterns observed can be leveraged by the scheduler
or the resource autoscaler to reduce resource fragmentation
and overall resource utilization in a dedicated DL cluster.
Specifically, our approach combines Conditional Restricted
Boltzmann Machines (CRBMs) and clustering techniques to
discover common sequences of behaviors (phases) of contain-
ers running the DL training workloads in clusters providing
IBM Deep Learning Services. By studying the resource us-
age pattern at each phase and the typical sequences of phases
among different containers, we discover a reduced set of pro-
totypical executions representing the majority of executions.
We use statistical information from each phase to refine re-
source provisioning by dynamically tuning the amount of
resource each container requires at each phase. Evaluation of
our method shows that by leveraging typical resource usage
patterns, we can auto-scale containers to reduce CPU and
Memory allocation by 30% compared to statistics based reac-
tive policies, which is close to having a-priori knowledge of
resource usage while fulfilling resource demand over 95% of
the time.

1 Introduction

Deep Learning (DL) platforms on the Cloud, e.g., IBM’s
Deep Learning as a Service (DLaaS) [8] [12], Google Cloud
AI Platform [1] or Kubeflow [2], deserve special attention
when managing resources. Classic high-performance comput-
ing environments tend to provision dedicated machines for
each particular training job. However, cloud-native machine
learning services can have multiple containers co-located on
the same machine, and each alternates strides of data fetch-
ing and data processing. For this reason, allocating a fixed

amount of resources for each container may result in resource
over-provisioning, while dynamically provisioning resources
for each container requires proactive policies to avoid under-
provisioning and Quality of Service (QoS) degradation.

Proper auto-scaling of containers requires understanding
the dynamics of resource usage. As every container can run
training for a different model, there is no universal policy
that applies to all. Also, complex and shifting behaviors are
hard to model with classical time-series algorithms, which
are not suitable for fitting sudden spikes or random bursti-
ness. However, as individual behaviors become frequent and
repetitive, we can learn and leverage such information to de-
velop auto-scaling policies. Thus, we propose techniques for
sophisticated time-series behavior modeling, like CRBMs.

Identifying the behavioral patterns of an application is chal-
lenging. Even more so when considering the lack of prior
knowledge of the complete set of unique patterns to be found.
Previous techniques [17] require domain knowledge to la-
bel and identify different parts of an application execution,
e.g., introduced by the programmer, or map/reduce phases
in Spark applications, which are not viable in more general
workload, such as deep learning. Besides, the DL training
workload includes routines from data loading to computation,
showing random spikes in memory and CPU usage. Existing
time-series/phase characterization methods (such as ARIMA
and ARMA) are not suitable for such random burstiness and
sudden changes. Finally, to predict phases to empower preven-
tive auto-scaling, we need a model characterizing the transi-
tions of phases in a DL training session. Through discovering
phases from monitoring metrics, we can capture the resource
demands that dynamically change over time without the need
to be intrusive to the user’s ML models.

In this paper, we propose to use a Conditional Restricted
Boltzmann Machine (CRBM) to encode the multi-variant
time series of resource usage, where we further apply an un-
supervised clustering method to discover phases and their
behaviors automatically. CRBMs are capable of learning in-
tricate patterns, such as phases with random burstiness and
spikes, as observed in DL workloads. Thus, CRBMs based



phase detection can discover such patterns and inspire more
accurate resource provisioning accordingly. To explore the
viability of a phase prediction based preventive auto-scaling
policy, we attempt to use the tree and the graph to model
the transition of phases based on all phase sequences learned
from our containers.

To summarize our contribution, we build a mechanism to
discover behavioral phases from resource usage metrics, to es-
timate resource demand, and to use such information to devise
container auto-scaling policies for deep learning workloads.
We evaluated this approach with more than 5500 containers
running training jobs in clusters providing IBM DLaaS ser-
vice. When comparing to naive reactive policies, we show
that using our phase detection can reduce over-allocation by
up to 30% for total CPU and memory allocation, given a 5%
tolerance range. In comparison, both approaches have similar
under-provisioning of less than 5% of the time. We also show
that the executions of DL training jobs exhibit a set of typi-
cal behaviors, where a graph model summarizing the phase
transitions coincides with the real stage changes in the DL
training process. When comparing the graph model to the
tree, we observe that though a tree representation produces
“prototypes” (standard execution behaviors), a graph model
can embed transition probabilities.

2 Background and Related Work
Previous work on workload characterization [5–7] focuses
on using time-series ML techniques to forecast application
resource demands. They generally focus on a particular appli-
cation to select forecasting models or to tune the re-scaling
time window. [16] is the first to present an approach using
both CRBMs and Hidden Markov Models for discovering
Spark application profiles. We adopt this approach and ex-
tend it, to reduce resource over-provisioning for DL training
jobs. Other works [13] focus on modeling workloads to dis-
cover patterns and classify applications, so heterogeneous
workloads can be co-located to achieve higher resource uti-
lization. Such works usually use HMMs to identify patterns
but require knowing a-priori, namely the number of regimes,
so they are not generalizable. More straightforward methods
like clustering achieve the same results, also with CRBM
generalization.

General workload modeling is a known challenge. Existing
approaches usually assume that the arrival of jobs determines
the resource demand. [9, 18, 21] focus on Cloud services
and how to manage and scale service resource allocation
according to the arrival of jobs or clients. Those predictors use
ARMA and ARIMA models, well-known for capturing time-
dependent structures, including trends and seasonality. Yet
they are not able to discover phases through the whole training
session of DL models, nor can they capture phases with some
randomness in spikes and burstiness. Works like [14] use ML
ensembles to forecast workload on job arrivals by memorizing
past job runs. These methods cannot be applied to predict the

dynamic usage of a particular job.
For DL training jobs, the critical resources needed include

CPU, memory, networking, or GPUs. Our modeling is agnos-
tic of the resource type and can be applied as far as container
resource usages are monitored as time series. We here only
focus on CPU and memory because auto-scaling these re-
sources are practically achievable for containers. Dynamically
allocating GPU among containers by nature is hard, so we
leave the GPU usage analysis as a future challenge. Network-
ing resource is critical for distributed DL training [11, 15],
thus various topology-aware policies are applied to optimize
placement of training tasks. However, while existing profiling
methods consider manually labeling their code or identifying
parts of such DL architectures, a Cloud user may be reluctant
to share information about their DL models or specific con-
figurations. Also, as different training sessions use different
types of data and models, they are too varied across users and
executions. Therefore, we consider a black-box approach.

Major cloud service providers offer Machine Learning
(ML) platforms as cloud services to train, debug, store, and
deploy a diverse set of ML models at scale. These include
IBM Watson Machine Learning (WML) [10], Amazon Sage-
maker [19], Microsoft Azure Machine Learning [4], and
Google Cloud AI Platform [1]. Cloud computing giants also
contribute their solutions for cloud-native machine learn-
ing to open source. These efforts include Kubeflow [2] and
FfDL [12]. From publicly available documentation about
these platforms, we can see that the majority of the above
platforms target a cloud-native environment1, where their
model training workloads are containerized. Users only need
to pay for the actual usage for running containers, namely
vcpu-hours (for a given memory size). However, allocating
resources for containers according to their peak usage for all
ML training jobs can drain allocatable resources in a cluster
quickly. Namely, the actual cluster utilization may be low
while other training jobs are waiting in queues. Therefore,
understanding the resource usage behavior of ML workloads
can help auto-scale containers dynamically and improve the
overall resource efficiency.

3 Methodology
The proposed methodology collects container resource us-
age (i.e., CPU and memory consumption), creates a model
encoding these metrics to capture dynamics over the time
dimension (behavior), clusters similar behaviors as unique
phases, reduces the whole execution to a sequence of phases,
and then estimates the resource requests per each phase. Fig-
ure 1 depicts the framework of AI4DL.

3.1 Phase Discovery and Detection
The resource usage metrics from the DL training contain-
ers, including CPU and memory, are firstly encoded using
a Conditional Restricted Boltzmann Machine (CRBM) [20].

1Azure Machine Learning targets a dedicated computing environment [4].



Figure 1: Framework of AI4DL
CRBM is a type of Neural Network, capable of encoding
multi-dimensional data into a vector of features, which is
ideal for analyzing time-series patterns. Different from hash-
ing functions, CRBMs can produce similar outputs from sim-
ilar inputs, a property we are exploiting next. CRBM takes
container metrics in a sliding time window as input, namely
metric at time t plus the history t −1 . . .d, where d represents
the delay (i.e., a hyper-parameter denoting the size of the
time window). The output taken from the CRBM is the encod-
ing from its hidden layer, a vector of h features encoding the
input values. Such a vector embeds the instant metrics plus
their previous d history steps. Thus, the CRBM can identify
behaviors in the time window of d +1 steps, where either d
(through re-training) or the aggregation time interval of sam-
ples is adjustable for long or short training sessions. CRBM at
each time step of 1 . . .T produces a (T −d) encoding vector
of size h, capturing the behavior of the resource usage at each
time t.

As CRBM encodes similar behaviors into similar codes,
proximity-based clustering methods, like k-means, can be
used to group similar behaviors. As the total number of dif-
ferent phases is unknown a-priori, we need a prior analysis to
determine k as a hyper-parameter [16]. Via passing real-time
container metrics through the encoding and the clustering, the
phases can be discovered at each time step. Given the metrics
from a full execution of a container, we produce the sequence
of phases, retrieve the statistics and the type of behavior for
each phase, and leverage it to allocate resources. Notice that,
as CRBM embeds time in the encoding vector, a phase behav-
ior does not only describe the magnitude of CPU and memory
usage but also their dynamics in the time window. Figure 2
shows the pipeline of phase discovering.

Figure 2: Pipeline of the Characterization Mechanism. Mod-
els (CRBM, k-means, and stats) are trained sequentially. For
phase discovery, metrics are passed through the pipeline to
identify the phase and produce the stats.

3.2 Resource Provisioning Policies
To show the benefit of our phase-detection method in resource
allocation, we compare the following policies.

Dynamic policies allocate resources, knowing a-priori the
consumption of the application given a specific time window.
The options considered are maximum (maximum observed
resources for that period) and stat.rules (mean + 2 standard
deviations of observed resources for that period).

Adaptive policies allocate resources with the observed a-
posteriori demand given the previous time window. Each time
window is provided resources according to the actual usage in
the previous one, considering both maximum and stat.rules.
With sudden changes, such a reactive approach may result in a
lag in provisioning, leading to a temporary Quality of Service
degradation or an out of memory error to kill the container.

Phase-based policies allocate resources by discovering
the current phase of the execution and using current phase
statistics to allocate resources. Here we consider stats.rules
because maximum captures the maximum deviations across
all containers.

3.3 Modeling Executions as Phase-series
A full life cycle of a container can be encoded as a sequence
of phases, representing behavior changes in resource usage.
Containers running similar workloads display similar behav-
iors (e.g., first phases are corresponding to Memory.load, next
phases to Intensive.CPU , last phases to Memory.unload). A
good representation of phase sequences can indicate what
types of behaviors the containers are undergoing, how much
resources they need, and in which order they consume re-
sources.

The resource usage of different containers may show simi-
lar patterns in their phase sequences. By modeling the phase
sequence in a tree or graph, we can observe more intuitively
on how variant these phase sequences are across different
containers. The wider and more balanced the tree is, the
more types of behavioral changes are there in containers. The
branches that represent the majority of the phase sequences
are common execution flows (“prototypes”). Also, by rep-
resenting the phase-sequences as a graph, we can read the
probabilities of transitioning from phase to phase. Thus the
graph helps to infer the sequence of phases. E.g., the auto-
scaler can proactively estimate and provision for the bursty
future resource demands before the actual usage peaks. Even
though we are not predicting future phases in this work, we are
observing in our experiments that the variety in our 5000 DL
applications is reduced to around 6 prototypical sequences.

4 Experimental Results

4.1 Phase discovery and detection
First, we evaluate phase discovery as follows. We collect
resource usage metrics from containers training DL models
in clusters that provide the IBM DLaaS service for internal



researchers. We use 5000 container traces for training, and
500 for testing and the modeling process.

Training the CRBMs Encoder: Training a CRBM model
is similar to training a regular Neural Network, where the
architecture is pre-defined, as well as the number of hidden
units. In our time series encoding problem, we also need to
specify the window size for the delay, namely the t1...d time
window for metric analysis. Besides, the hyper-parameters
(i.e., the number of training epochs and the learning rate), the
training procedure can be tuned to obtain a more accurate
model. The loss function to train the CRBM model is the
Square Sum of the Error on data reconstruction (how well
data is encoded). We use this loss to perform a search for
CRBM hyper-parameters on the DLaaS container resource
usage traces. We choose the delay to include the previous
delay = 3 metric samples. Therefore, if the sampling period
for the resource usage metrics is per 15 seconds, the time
window to detect phases is one minute, including the current
metric data and 3 data points sampled just before it. By tuning
hyper-parameters, we find best results (minimum loss) with
learning rate lr = 10−3, 2000 epochs and 10 hidden units.

Clustering Behaviors: Due to the property of CRBMs
that the similarity between inputs and encodings holds, we
proceed to cluster the resource usage behaviors in sliding time
windows (of 15 seconds + 45 seconds of history). Thus the
similitude on resource usage patterns can be learned. Here we
use the k-means method just for simplicity, as it only requires
tuning the number of clusters, k. We proceeded to search for
the best k for the lowest Square Sum Within clusters [3],
finding that the best k without potential over-fitting is 5.

Phase Information: From generating phase sequences for
each execution, we observe trends and different variability in
resource usage per discovered phase. Figure 3 displays the
principal behaviors of each detected phase and the three most
common prototype sequences found. There are typically 5
phases. 1) A phase of warm-up, denoted as phase 3. 2) A
phase of memory loading and unloading, denoted as phase
2. 3) A phase for intensive memory but variable CPU usage,
denoted as phase 5. 4) A phase for stable use of CPU and
memory (phase 1). 5) A phase of gradual increasing memory
usage with CPU spikes (phase 4). Notice that phases are
identified not only by the current resource usage but with
several preceding history data in the time window, which is
determined by the delay. For example, in the third prototype,
we can see that it takes two steps to stabilize from phase 5
(CPU variation) to phase 1 (CPU stabilization).

From phase statistics, we can see how the resource usage
in the warm-up (phase 3) has high variability, as the mecha-
nism can not identify the pattern until having enough metric
data (CRBM delay). The difference between CPU in phases 1
and 5 is high vs. low variance. Phase 4 displays a high varia-
tion in memory and appears to have an increasing trend for
memory usage. Via the tree and graph representation of phase
sequences in the following sub-section, we show how these

phase representations coincide with the stages of DL model
training. However, we can obtain those in an unsupervised
way.

4.2 Phase-based Resource Allocation
When applying the produced phases to resource provisioning,
we expect to use the statistics (mean and variance) of usage in
the phase to allocate resources for the next auto-scaling cycle.
We choose an auto-scaling cycle of 10 minutes, which can
be configured by cluster administrators. The previously de-
scribed policies predict how much CPU and Memory should
request. Figure 4 compares the actual resource usage with var-
ious auto-scaling policies that predict the resource allocations
for the testing data-set of DLaaS containers.

The ground.truth indicates the actual resource usage of all
containers. Policies current.step.max and current.step.rules
(maximum and stat.rules for current.step) show two resource
allocation policies we would apply if we, as an oracle, knew
beforehand the resource usage of the forthcoming period.
current.step.max is provisioning according to the maximum
future usage while current.step.rules is provisioning the av-
erage plus double standard deviation. The policies are imprac-
tical as they depend on a-priori knowledge, but they show
the best possible policy that can ever achieve. The rescal-
ing period is every 10 minutes. Policies prev.step.max and
prev.step.rules use the information observed in the previous
cycle (a-posteriori knowledge) to provision the next cycle, ex-
pecting the current pattern to continue in the next auto-scaling
cycle. Finally, phase.rule shows our methodology that detects
the phase right before the provisioning cycle and obtains the
information of resource usage in that phase, then provisions
resources accordingly in the next cycle.

4.3 Behavior Predictability
Once we obtain phase sequences for different containers, we
proceed to create their aggregated execution tree and proba-
bilistic graph. When considering the tree modeling, we find
that the variations of phase sequences in a smaller number
of containers greatly widen the tree. However, ∼ 90% of the
executions fall into one or two branches. By packing the sim-
ilar sequences of phases, and repeating alternation between
phases, the tree is reduced to 20−25 possible paths, where
6 of them represent ∼ 90% of the executions, namely the
discovered prototypes. To represent the phase sequences in
the probability graph, we model each unique phase as a node
and the transitions between phases as directed edges with at-
tributes showing the transition probability. By examining the
graph that models all containers, we can observe the probabil-
ity of transiting to a particular phase when the current phase
is detected. Figure 5 shows the graph and tree generated from
the metric data obtained from DLaaS containers.

As an example, from the graph, we can infer that after de-
tecting the warm-up (phase 3, as φ3) in a container, there
is 80% chances that the container will transit to φ2, indicat-



Figure 3: Variance on CPU (top) and Memory (bottom) demand for the discovered phases (color code), and its most frequent
prototypes. The phase detects the trend in the last d observations (every 15 seconds) for CPU and memory

Figure 4: Comparison of the ground truth with the different
strategies and with phase detection (ours marked red)

ing an increase in memory usage. As Figure 3 (variability
plot) shown, the container is likely to remain in φ2 until
500MB−1GB is allocated (by its median and 3rd quartile),
then transits to φ5, expecting a demand of 0.5 to 1 CPU. From
φ5, there is a high chance to transit towards φ1, where it needs
at least 1 CPU and similar memory usage. Combining phase
transitions in the graph and resource estimation per phase, we
can proactively allocate 1GB of memory and 0.5CPU during
φ2, knowing that at least 1CPU must be available in the next
period. Additionally, if the phase remains in φ5, with 0.97
probability, it remains using 0.5 CPU, allowing us to share it
with another application in φ5.

Let’s see another example. Given a graph with higher mem-
ory, namely the graph is with a node representing a phase
with m > 1 preceding phases, we find that transitions exiting
φ4 tend to return, indicating that during those phase iterations,
memory usage increases to 3.5GB with a stable CPU usage
of 0.5 to 1 vCPU. By using an adaptive policy, we would
under-allocate the resources, discovering the new demand
later after entering the phase. With our phase prediction, we
can predict the phase and scale-up.

Finally, the above behaviors observed in phases can map
to the stages in the DL model training. φ3 corresponds to
the warm-up stage. φ2 and φ4 map to the data loading stage.
(discovered by φ2 and φ4), φ1 and φ5 reflect the computational

Figure 5: Graph and Tree obtained from DLaaS executions
with exec.time > 10 minutes, and 3 example executions.

stage, where the container is computing gradients for the DL
model. φ2 can be the parameter unloading stage as well, as it
mainly indicates the memory changes.

5 Conclusions
Here we presented a methodology for characterizing Deep
Learning workloads based on IBM’s DLaaS containers run-
ning DL model training. Our characterization model aims at
reducing resource over-provisioning and enabling potential
auto-scaling for containers. Using CRBMs, we can discover
execution phases with specific resource usage behavior, with
objectives towards dynamic auto-scaling. Furthermore, con-
tainers’ resource usage can be clustered in “prototypes” with
similar phase sequences, revealing typical execution profiles
to be used for resource demand forecasting, resource usage
pattern discovery, or resource usage anomaly detection.

The evaluation shows that by detecting phases while run-
ning the container, we can adjust resource provisioning dy-
namically, achieving better resource utilization than naive
adaptive policies. Our auto-scaling policies are closer to an
ideal oracle, which can foresee the actual resource usage
ahead of time. Future work will focus on phase forecasting
towards preemptive provisioning, and the generalization of
phase modeling to broader types of workloads, like batch and
other types of machine learning workloads, etc.



6 Discussion

As this work focuses on a method for characterizing execu-
tions in order to enhance application understanding, analysis,
and management, one of the principal interests is to identify
which scenarios can benefit from the provided approach, in
terms of workload, architecture, and resource management
policies. Here we focus on Deep Learning workloads, show-
ing characteristic behaviors of CPU and Memory. Other work-
load types may have other bottleneck resources, e.g., network
bandwidth for data-shuffling applications. As different types
of resource usages may show different behaviors and demands
along time, it is of interest to know which scenarios require
which level of modeling sophistication. Do we need more
straightforward or more sophisticated modeling methods to
complement the one presented here?

Additionally, one of the challenges for this approach is to
measure its potential contribution to complex or advanced re-
source management policies. It is essential to see up to which
point those policies can directly benefit from the provided
phase information. Knowing the requirements for those ad-
vanced resource management policies and strategies is funda-
mental to adopt this method for a more generalized execution
environment.

Moreover, how this approach can be reinforced by predict-
ing future phases, will depend on the extent of application of
long-term planners that can utilize the statistics of the pre-
dicted phases.

Finally, the presented models are updatable upon training
on new datasets and new types of applications. When to trig-
ger the model updates is future work to explore.
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