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Abstract
Current Linux memory management algorithms have been ap-
plied for many years. Android inherits Linux kernel, and thus
the memory management algorithms of Linux are transplant-
ed to Android smartphones. To evaluate the efficiency of the
memory management algorithms of Android, page re-fault is
applied as the target metric in this paper. Through carefully
designed experiments, this paper shows that current memory
management algorithms are not working well on Android
smartphones. For example, page re-fault is up to 37% when
running a set of popular apps, which means a large propor-
tion of pages evicted by the existing memory management
algorithms are accessed again in the near future. Furthermore,
the causes of the high page re-fault ratio are analyzed. Based
on the analysis, a tradeoff between the reclaim size and the
overall performance is uncovered. By exploiting this tradeoff,
a preliminary idea is proposed to improve the performance of
Android smartphones.

1 Introduction

With many optimizations [2, 3, 5, 7], existing Linux memory
management algorithms have been applied for many years.
Android smartphones have seen remarkable growth in recent
years. Android inherits Linux kernel. Thus the memory man-
agement algorithms of Linux are transplanted to Android
smartphones.

To evaluate the efficiency of memory management algo-
rithms on Android smartphones, page re-fault ratio is applied.
Page re-fault represents the case that a page fault happens
on a previously evicted page. Page re-fault ratio represents
the proportion of re-faulted pages on all the evicted pages.
Through carefully designed experiments, this paper shows
that current memory management algorithms do not match
the characteristics of apps running on Android smartphones.
They induce high page re-fault, up to 37% when running pop-
ular apps. In the I/O stack of Android smartphones, page fault
is the root cause of long read latency. As page re-fault is one

type of page faults, high page re-fault ratio will significantly
degrade the system performance.

Prior research focused on reducing the number of page
faults by optimizing eviction algorithms [13, 15]. Eviction
algorithms decide how to select the victim pages which will
be evicted out of memory. The optimized LRU is known as
a good eviction algorithm and is applied in Android. How-
ever, the experimental results show that page re-fault ratio is
surprisingly high on Android smartphones.

This paper shows that the main cause of high page re-fault
ratio is that the reclaiming scheme of memory mismatches the
characteristics of apps running on Android smartphones. The
mismatches include two aspects: 1. The reclaim size 1 is often
too large for the requests on smartphones; 2. The limited
reclaim scope 2 aggravates the punishment. To solve this
problem, this paper proposes to exploit the tradeoff between
the reclaim size and the overall performance of smartphones.

This paper reveals several interesting observations:

• Page re-fault is unexpectedly high (up to 37%) on An-
droid smartphones when running popular apps;

• Even launching one app after restarting smartphones
could induce page re-fault;

• The maximum allocation size of buddy system 3 is often
too large for the requests of apps running on Android
smartphones.

In the following sections, a brief introduction of Android
I/O stack and the motivation of this work are presented in
Section 2. Section 3 presents the observations of page re-fault
on Android smartphones and their causes are analyzed in Sec-
tion 4. In Section 5, a preliminary idea is proposed to exploit
the tradeoff between the reclaim size and the performance.
Section 6 introduces related works. This paper is concluded
in Section 7.

1Reclaim size represents the number of pages freed by each reclaim
operation.

2Reclaim scope represents the region of pages freed by each reclaim
operation, such as the pages in the inactive_file_lru list.

3Buddy system is used to manage memory, and it divides memory blocks
into partitions to service a memory request as fit as possible.



2 Background and Motivation

Android is a lightweight operating system maintained by
Google, based on the Linux kernel and designed primarily
for mobile devices. Figure 1 presents the architecture of An-
droid I/O stack, mainly including userspace, Linux kernel,
and device.
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Figure 1: An overview of Android I/O stack.

Application read requests are serviced from the kernel page
cache. If a requested page is not in the page cache, a page
fault will be generated. File system layer will be accessed to
find the logical address of the requested page. After that, a
read request will go through generic block and I/O scheduler
layers to fetch the requested page from flash storage as an I/O
operation. Each layer contributes some factors, which could
prolong the read latency, such as fragmentation in file system,
I/O scheduler scheme, GC of flash storage. The latency of
accessing all of these layers is on microsecond scale, while the
latency of accessing memory is on nanosecond scale. Hence
page fault is often the root cause of long read latency.

To quantitatively show the influence of page fault on An-
droid smartphones, the latencies of launching Twitter and
Facebook apps in three situations are measured on a real An-
droid smartphone (Huawei P9 mounted with fourth Extended
file system (Ext4) and Flash-Friendly File System (F2FS)),
as shown in Figure 2.
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Figure 2: Influence of page fault on app launching latencies
on Android smartphones.

In the “Cached” case of Figure 2, the requested data pages
are in the page cache and can be directly accessed. This case
is implemented by re-launching the app right after it is closed,
and thus its data is still in memory 4. In this case, only few

4Cache status is checked by the command dumpsys meminfo.

page faults may happen. In the “Read” case, page fault may
happen on all the requested pages, and the page cache has
enough free space to launch the app immediately. This case
is implemented by launching the app after cleaning the page
cache. In the “Evict_first” case, page fault may happen on
all the requested pages, and the page cache is full. To launch
the app, some pages have to be evicted from the page cache
to release space first. This case is implemented by launching
the app after sequentially launching twenty other apps. The
results show that the latency of launching an app is the shortest
in the “Cached” case. Compared to “Cached” case, “Read”
and “Evict_first” cases cause longer launching latency for the
listed two apps. The additional latency is mainly caused by
page faults.

Page fault happens in three cases: 1. Reading a page for
the first time; 2. Reading an evicted page; 3. Reading a wrong
address. When reading a page for the first time (case 1), page
fault will happen because the physical memory is not allocat-
ed for this page. When reading a wrong address (case 3), the
process will be killed. Compared to the other two cases, the
case 2 could be avoided. Reading an evicted page is called
page re-fault in this paper. It means the requested page had
been in memory but was evicted by reclaiming scheme. Page
re-fault ratio represents the proportion of re-faulted pages on
all evicted pages. Compared to the traditional metric, page
cache hit ratio, page re-fault ratio is more suitable for evaluat-
ing the efficiency of memory reclaiming scheme.

3 Page Re-fault on Android Smartphone

This section presents results and analysis of measuring page
re-faults on Android smartphones when running popular apps.

3.1 Experimental Setup

All experiments are performed on a Huawei P9 smartphone
with ARM’s Cortex-A72 CPU, 32GB internal memory and
3GB RAM, running Android 7.0 on Linux 4.1.18 kernel.
There is no external SD card and all the I/O happens on the
internal eMMC flash storage (/data partition) of Android. We
instrument kernel source code to collect information about
memory allocation and reclaiming. The information includes
the number of re-fault pages, the number of evicted pages, the
size of each allocation, and the size of each reclaiming. The
adb (Android Debug Bridge) tool [4] is used to obtain this in-
formation from the smartphone. To avoid bias, all experiments
are conducted ten times and the average is shown.

Page re-fault ratio depends on the status of memory (emp-
ty or full) and workloads (light or heavy). Several popular
Android applications, including Facebook, Twitter, Chrome,
Google Earth, Google Map, Angrybird, Youtube (i.e. social
apps, browser, map, game, and multimedia) are used in the
experiments. Both app launching and execution are evaluated
for different cases as shown in Table 1.



Table 1: Application combinations used in experiments.

Application Memory Workloads

Launching one app empty light
Using two apps empty light

Launching five apps and using two apps full moderate
Launching ten apps full moderate

Launching twenty apps and using three apps full heavy

Launching one app and using two apps each for one minute
are evaluated for empty memory and light workloads. Launch-
ing five apps and using two apps each for one minute as well
as launching ten apps are evaluated for full memory and mod-
erate workloads. Finally, launching twenty apps and using
three apps each for one minute are evaluated for full memory
and heavy workloads. All these cases are designed based on
our survey of Android smartphone users’ usage behaviors.

3.2 Page Re-fault
Through carefully designed experiments, results show that
page re-fault ratio on Android smartphones when running
popular apps is unexpectedly high. Two aspects of page re-
fault are evaluated: severity and reproducibility.

For severity: the ratio and the number of page re-fault
when running popular apps are shown in Figure 3. These ex-
periments are designed based on our survey of eighty Android
smartphone users. According to the survey, more than 70%
of users will not close apps after they finish using them. Thus,
many apps stay in the background, but only a few of them are
used frequently. In order to reproduce this scenario, twenty
apps are launched and stay in the background and only three
apps are used iteratively (each for one minute) in these ex-
periments. Thirty five combinations of seven apps (Facebook,
Earth, YouTube, Map, Twitter, Chrome) are evaluated in the
experiments. In the experimental results, we use the acronyms
as an abbreviation of application combinations. For example,
FEY represents Facebook, Earth, and Youtube.
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Figure 3: Ratio and number of page re-fault when using dif-
ferent application combinations for three minutes.

In Figure 3, the results show that page re-fault could be up
to 37% when running popular apps. This means the existing
Linux memory management algorithm often reclaims the

pages, which will be used in the near future. The number of
page re-faults could be up to 99358 in three minutes, which
would degrade the performance according to the analysis in
Section 2.

For reproducibility: the page re-fault ratio is also collect-
ed in other different cases and shown in Figure 4. Since page
re-fault ratio depends on the memory status, the experiments
are conducted in two cases: after restart and after cleaning
cache. This is because some data could be pre-loaded into
memory after restart, while the page cache will be empty af-
ter cleaning cache. The results show that after restart, page
re-fault could happen even when only launching one app.
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Figure 4: Page re-fault ratio of light workloads where there
are some free spaces in memory. In “launching 10 apps” case,
10 apps are launched in different orders. In “5 apps using 2”
case, (AC) FYT represents launching Angrybirds, Chrome,
Facebook, Youtube, and Twitter, but only using Angrybirds
and Chrome.

In summary, the above results show that page re-fault
is prevalent when running popular apps on Android smart-
phones. The latency of a request with page fault could be
1000 times of the latency of a request with page cache hit.
Thus, the performance could be degraded 10 times by 1% of
page faults.

4 Page Re-fault Analysis

To find the causes of the high page re-fault ratio on Android
smartphones, the allocation and reclaiming procedures are in-
vestigated. The investigation results show that the main cause
is that the reclaiming scheme of buddy system mismatches
the characteristics of apps running on Android smartphones.
The mismatches include two aspects: 1. The reclaim size is
often too large for the requests on Android smartphones; 2.
The limited reclaim scope aggravates the punishment.

Cause 1: Compared to the allocation size, the reclaim
size is often too large.

In buddy system, every memory block has an order, where
the order is an integer ranging from 0 to 11. The size of a block
of order n is 2n. The distribution of allocation order when run-
ning popular apps is shown in Figure 5. These results are col-
lected from the allocation function _alloc_pages_nodemask().



The results show that on the Android smartphone, 99% of al-
location orders are 0 (1 page), and more than 99.9% of orders
are smaller than 4 (16 pages). This is because the requests
on Android smartphones are mostly in small size. One of the
main reasons is that most Android applications use SQLite as
database. SQLite and its temporary files are mostly accessed
in 4KB (1 page) units [9, 11].
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Figure 5: The distribution of allocation orders. The corre-
sponding allocation size equals to 2order.

The distribution of reclaim sizes is shown in Figure 6. The
results show that in most of the cases, the reclaim size is much
larger than the allocation size. 80% of reclaim sizes are larger
than 32 pages (order=5), but 99% of allocation orders are 0
as shown in Figure 5.
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Figure 6: The distribution of reclaim sizes. These results
include reclaimings from both LRU lists and slab, and they
are collected in the functions shrik_lruvec() and shrik_slab(),
respectively.

There are mainly three types of reclaimings of buddy sys-
tem: fast reclaiming, direct reclaiming and kswapd. kswapd
is a thread used to reclaim free space when the number of free
pages is lower than a threshold. The other reclaiming methods
are called by the allocation procedure. Direct reclaiming is a
heavy-weight reclaiming method, it will be triggered when
the free space is not enough for the current allocation. During
direct reclaiming, the allocation procedure needs to wait until
enough free pages are reclaimed. Moreover, direct reclaiming
could trigger flush operations. Compared to direct reclaim-
ing, fast reclaiming is faster. It reclaims free pages by using
zone_claim, and it does not reclaim mapped pages or trigger
flush operations. The minimum reclaim size equals to twice
the size of allocation size. The maximum reclaim size could
be a few thousand of pages, and these large-size reclaimings

are mostly produced by kswapd. This design is used to avoid
too many heavy-weight direct reclaimings. For servers, this
design is suitable because the request size is usually large
and the workloads are often heavy. However, for Android
smartphones, the request size is often relatively small and
the workloads are often light. Thus, a large-size reclaiming
scheme could induce more page re-faults than necessary. An
example of this case is shown in Figure 7.
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Figure 7: Large-size reclaiming induces more page re-faults.

In this example, there are 4 pages in the memory. Two
requests need to be processed: read page a and read page
b. When read page a, page fault happens. Since memory is
full, some pages need to be evicted to reclaim free space. If
the reclaim size equals 1 (left), only page e is evicted from
memory. When read page b, page cache hit happens because
page b is in memory. If reclaim size equals 4 (right), all four
pages are evicted from memory. When read page b, page re-
fault happens because page b has been evicted from memory.
In summary, the large-size reclaiming scheme could induce
more page re-faults.

Cause 2: Even if some apps have not been used for a
long time, their pages are not evicted from memory. In-
stead, useful pages of foreground apps are often evicted.

All the pages are in one of five LRU lists: Ac-
tive_anonymous, inactive_anonymous, active_file, in-
active_file, and unevictable. The pages in the unevictable
list will not be evicted. Since anonymous pages contain
the heap information associated with a process, they are
more important than file pages to the process. The pages in
active_anonymous list will usually not be evicted, even if
they belong to a background process. Thus, some anonymous
pages of background processes could be stay in memory,
while the file pages of foreground processes evicted. These
file pages of foreground apps evicted may be accessed again
in the near future, which leads to a high page re-fault ratio.

In summary, the large-size reclaiming on Android smart-
phones could induce a high page re-fault ratio, especially
when the reclaiming scheme keeps active_anonymous pages
of background apps in memory.

5 Preliminary Idea

Since active_anonymous pages are very important to the pro-
cess and should not be reclaimed, a preliminary idea is to



reduce the reclaim size according to the characteristics of
Android smartphones. From the analysis in Section 4, most
large-size reclaimings come from kswapd. A preliminary idea
could be implemented by reducing the number and the reclaim
size of kswapd by tuning its thresholds. There is a tradeoff
between the reclaim size and the overall performance:

• If the reclaim size and the number of kswapd are too
small, the free pages will be consumed quickly. Thus,
when an allocation failed because of insufficient free
pages, the heavy-weight direct reclaiming will be trig-
gered and thus degrades the performance;

• On the other hand, if the reclaim size and the number of
kswapd are too large, the ratio of page re-fault will be
high and thus degrades the performance.

To show the tradeoff on Android smartphones, the statistics
of page re-fault and direct reclaiming when kswapd is turned
on or turned off is collected and presented in Table 2.

Table 2: Influence of kswapd on performance.

Metrics With kswapd Without kswapd For performance

Reclaim size 650 30.6 -
Page re-fault 28.19% 20.06% negative

Direct reclaiming 1.12% 40.39% negative

These results show that when kswapd is turned off, the av-
erage reclaim size is greatly reduced. The page re-fault ratio
is decreased, and thus the performance could be improved.
However, the ratio of heavy-weight direct reclaiming is in-
creased, and thus the performance could be degraded. There
is a tradeoff between the reclaim size and the performance.

To further illustrate the tradeoff, the latency of launching
seven apps are tracked when kswapd is turned on or turned
off. The results are shown in Figure 8.
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Figure 8: The percentage of increased latency of launching
seven apps with and without kswapd.

The results show that at the beginning, the latency when
kswapd is turned on is similar to when it is turned off. This
is because free pages are sufficient at the beginning. As the
number of launching operations increases, the free pages in
memory will be consumed. Thus, during this period, the per-
formance when kswapd is turned off is better than that when
kswapd is turned on. This is because when kswapd is turned

on, reclaim operations are triggered and the page re-fault ratio
becomes higher than that when kswapd is turned off. When
the free pages are used up, without kswapd, direct reclaiming
will be triggered to reclaim free pages and thus the perfor-
mance will be worse than with kswapd.

The above experimental results show that there is a tradeoff
between the reclaim size and the overall performance. The
preliminary idea is to exploit the tradeoff to find the optimal
reclaim size for Android smartphones.

6 Related Work

Buddy system has been used to manage memory for many
years. Many previous works were focusing on the design of
buddy system for managing memory. Burton [2] proposed a
generalized buddy system. By using the Fibonacci numbers as
block size, Knuth [7] proposed the Fibonacci buddy system.
Moreover, this idea was complemented by Hirschberg [6],
and was optimized by Hinds [5], Cranston and Thomas [3]
to locate buddies in time similar to the binary buddy system.
Shen and Peterson [14] proposed the weighted buddy system.
Page and Hagins [12] proposed the dual buddy system, an
improvement to the weighted buddy system, to reduce the
amount of fragmentation to that of the binary buddy system.
A buddy system designed for disk-file layout with high stor-
age utilization was proposed by Koch [8]. Brodal et al. [1]
improved buddy system for fast allocation and deallocation.
Marotta et al. [10] proposed non-blocking buddy system for
scalable memory allocation on multi-core machines. This
work shows that the existing buddy system is not working
well for Android smartphones.

7 Conclusion

Existing Linux memory management algorithms are designed
for servers and PCs. Android inherits Linux kernel and thus
the memory management algorithms are transplanted to smart-
phones. The experimental results show that these algorithms
mismatch the characteristics of apps running on Android s-
martphones. First, the large-size reclaiming induces high page
re-fault ratio on smartphones when running popular apps and
thus degrades the performance. Moreover, the limited reclaim
scope aggravates this punishment. Through comprehensive
analysis, a tradeoff between the reclaim size and the perfor-
mance is uncovered. To improve performance, a preliminary
idea is proposed to exploit this tradeoff.
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8 Discussion Topics

According to the previous experimental results and analy-
sis, there are two additional preliminary ideas which could
improve the performance of Android smartphones.

Idea 1: For mobile devices, background status and fore-
ground status should be considered in the priority decision
of reclaiming. For example, the reclaiming procedure could
evict some active_anonymous pages of background process-
es before evicting active_file pages of foreground processes.
This is because the pages belong to foreground processes are
much more important than the pages belong to background
processes for user experience on mobile devices.

Idea 2: The order used to organize free pages of buddy
system should be reduced according to the characteristics of
requests on mobile devices. For example, the maximum order
(default 11) could be reduced to 9, because the maximum
request size of mobile devices is 28 pages.

The order of allocation on Android smartphones is usually
smaller than 4, but the maximum order used to organize free
pages is 11. This will degrade the efficiency of allocation
operations. According to the allocation procedure of buddy
system, when the small-order free space is used up, buddy
system has to breakdown the large-order free space to satisfy
the allocation application and then insert the remaining part
into buddy system. An example of this case is shown in Figure
9.
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Figure 9: Allocation procedure of buddy system for 2 free
pages.

In the example, when a process requests 2 free pages, the
list with order=1 will be checked in buddy system first. There
is no free page, then the list with order=2 will be checked
and so on. Until checking the list with order=5, there are free
pages, thus 32 pages will be broken down and 2 pages will be
allocated to the process and remaining part will be inserted to
other lists. Thus, a large maximum order could degrade the
efficiency of buddy system.
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