
A Tale of Two Abstractions: The Case for Object Space

Daniel Bittman
UC Santa Cruz

dbittman@ucsc.edu

Peter Alvaro
UC Santa Cruz

palvaro@ucsc.edu

Darrell D. E. Long
UC Santa Cruz

darrell@ucsc.edu

Ethan L. Miller
UC Santa Cruz
elm@ucsc.edu

Abstract
The increasing availability of byte-addressable non-volatile

memory on the system bus provides an opportunity to dra-
matically simplify application interaction with persistent data.
However, software and hardware leverage different abstrac-
tions: software operating on persistent data structures requires
“global” pointers that remain valid after a process terminates,
while hardware requires that a diverse set of devices all have
the same mappings they need for bulk transfers to and from
memory, and that they be able to do so for a potentially het-
erogeneous memory system. Both abstractions must be im-
plemented in a way that is efficient using existing hardware.

We propose to abstract physical memory into an object
space, which maps objects to physical memory, while provid-
ing applications with a way to refer to data that may have a
lifetime longer than the processes accessing it. This approach
reduces the coordination required for access to multiple types
of memory while improving hardware security and enabling
more hardware autonomy. We describe how we can use exist-
ing hardware support to implement these abstractions, both
for applications and for the OS and devices, and show that the
performance penalty for this approach is minimal.

1 Introduction
Byte-addressable non-volatile memory (BNVM) on the
memory bus will soon be commonplace in computer sys-
tems [1, 5, 11]. While consistency, data structures, optimiza-
tion, and file systems have been considered [7, 8, 10, 16, 17,
23, 24, 25, 33, 35, 36], there are two significant avenues of
research that have not been as thoroughly explored: first, the
effect of persistence on the programming models we currently
use, and second, the effect of increasing heterogeneity of the
physical address space on OS mediation of increasingly au-
tonomous hardware devices, the software running on them,
and their access to physical memory.

The direct access nature of BNVM enables low-latency,
memory-style access to persistent data, in which memory-
style data structures may have indefinitely long lifetimes.

Virtual addresses are the wrong abstraction to facilitate the
creation of such structures as programs need to refer to data
with a persistent pointer that encodes an offset within an
object (a segment of memory). These objects, identified by a
unique ID, contain data with similar access semantics, access
control, and lifetime. If these identifiers are never recycled,
a persistent pointer of the form 〈object,offset〉 will always
remain valid, allowing persistent data structures to maintain
pointers that outlive a single process’s virtual address space.

In contrast, a hardware view of BNVM has different needs—
the hardware need not care about persistence and data rela-
tionships. Instead, it needs to coordinate access to objects in
physical memory, as requested by applications, while storing
and loading to and from memory in an environment where
pages of memory could move between the different types
of physical memory in the physical address space. This co-
ordination problem, arising from the need to move data in
physical memory, means hardware and CPUs must operate
on a abstract view of memory above physical addresses.

To address these two different, but related, needs, we pro-
pose that systems support two new abstractions for object ac-
cess and mapping: a global object space and a logical object
space. The global object space contains all objects (poten-
tially across multiple systems), allowing persistent pointers
to refer to data with long lifetimes and giving software the
ability to operate directly on persistent structures. The logi-
cal object space is an abstraction over physical memory that
contains the working set of actively used objects local to
one system. Hardware devices then issue loads and stores to
memory by addressing a location within an object instead
of physical addresses directly, giving hardware the ability to
operate more autonomously with little kernel participation
in the system’s memory management. We implement these
abstractions in part by repurposing virtualization hardware
to provide abstraction over physical memory—an ability that
is underused outside of full-system virtualization. These two
abstractions both allow programmers to easily build applica-
tions that manipulate persistent data structures and facilitate
OS and hardware management of the underlying memory.



2 BNVM Abstractions
The challenges introduced by BNVM in mapping virtual ad-
dresses to physical addresses are the different lifetimes of data
with respect to the references to that data and the heterogene-
ity of physical memory. Software and hardware have different
requirements for this mapping, in the following respects:

Latency. Prior persistent data access schemes relied on sys-
tem calls to operate on persistent storage. BNVM’s low-
latency can no longer tolerate the cost of those system calls.
Instead, programs must have direct access to persistent
data via load/store instructions. Similarly, hardware must
be able to transfer data to and from BNVM using DMA.

In-memory data structures. Direct access to persistent
memory removes the loading and unloading cost, but we
must also remove the cost of data serialization: since per-
sistent data is located in-memory, programs can operate on
data as in-memory data structures using standard program-
ming techniques. This change is not an issue for hardware,
which treats data as a “bag of bits”.

Data lifetime. If persistent data is stored as in-memory data
structures, then applications need a way to refer to data
such that references have the same lifetime as the refer-
enced data, a requirement that fundamentally arises from
the need for to construct references that encode the rela-
tionships between data. Applications can store persistent
pointers that encode a more persistent name for data than
an ephemeral virtual address. Again, hardware has no such
requirement, since it neither constructs nor interprets rela-
tionships between data. Devices that need to consider data
relationships do so in software running atop the hardware.

Mappings. Both software and hardware must have a way
of translating a persistent pointer into a physical address.
This mapping may change frequently as the OS changes
allocation of physical pages to data (e.g., to persist a piece
of data). Hardware need only know how to access data in
memory for a single operation. In contrast, software must
have longer-term mappings, and must be able to support
data shared between threads, potentially mapped into the
threads in different places.

Memory heterogeneity. Hardware and the operating system
must know about different types of memory, e.g. DRAM
and BNVM. Software need only know how to allocate from
the different types, and should not deal with other differ-
ences. Hardware, however, will need to know when data
is moved between memory types if it wishes to correctly
emit loads and stores requested by software.

Our design must support appropriate abstractions for both
software and hardware, facilitating the use of persistent point-
ers to long-lived data for applications while providing hard-
ware and the OS with the ability to move data in, out of,
and around physical memory, preferably only using existing
hardware functionality. We first abstract memory into objects,

where related data with similar access semantics (e.g., an en-
tire B-tree, where all nodes are subject to the same access
control, etc.) are placed in a single object and identified by a
globally unique ID. IDs are formed via hashing, partitioned
allocation, or other methods that prevent collisions of IDs
across machines with high probability.

We propose two abstractions to provide effective access to
objects for both hardware and software: a global object space,
which facilitates persistent pointers (discussed below), and a
logical object space, which allows hardware to address data
without needing knowledge of the data’s physical location. We
split these abstractions and consider them different because
of the different requirements discussed above; software must
worry about reference lifetime, whereas hardware’s access to
objects is disconnected from persistence. On the other hand,
today’s hardware must worry about physical location of data,
which (with BNVM) is now more likely to change over time.

Note that we are not considering issues of consistency.
These have been studied extensively [7, 8, 10, 17, 23, 24, 25,
33], and are orthogonal to the semantic challenges we discuss
here. Our work on the global object space does not prescribe
a particular solution to consistency, and the logical address
space need not be persisted due to its nature as an abstraction
over physical space only.

Persistent Pointers Applications running on BNVM must
have a way to create pointers that outlast a process’s vir-
tual address space and are valid in other virtual address
spaces. Previous single address space operating systems
(SASOSes) [6, 14, 27, 30] provided this functionality by hav-
ing a single virtual address space for all processes. However,
this approach has several problems. First, the virtual address
space must be large, since a global-scale system could require
more than a 64-bit address space, especially if the space is
allocated sparsely. Second, a SASOS requires a great deal
of coordination, since each process shares the same virtual
address space, even if there is no actual data sharing between
processes—a problem that is compounded when coordinating
access to data across multiple machines [14, 29].

The use of a global object space constructed of all ob-
jects allows a persistent pointer, a 〈object_id,offset〉 tuple,
to refer to any addressable location. An object then need
only be mapped into an individual process’s virtual address
space, and references to that object are simply implemented
as objectbase +offset. The virtual address an object is mapped
to is per-process, arbitrary, has no bearing on persistent point-
ers, and exists solely to provide access to the object effi-
ciently with current hardware. This approach, a type of fat
pointer [22], is similar to segmentation [3, 9], and can easily
be implemented with segment registers, though this feature
is being removed from current ISAs. Unlike segmentation in
Multics and elsewhere, persistent pointers allow inter-object
references to be stored in an object and be usable by another
process with no knowledge of the creating process. Persistent
pointers also remove the need for different processes to come



to a global agreement on which objects occupy which slots
in a process’s segment table. As a result, persistent pointers
are always valid, assuming that the object to which they point
has not been deleted, and facilitate references within a truly
global address space that can cross machine boundaries.

Implementing persistent pointers efficiently and flexibly
is a key concern for a BNVM system: persistent pointers
should be no larger than existing pointers and should be easy
to support on current CPUs. A naïve implementation would
require very large pointers, since unique object identifiers
(OIDs) would be 64–128 bits with an offset of at least 40 bits.
To address this, we use an additional level of indirection. Each
object X has a Foreign Object Table (FOT) listing the objects
to which X points, providing support for long object identifiers
and flexible naming while allowing all pointers in X to remain
64 bits. A persistent pointer in X is represented as 〈Z,offset〉,
where Z is an index into the FOT. Persistent pointers where
Z = 0 refer to locations in X , while Z > 0 refers to locations
in other objects. If offset is a 40 bit value, each object can
support direct references to 224−1 foreign objects. Since each
object has its own FOT, any thread that references an object
can easily perform the translation from persistent pointer to a
virtual memory reference; preliminary measurements of the
performance are discussed in Section 4. Our model, unlike
some existing and previous models [15, 26, 28, 34], can be
implemented efficiently without additional hardware support,
does not increase pointer size, allows a per-object view of
the global object space, and yields little change to common,
in-memory programming semantics.

Programming Models Made Easier The direct access to
persistent data and the memory-like structuring of data make
current programming tasks easier; programmers no longer
need to concern themselves with two programming domains
of volatile and persistent data, nor do they need to worry about
explicit movement of data and transforming data between
a “persistent” form and an “in-memory” form. These ac-
cess models also invert the traditional systems programming
model. Instead of structuring computation in a process-centric
manner, persistent data references and objects let us build our
programs around data, a design goal known to all (program-
ming is all about data) but realized by few, since traditional
persistent data access requires significant overhead in terms
of programming complexity and OS involvement. Of course,
ease of use is key [19]. Providing a standardized, system-wide
persistent pointer mechanism is vital, as it presents hardware
and compiler vendors with a fixed-target for building persis-
tent pointer support and taking the burden off of programmers.

Hardware and Memory The interface presented to hard-
ware must enable interaction with a heterogeneous memory
system and support the abstraction of an object space rather
than a collection of flat memory spaces. Unlike applications,
hardware has no need for creating long-lived pointers to loca-
tions within objects. Rather, hardware must have the ability

to transfer large chunks of objects to, from, and around mem-
ory, and must be able to manage different types of memory,
preferably in a way that is largely transparent to applications.

Requiring hardware to access a global object space
through a 〈object,offset〉 tuple is unnecessary overhead and
complexity—hardware need only ever access the “working
set” of objects currently undergoing computation. Thus, our
design abstracts the view from hardware of physical memory
into a logical object space, an address space that maps contigu-
ous objects within it to physical memory pages, managed by
the operating system. This solves the heterogeneity problem
by allowing hardware to refer to data within objects instead
of physical addresses, whose lifetimes are much smaller than
the objects, and doesn’t require hardware to emit (likely large)
addresses for the global address space.

While SASOSes are not a viable solution to the problem
of persistent pointers, they are a solution to implementing the
logical object space. Hardware, and the CPU, are directly con-
nected, reducing the cost of invalidation and coordination of
an address space. Additionally, this address space is intermedi-
ate and hidden from programs—a virtual address is translated
to the logical object space, after which the address is translated
to a physical location (shown in Figure 1). This translation for
applications (after the virtual address translation) and that of
hardware is the same, reducing the management complexity
for the OS, discussed in Section 3.

Object Space Implementation The logical object space ab-
straction relies on a single system-wide mapping maintained
by the OS which all devices use for accessing memory. The
address space is organized by breaking up the flat address
space into an array of fixed-size object slots, each of which
may be fully or partially occupied by an object. Objects need
only be in the map if they are in active use, and the position
in the map need not reflect an object’s actual identifier nor its
location in physical memory (which need not be contiguous).

When an object is needed, it is mapped into a new slot, and
hardware can then access the object through its location in
the space. Objects may be removed to make room, a process
which can occur lazily in the background to remove potential
invalidation costs from the critical path. Objects need not be
moved in this space—if an object needs to have data moved
from one type of physical memory to another, we can update
the mappings, and any hardware or software that accesses
that object automatically accesses the new physical location.
There are further optimizations that can be made to fit the
logical object space into a smaller virtual address space.

It is critical that the object space abstraction be imple-
mentable on existing hardware—a new model for memory
space organization will never be adopted if it requires signifi-
cant hardware changes. Fortunately, as described in Section 4,
the IOMMU and extended page tables originally implemented
to support virtualization can be used to support an object
space for hardware as well as for software, and can do so
more efficiently than existing use of these features.



Object A
r-x

Object B
rw-

Object A
rwx

Object B
r--

Object C
r--

X

Virtual 
Address 

Space

Logical
Object
Space

Physical
Memory

DRAM NVRAM

Figure 1: Mapping virtual addresses to “object-based” physi-
cal memory using two levels of translation.

3 Implications for OS Design
The operating system’s primary role is to manage the two
abstractions, providing hardware with an effective means to
access objects and providing applications with an effective
means to store and access persistent data, while meeting the re-
quirements we discussed earlier. For example, the low-latency
requirement discussed in Section 2 requires removing the ker-
nel from the critical path for I/O; thus the kernel need not
contain much in the way of persistent data access services and
abstractions, and instead relies more heavily on userspace.

The OS in this approach is split, much like an Exoker-
nel [4, 13], with a library operating system that lives in
userspace to assist programs with persistent data access—in
this case, helping them construct and dereference persistent
pointers—while the kernel is responsible for managing the
two abstractions discussed above and mediating between hard-
ware and software. Each thread runs in a virtual address space,
as usual, but with an additional translation layer underneath
(the logical object space), as discussed in Section 2. These
spaces are managed by the kernel, where the virtual space is
controlled by userspace and the logical object space is man-
aged as needed, adding objects when accessed, and removing
them lazily when more space is required.

The logical object space greatly simplifies OS implementa-
tion; consider the case of multiple processes using an object
that is relocated in physical memory from DRAM and BNVM.
Instead of updating each process’s address space, and having
to do a reverse lookup to find where the object is in each
space, the OS need only update the (single) mapping in the
logical object space.

Security An immediate consequence of removing the kernel
from the data access path is the loss of the traditional access
control enforcement. Typically, the OS enforces access con-
trol during open, giving the process a token which encodes
those access control policies (the file descriptor), allowing the
OS to enforce the decided rights during calls to read, write,
or mmap. Instead, our system allows applications to access
data directly, and so cannot enforce these decisions in the OS.

Instead, we rely on hardware for enforcement: the mapping
hardware we use for the object-space abstraction can also en-

force security, if the OS configures mapping tables correctly.
In the case of applications, the extended page tables contain
the access rights for each object mapped into the space, and
the CPU’s MMU enforces those restrictions. For hardware,
we can use the IOMMU’s page-tables to do a similar job. The
result is that application and hardware access to data objects
is controlled by the same policy and the same basic mecha-
nism, which opens the door to more autonomous operation
of hardware. Figure 1 shows permissions of objects in the
logical object space along with the requested protections in
the virtual address space.

The lack of kernel involvement in persistent data access and
the separation of permissions and protections discussed above
allows the removal of explicit “open” operations and supports
“lazy-binding” of access rights. Traditionally, a process needs
to know ahead of time what its access rights are. Consider
the case of a program which operates on a file by reading it
and only occasionally writing it. It must either open the file
read-only and re-open it for writing later, handling permission
errors, or it must open it read-write and potentially fail to do
useful work if it cannot write the file. Instead, if access control
is checked and enforced only on actual access to the file, the
program can do the necessary reads and write when requested,
handling a exceptions for permission errors. This model is
much simpler and more natural than explicitly re-opening the
file, and paves the way for more reliance on the operating
system for handling access control rather than application-
specific solutions. A program can hand out references to data
that a recipient may not write, but they need not know that
until they try. Moreover, TOCTTOU errors [31] cannot occur,
since each access is checked by hardware as it is made.

Of course, access control is not static throughout the sys-
tem; different processes have different access control rights
to different objects. We support this by allowing multiple
logical object spaces with different access control specified
per-object, but with an object occupying the same (virtually-
addressed) location across spaces. The OS then maps objects
from the logical object space with the appropriate permis-
sions into a process’s virtual address space. This does not
significantly complicate the management of the logical ad-
dress space, nor the OS’s implementation, because the objects
always occupy the same location, just with different permis-
sions. The two-level mapping scheme also reduces the number
of page-table structures required since we separate protection
from security contexts, and so do not need to maintain all
combinations of permissions and requested protections.

The result is that the logical address space can also be con-
sidered a security context, which threads may share. The OS
then switches security contexts on context switch. Threads
can change security contexts (if allowed) as well, allowing
protected non-local control transfers. Similarly, hardware de-
vices can have security roles assigned to them, allowing, for
example, a NIC to access only objects associated with its
receive and transmit queues.



4 Implementation
We have begun implementing a prototype system with which
to evaluate these ideas, including a set of userspace libraries
to evaluate our persistent pointer mechanisms and a modified
FreeBSD kernel that uses our two-level mapping to abstract
physical memory from the point of view of much of the kernel.
We are making use of the Extended Page Tables on Intel
processors (a similar technology, called Nested Page Tables,
exists on AMD).

Since the CPU’s addresses are not translated by the
IOMMU, but we still want the kernel to operate on the same
abstraction as other hardware, we use the virtualization hard-
ware to do two levels of address translation—the first being
virtual addresses (which uses the normal address translation
hardware) to logical object space, and the second from logical
object space to physical memory (which uses the EPT).

The use of the EPT necessitates the use of the rest of the
virtualization hardware, since only the guest (operating in
VMX-non-root mode) has its addresses translated via the EPT.
Thus, we take the approach of having the kernel act as its own
hypervisor—during startup, the kernel creates an EPT with an
identity map of physical memory, creates a virtual CPU, and
launches it. Since the kernel in guest mode still has access
to all of physical memory, and we trust the guest implicitly
(it is the same kernel), we can avoid nearly every VM exit,
with only a few exceptions. More modern processors can take
advantage of two additional features to improve performance:

1. The vmfunc call allows the guest to switch EPTs effi-
ciently without VM exits. The kernel maintains a list
of “known-good” EPTs, and can switch to one of them
without an exit.

2. Virtualization exceptions allow the guest to handle EPT
violations (similar to page-faults), which correspond to
paging operations for objects in our model.

Importantly, our use of virtualization does not preclude the
possibility of running our system atop a VM or using it as a
traditional hypervisor. In the first case, we can make use of
nested virtualization1 or paravirtualization, and in the second,
we can start additional virtual CPUs with different protection
semantics. We are simply using the virtualization hardware
when it is not in use to improve the simplicity of the kernel
and align the CPU with what other hardware sees.

Using the IOMMU The IOMMU is capable of providing the
same abstraction that we use the EPT for. Existing research
on using the IOMMU focuses on either hardware virtualiza-
tion, hardware protection [18, 20, 21], or partitioning process’
access to hardware devices [2, 12]. In contrast, we are using
the IOMMU to provide hardware with an abstracted view

1While this has a performance overhead, our system acts more like a
hypervisor already, and our use of strong separation semantics and hard-
ware security enforcement means we would see little benefit to virtualizing
multiple instances of our system.

of data objects instead of physical memory as they access
data, improving ease and security when sharing data between
devices and enabling more hardware autonomy when access-
ing physical memory. The performance implications of the
IOMMU are well-studied, and most of the performance over-
head from the use of the IOMMU comes into play when un-
mapping DMA buffers (which is costly due to IOMMU inval-
idation). However, since we are presenting an address space
with spaces that can be lazily reclaimed, we can avoid much
of the invalidation cost. Because all processes on the CPU
use the same mapping of objects in the logical address space,
with multiple spaces only presenting different protections, the
number of IOMMU map changes is reduced. Furthermore,
the additional management for maintaining DMA buffers and
allocations is removed since we are presenting data objects
directly to the programs running on the individual hardware
components, albeit through the lens of standard access control
mechanisms enforced by the translation hardware.

Preliminary Results Since most hypervisors are not struc-
tured the way our system is—they need more isolation for
the guest OS—we evaluated the cost of memory accesses
with virtualization (testing the overhead of the EPT). We read
and wrote 256 MiB of data randomly and sequentially under
both VMX-non-root mode and as the host, and we found no
significant impact to performance, partly because we avoid
nearly all possible VM exits.

To evaluate the overhead from our persistent pointers, we
repeatedly dereferenced a persistent pointer and measured
the overhead. After the first dereference and mapping (which
is not discussed here for brevity), we found that dereferenc-
ing a pointer to a different object costs 2.4± 0.1 ns, while
dereferencing a pointer to within the same object costs merely
0.4±0.1 ns, due to an optimized code path. These measure-
ments do not include the cost of the final dereference, since
that is required anyway. Note that these pointers allow easy
programming for persistent data access that replaces serial-
ization, a much more costly procedure [32].

5 Conclusion
As BNVM becomes commonplace in computer systems, the
abstractions governing how software and hardware view mem-
ory must change to allow programmers and hardware to effi-
ciently utilize and manage persistent memory. By breaking
memory into objects and providing object-based mappings
for both applications and devices, software will be able to
use a much simpler, more efficient programming model while
still providing manageability and security for persistent ran-
dom access memory. Our preliminary work has shown that
this model can provide benefits even on current operating
systems, while paving the way for new lightweight operating
systems that hold the promise for improved performance and
simplicity as computing systems move towards ubiquitous
byte-addressable non-volatile memory.



Discussion Topics

We have approached our design from the perspective that
hardware will grow to be more autonomous (e.g., NICs and
special-purpose units operating directly on memory without
significant CPU involvement) and that the heterogeneity of
systems will continue to increase (e.g., different kinds of
memory). We would welcome the storage community’s take
both on BNVM in the memory hierarchy, and on the use of
more independent hardware operating directly on storage.

This paper has proposed that we should treat memory sys-
tems built from NVM and DRAM as collections of objects
rather than simply as “flat” memory, and that the CPU MMU
and IOMMU are the “right” places to manage such abstrac-
tions. We seek feedback on whether our design goal—object
spaces—is a reasonable one, and whether our approach to the
design is likely to improve system security and usability.

The organization of memory into object space allows the
system to preserve the semantics of objects (files), and to
present it to the CPU and devices directly. This can improve
the ability of the CPU and other intelligent devices to manage
the memory, since they now are aware of how individual mem-
ory pages are associated to make up objects. This approach
has equally important benefits for security, since access per-
missions are specified and propagated on a per-object basis,
and can be verified as the memory system is accessed by
different devices. Are these benefits sufficient to warrant an
object space model moving forward?

The object space model also engenders changes in the
programming model, since pointers are now persistent. How
much of this should be supported automatically, and how
much should be programmer-specified, and how are these
implemented? Does the compiler insert code automatically,
and what guidance must the programmer provide? There must
be some transparency—after all, the programmer would like
to take advantage of direct access to BNVM—but there must
be some defaults in-place for the complexity this brings.

The model we have proposed works well in the absence of
failure, but how do failures of various sizes (e.g., memory cell
failures, memory page failures, or simple “object not found”)
create problems, and how might they be solved? We would
encourage feedback on the right failure recovery mechanisms
for our approach and the impacts to the system design.

The object space approach has the obvious advantage that,
if designed properly, it could span multiple individual memory
systems using approaches such as those used for remote page
faults in a global address space. Is this approach worth the
additional complexity that it will require to implement, and
would programmers be willing to use such an approach?

Finally, we have been implementing an operating system to
make it simple to use an object space-based system. We would
enjoy discussion on whether the small number of primitives
in the operating system are sufficient, or whether we need
additional primitives to create a fully-functional system.

Acknowledgements
This work was supported in part by the NSF grant number
IIP-1266400 and by the industrial partners of the Center for
Research in Storage Systems. The authors additionally thank
the members of the Storage Systems Research Center for their
support and feedback. We would like to extend our gratitude to
our paper shepherd, Tim Harris, and the anonymous reviewers
for their feedback and assistance.

References
[1] Ars Technica. Intel and Micron unveil 3D XPoint, a

brand new memory technology, 2015.

[2] Muli Ben-Yehuda, Omer Peleg, Orna Agmon Ben-
Yehuda, Igor Smolyar, and Dan Tsafrir. The nonkernel:
A kernel designed for the cloud. In Proceedings of the
4th Asia-Pacific Workshop on Systems, page 4. ACM,
2013.

[3] A. Bensoussan, C. T. Clingen, and R. C. Daley. The Mul-
tics virtual memory: Concepts and design. In Proceed-
ings of the 2nd ACM Symposium on Operating Systems
Principles (SOSP ’69), 1969.

[4] Brian N. Bershad, Stefan Savage, Przemyslaw Pardyak,
Emin Gün Sirer, Marc E. Fiuczynski, David Becker,
Craig Chambers, and Susan Eggers. Extensibility, safety,
and performance in the SPIN operating system. In Pro-
ceedings of the 15th ACM Symposium on Operating
Systems Principles (SOSP ’95), December 1995.

[5] Geoffrey W Burr, Bülent N Kurdi, J Campbell Scott,
Chung Hon Lam, Kailash Gopalakrishnan, and Rohit S
Shenoy. Overview of candidate device technologies for
storage-class memory. IBM Journal of Research and
Development, 52:449–464, 2008.

[6] Jeffrey S. Chase, Henry M. Levy, Michael J. Feeley, and
Edward D. Lazowska. Sharing and protection in a single-
address-space operating system. ACM Transactions on
Computer Systems, 12(4):271–307, November 1994.

[7] Joel Coburn, Adrian M. Caulfield, Ameen Akel,
Laura M. Grupp, Rajesh K. Gupta, Ranjit Jhala, and
Steven Swanson. NV-Heaps: Making persistent ob-
jects fast and safe with next-generation, non-volatile
memories. In Proceedings of the 16th International
Conference on Architectural Support for Programming
Languages and Operating Systems (ASPLOS ’11), pages
105–118, March 2011.

[8] Jeremy Condit, Edmund B. Nightingale, Christopher
Frost, Engin Ipek, Benjamin Lee, Doug Burger, and Der-
rick Coetzee. Better I/O through byte-addressable, per-
sistent memory. In Proceedings of the 22nd ACM Sym-
posium on Operating Systems Principles (SOSP ’09),
pages 133–146, Big Sky, MT, October 2009.



[9] Fernando J. Corbató and Victor A. Vyssotsky. Introduc-
tion and overview of the Multics system. In Proceedings
of the November 30 — December 1, 1965, fall joint com-
puter conference, part I, pages 185–196. ACM, 1965.

[10] Subramanya R Dulloor, Sanjay Kumar, Anil Keshava-
murthy, Philip Lantz, Dheeraj Reddy, Rajesh Sankaran,
and Jeff Jackson. System software for persistent mem-
ory. In Proceedings of the 9th European Conference on
Computer Systems (EuroSys ’14), April 2014.

[11] Sean Eilert, Mark Leinwander, and Giuseppe Crisenza.
Phase change memory: A new memory enables new
memory usage models. In Memory Workshop, 2009.
IMW’09. IEEE International, pages 1–2. IEEE, 2009.

[12] Pekka Enberg, Ashwin Rao, and Sasu Tarkoma. I/O
is faster than the CPU – let’s partition resources and
eliminate (most) OS abstractions. In Proceedings of
the 17th Workshop on Hot Topics in Operating Systems
(HOTOS ’19). ACM.

[13] Dawson R. Engler, M. Frans Kaashoek, and James
O’Toole, Jr. Exokernel: An operating system archi-
tecture for application-level resource management. In
Proceedings of the 15th ACM Symposium on Operating
Systems Principles (SOSP ’95), pages 251–266, Decem-
ber 1995.

[14] Germont Heiser, Kevin Elphinstone, Jerry Vochteloo,
Stephen Russell, and Jochen Liedtke. The Mungi single-
address-space operating system. Software Practice and
Expererience, 28(9):901–928, July 1998.

[15] Orran Krieger, Marc Auslander, Bryan Rosenburg,
Robert W. Wisniewski, Jimi Xenidis, Dilma Da Silva,
Michal Ostrowski, Jonathan Appavoo, Maria Butrico,
Mark Mergen, Amos Waterland, and Volkmar Uhlig.
K42: Building a complete operating system. In Proceed-
ings of Eurosys ’06, pages 133–145, 2006.

[16] Dokeun Lee and Youjip Won. Bootless boot: Reducing
device boot latency with byte addressable NVRAM. In
2013 International Conference on High Performance
Computing, November 2013.

[17] Youyou Lu, Jiwu Shu, Long Sun, and Onur Mutlu.
Loose-ordering consistency for persistent memory. In
32nd IEEE International Conference on Computer De-
sign (ICCD 14), pages 216–223. IEEE, 2014.

[18] Moshe Malka, Nadav Amit, Muli Ben-Yehuda, and Dan
Tsafrir. rIOMMU: Efficient IOMMU for I/O devices
that employ ring buffers. In Proceedings of the Twenti-
eth International Conference on Architectural Support
for Programming Languages and Operating Systems
(ASPLOS ’15), volume 50, pages 355–368, New York,
NY, USA, March 2015. ACM.

[19] Virendra J. Marathe, Margo Seltzer, Steve Byan, and
Tim Harris. Persistent memcached: Bringing legacy
code to byte-addressable persistent memory. In 9th
USENIX Workshop on Hot Topics in Storage and
File Systems (HotStorage 17), Santa Clara, CA, 2017.
USENIX Association.

[20] Alex Markuze, Adam Morrison, and Dan Tsafrir. True
IOMMU protection from DMA attacks: When copy is
faster than zero copy. ACM SIGOPS Operating Systems
Review, 50(2):249–262, 2016.

[21] Alex Markuze, Igor Smolyar, Adam Morrison, and Dan
Tsafrir. Damn: Overhead-free iommu protection for
networking. In Proceedings of the Twenty-Third Inter-
national Conference on Architectural Support for Pro-
gramming Languages and Operating Systems, ASPLOS
’18, pages 301–315, New York, NY, USA, 2018. ACM.

[22] Leonardo Marmol, Mohammad Chowdhury, and Raju
Rangaswami. LibPM: Simplifying application usage
of persistent memory. ACM Transactions on Storage,
14(4), December 2018.

[23] Dushyanth Narayanan and Orion Hodson. Whole-
system persistence. In Proceedings of the 17th Inter-
national Conference on Architectural Support for Pro-
gramming Languages and Operating Systems (ASPLOS

’12), pages 401–500, March 2012.

[24] Yuanjiang Ni, Jishen Zhao, Daniel Bittman, and Ethan
Miller. Reducing NVM writes with optimized shadow
paging. In Proceedings of the 10th Workshop on Hot
Topics in Storage and File Systems (HotStorage ’18),
July 2018.

[25] Matheus Ogleari, Ethan L. Miller, and Jishen Zhao.
Steal but no force: Efficient hardware-driven undo+redo
logging for persistent memory systems. In Proceed-
ings of the 24th International Symposium on High-
Performance Computer Architecture (HPCA 2018),
February 2018.

[26] Ariel Pashtan. Object oriented operating systems: An
emerging design methodology. In Proceedings of the
ACM ’82 Conference, pages 126–131, 1982.

[27] Timothy Roscoe. Linkage in the Nemesis single ad-
dress space operating system. ACM SIGOPS Operating
Systems Review, 28(4):48–55, October 1994.

[28] Andy Rudoff. Persistent memory programming. In
;Login: The Usenix Magazine, volume 42, pages 34–40.
USENIX Association, 2015.

[29] Alan Skousen and Donald Miller. Using a single ad-
dress space operating system for distributed computing
and high performance. In Proceedings of the 18th IEEE



International Performance, Computing and Communi-
cations Conference (IPCCC ’99), pages 8–14, February
1999.

[30] Frank G. Soltis. Inside the AS/400, Second Edition.
Duke Communications International, Loveland, CO,
1996.

[31] Dan Tsafrir, Tomer Hertz, David Wagner, and Dilma
Da Silva. Portably solving file TOCTTOU races with
hardness amplification. In Proceedings of the 6th
USENIX Conference on File and Storage Technologies,
FAST ’08, pages 13:1–13:18, Berkeley, CA, USA, 2008.
USENIX Association.

[32] Hung-Wei Tseng, Qianchen Zhao, Yuxiao Zhou, Mark
Gahagan, and Steven Swanson. Morpheus: Creating
application objects efficiently for heterogenous com-
puting. In 2016 ACM/IEEE 43rd Annual Intenational
Symposium on Computer Architecture, 2016.

[33] Haris Volos, Andres Jaan Tack, and Michael M. Swift.
Mnemosyne: Lightweight persistent memory. In Pro-
ceedings of the 16th International Conference on Ar-

chitectural Support for Programming Languages and
Operating Systems (ASPLOS ’11), March 2011.

[34] Tiancong Wang, Sakthikumaran Sambasivam, Yan Soli-
hin, and James Tuck. Hardware supported persistent
object address translation. In Proceedings of the 50th An-
nual IEEE/ACM International Symposium on Microar-
chitecture (MICRO ’17), pages 800–812, New York, NY,
USA, 2017. ACM.

[35] Jian Xu and Steven Swanson. NOVA: a log-structured
file system for hybrid volatile/non-volatile main mem-
ories. In Proceedings of the 14th USENIX Conference
on File and Storage Technologies (FAST ’16), February
2016.

[36] Jian Xu, Lu Zhang, Amirsaman Memaripour, Akshatha
Gangadharaiah, Amit Borase, Tamires Brito Da Silva,
Steven Swanson, and Andy Rudoff. NOVA-Fortis: a
fault-tolerant non-volatile main memory file system. In
Proceedings of the 26th ACM Symposium on Operating
Systems Principles (SOSP ’17), pages 478–489, October
2017.


	Introduction
	BNVM Abstractions
	Implications for OS Design
	Implementation
	Conclusion

