
File Systems as Processes

Jing Liu, Andrea C. Arpaci-Dusseau, Remzi H. Arpaci-Dusseau, Sudarsun Kannan⇤

University of Wisconsin-Madison, Rutgers University⇤

Abstract
We introduce file systems as processes (FSP), a storage ar-
chitecture designed for modern ultra-fast storage devices.
By building a direct-access file system as a standalone
user-level process, FSP accelerates file system develop-
ment velocity without compromising essential file system
properties. FSP promises to deliver raw device-level per-
formance via highly tuned inter-process communication
mechanisms; FSP also ensures protection and metadata
integrity by design. To study the potential advantages and
disadvantages of the FSP approach, we develop DashFS,
a prototype user-level file system. We discuss its architec-
ture and show preliminary performance benefits.

1 Introduction
The evolution of storage devices continues apace. For
example, the access latency of a 4KB block on NVM
storage devices like Optane SSD now takes less than 10
microseconds [9, 11, 14], whereas in the last generation,
the same operation costs roughly 100 microseconds on
flash-based SSDs [22]. Because storage devices are now
realizing the promise of the “microsecond era” [2], the
need to exploit their performance potential is growing.

These dramatic changes place great strain on existing
operating system architecture. Due to legacy design
decisions, based primarily on the presence of ultra-slow
devices (i.e., hard drives), the traditional operating system
storage stack hinders an application’s ability to realize
potential performance gains. For example, the switch
into the kernel via system call incurs microseconds [33];
while this overhead was tolerable in the era of hard drives,
it is now a dominant cost [7]. With fast devices arriving,
kernel involvement is considered harmful and operating
system designers can no longer ignore this overhead [2].

Researchers have recognized the problem that software
is becoming bottleneck and several prior works attempt
to overcome this problem, including systems such as
Moneta [7], Arrakis [29], Aerie [38], Strata [24], and De-
vFS [19]. However, most of those systems [7, 24, 29, 38]
do not completely eliminate kernel overhead, instead
trapping into the kernel for control plane operations. One
reason for retaining kernel mediation in the control plane
is that device interaction traditionally relies on kernel
drivers (like in Aerie). Furthermore, ensuring storage
system metadata integrity and handling data sharing are
fundamentally difficult without a centralized management
component [19]. As such, library based operating system

architectures cannot fully remove kernel intervention.
One alternative is found in DevFS [19], a direct-access
file system built into the device, but it is inherently limited
by hardware constraints.

In this paper, we introduce a new storage architecture,
file systems as processes (FSP), which builds a true direct-
access file system as a user-level process. A file system
process directly manages the device, enforces permissions,
and ensures metadata integrity, with nearly zero kernel in-
volvement. This architecture is enabled by the availability
of user-level NVMe device drivers [20, 45]; it is now feasi-
ble to operate fast storage hardware entirely in user space,
instead of relying on software virtualization [23, 29].

FSP is a reinvention of microkernel architec-
tures [13, 15, 25], with a new purpose in mind: high-
performance storage I/O. We believe this renaissance is
attractive for the following reasons.

The first reason is developer velocity; developing
user-level code is easier than kernel hacking, allowing
developers to innovate rapidly. User-level system building
allows developers to bring a full range of development
tools to bear during system construction, and it is no
surprise that most of the systems built at large-scale com-
panies such as Google are realized at user-level [5, 8, 12].

Second, a standalone process can ensure metadata
integrity, coordinate data sharing, and guarantee crash
consistency, because the process serves as part of the
trusted computing base. Library-based approaches,
in contrast, cannot realize these important properties,
because the library is part of the application and thus
cannot be trusted directly.

Third, FSP eases cluster management [6]. With care in
its design, a file system process could be readily upgraded
without terminating user applications.

Finally, and critically, FSP can deliver high perfor-
mance. Our user-level inter-process communication (IPC)
mechanism is efficient, because it is designed to avoid
costly kernel crossings and leverage fast inter-core IPC. As
cache-to-cache transfers cost only tens of cycles on mod-
ern multi-core processors [33], inter-core IPC incurs min-
imal overhead, thus avoiding same-core context switches
between applications and file system processes. Conse-
quently, the renaissance of file systems as processes could
possibly bridge the performance gap between the “free
kernel trapping” age and the ultra-fast storage device era.

The rest of this paper is structured as follows. We
first discuss background and related work (§2), and then
describe the FSP storage architecture and its challenges
(§3). Next, we discuss the implementation of our DashFS
prototype, and show a preliminary evaluation (§4).
Finally, we conclude (§5).

2 Background and Related Work
To enable direct storage access for user-level applications,
several file systems or I/O frameworks have been proposed.
Moneta-D [7], which customizes SSDs to enable direct
data access, pushes permissions checking into device reg-
isters while maintaining metadata management inside the
kernel. Aerie [38] is a trusted user-level file server process.
However, as Aerie primarily targets storage-class memory
and the kernel is in charge of storage access, trapping
overhead is not completely removed from I/O path.

Arrakis [29] relies on hardware virtualization tech-
niques to manages data plane operations in user space,
while the OS is required for handling control plane
operations. As a result, all file system metadata operations
(e.g., increasing the inode size) must trap into the kernel.
Strata [24] aims to unify storage devices of different
speeds and its foreground threads directly access the NVM
device from user-level. However, Strata must trap into the
kernel when files are shared, and concurrent access is man-
aged at the OS-level with a complicated lease mechanism.
Reflex [21] uses a user-level NVMe driver to provide com-
parable performance for remote flash, but does not provide
a file abstraction and mostly works for a single application.

DevFS [19] and Willow [32] address this direct access
problems at the device level. However, both of them suffer
from the memory capacity and CPU constraints inside
the device. Device memory is limited, making it hard for
those hardware-oriented file systems to use sophisticated
data structures to optimize performance.

FUSE [36] (Filesystem in Userspace) is a widely used
user-space file system framework. It is significantly differ-
ent from our approach because it relies upon a kernel mod-
ule which leads to poor performance [31, 37]. ZUFS [16]
aims to be a replacement of FUSE by leveraging “zero-
copy” in I/O path for low latency, but it suffers from a
similar performance penalty as FUSE due to its costly
in-kernel control plane.

Our architecture is derived from classic microker-
nels [15]. However, microkernels have generally traded
performance primarily for increased security and modu-
larity. While researchers have reduced performance over-
heads [25], they were not focused upon high-performance
I/O, which is a fundamental difference in our work.

Microkernel overhead mainly stems from kernel
involvement in IPC [26], which includes the direct cost
of kernel crossing and indirect pollution of processor
structures (i.e., caches). Our approach, instead, requires

App Process
FS Lib

App Process
FS Lib

OS Kernel

… D
ev

ice
De

vic
e

FS
ProcessCtrl.

Data

Trust Boundary

Ctrl.
Data

Figure 1: File Systems as Processes Architecture
minimal kernel interaction for IPC between application
and file system processes, and leverages modern multi-
core systems for cache efficiency. In addition, the file
system process leverages the kernel’s general OS function-
ality, such as memory management and CPU scheduling,
thus directly benefiting from years of kernel innovation.

3 Direct-Access File Systems Processes
In this section, we first present the general architecture
of a user-level file system process and then discuss the
challenges of realizing this new storage architecture.

3.1 Architecture
As shown in Figure 1, our file system process is a
standalone user-level process, which directly operates
storage devices and communicates with user applications.

Each application has a private communication channel
with the file system process; the channel is logically
separated into a control plane and data plane. During the
processing of file I/O requests, the kernel is not involved.
The file system process is responsible for run-time file
management, metadata integrity, concurrent file access
support, data persistence, crash consistency, and all other
features commonly found within file systems.

Because the application and file system are in different
address spaces, the operating system is only involved
at initialization of file-system access for a given client
process. During initialization, the kernel provides a
trusted mechanism for the file system process to recognize
the application, as well as obtain and record the user’s
credential information. The file system process then sets
up a secure and high-performance channel to the client
process which is used in all subsequent communication.

User applications access the file system via a library
which we calls FS Lib. FS Lib is in charge of providing
a POSIX-like API, translating the API invocation into a
request submission via the dedicated communication
channel, and subsequently unpacking and returning a
response to the calling application.

3.2 Challenges
We now discuss challenges in realizing a file system as a
user-level process. The traditional storage stack has been
developed for decades, and many ideas can be incorpo-
rated from previous systems [17, 30, 35, 41]. Our focus
is upon the new challenges that our approach creates.

VFS

File System

BIO

Kernel Driver

Permission
Concurrency/Share

Buffer
Data Strucure

Access Methods

Block Management
BIO Scheduling

App

(a) Kernel Storage Stack (b) Process Storage Stack

Frontend

VFS

File System

BlO

User-level
Driver

App App

Kernel

User
space

Crash Consistency
FS

Process

User
space

App App

Figure 2: Anatomy of the Storage Stack
Figure 2 (a) shows the traditional kernel storage stack

and (b) shows our approach. The traditional approach
places the entire file system within the kernel, including
critical security components involved with permissions
checking, and essential integrity maintenance aspects
such as crash consistency [1]. In our approach, all such
functionality is migrated into the file system process,
which directly manages the underlying high-speed device.

Among all the challenges for building a high-
performance file system as a process, we discuss five
major concerns: efficient communication, concurrency,
security, interrupt handling, and hardware integration.

3.2.1 Efficient Communication Channel

Our motivation of moving the storage stack into user-
space is to avoid high kernel-trapping overheads. High
performance inter-process communication (IPC), situated
between the file system process and all application
processes, serves as the foundation of this argument.
Conceptually, IPC overhead must be lower than tradi-
tional storage costs, which includes trap handling, kernel
crossing, and data movement across kernel and user-space.

One potential avenue of exploration is to utilize the
multi-core nature of modern hardware. For example,
cache-to-cache communication may only cost tens of
cycles on modern multicore processors [33]. By locating
a file system process on one core and a client process on
another, we can avoid an expensive same-core context
switch during communication, instead relying on fast
cache-to-cache transfers and improving application cache
locality while reducing latency. Furthermore, by utilizing
shared memory segments between clients and the file
system process, data movement can be highly efficient,
in some cases even avoiding a copy [28, 39].

3.2.2 Frontend Threading Model

One of the major difference between the kernel storage
stack and our FSP approach is that the user-created
thread is no longer the vessel which performs file system
operations; instead, the file system process creates threads

which do work on behalf of client processes. In the
diagram, this server concurrency is managed by the
Frontend component, which is responsible for creating
threads to service requests, and then managing said
concurrency efficiently.

The complexity of threading in a file system process
is similar to that of building server-based applica-
tions [34, 42]. However, we believe the problem is not
well-examined in this storage-oriented domain, and thus
the following challenges arise.

First, in contrast to the in-kernel model, the file system
process must create and manage a number of extra threads,
which may consequently increase scheduling contention
and incur a performance penalty. Thus, great care must
be given to the design of the concurrency architecture.

Second, although the device interface is asynchronous,
the threads executing file system functions can become
blocked due to other reasons such as locks. Thus, careful
structuring of threads and the way in which they handle
blocking is warranted.

Third, the way in which the file system process obtains
requests from client processes is important to consider.
Simple polling-based approaches could be fast but may
waste cycles and consume energy; slower interrupt-driven
techniques have the opposite concerns. Trade-offs based
on two-phased techniques may be most promising [3];
we discuss this topic further below, as an analogous issue
exists when interacting with the device itself.

3.2.3 Connecting Processes to I/O Operations

Moving down in the storage stack, the VFS layer mainly
handles the runtime states and dynamic behavior of
the storage stack, such as permission checking, file
sharing coordination, and buffer management. However,
I/O-related information is maintained as part of the
process’s OS state, and thus readily available to in-kernel
software; in contrast, such state is hidden from a file
system process. If a process’s I/O state changes in a way
that is meaningful to the file system process, the process
must be informed by the OS in a robust manner.

Permission checking is a run-time behavior which
compares the user process’s credentials with permission
information stored by the file system. In the process-based
approach, our assumption is that the file system process
is trusted as part of Trusted Computing Base (TCB) [40].
In this case, we implicitly trust the code of the file system
process; thus, the major difficulty is the information gap
of obtaining the proper process credentials.

To address this problem, we believe the following
actions must be taken. First, the file system process needs
the kernel to help establish a secure communication
channel. As such, the kernel needs to have mechanisms
for detecting and denying an initialization request from
unqualified processes and for passing valid process

credentials to file system process securely. Second, when
a process exits, the kernel is required to trigger the file
system process’s cleanup procedure (e.g., by releasing
file handles and tearing down communication channels).
Third, there are corner cases that are related to access
capabilities, such as when fork() is called. Specifically,
for a new process created by fork(), the kernel needs to
prevent the child from accessing its parent’s connection to
the file system process; if the child wishes to access the file
system process, it will have to establish a new connection.

Support for memory-mapped files typically requires
integration with kernel page-fault handling. However,
this approach is problematic for a file system process
because it may not be aware of page faults that occur. One
way to support user-level mmap() could be to implement
a dedicated kernel module for the file system process
that handles page faults by allocating pages and adding
them to the page table, thus ensuring the same level of
performance as kernel-level file systems.

3.2.4 Handling of Interrupt-free I/O Requests
The block layer, located beneath the file system in the
traditional storage stack, is another layer that will differ
greatly with the process-based approach. Making use of
user-level storage device drivers means removing kernel’s
interrupt handling mechanism entirely. As a result, the
file system process must poll for the completion of the
I/O request instead of relying on the OS to invoke the
interrupt handler upon request completion. Although
polling can improve performance [20, 43], exactly when
and where to poll for completion is an open question,
because there is a trade-off between CPU utilization and
I/O latency with respect to different workloads [27].

The problem becomes more interesting when we
consider the threading model of both device polling and
the Frontend together. The file system process can have
dedicated threads for polling, which makes the manage-
ment of polling simple. Alternatively, the file system
process can integrate the I/O completion event into an
event-driven framework in Frontend. The former choice,
despite its simplicity, may result in performance losses in
terms of latency, a phenomenon observed in mTCP [18].

The interrupt-free I/O mechanism also introduces a new
challenge to buffer management in the block layer. After
allocating buffers and before issuing a device I/O request,
we must pin the target buffer, which is not straightforward
in user-space. As for block I/O scheduling, accomplishing
the same scheduling effect requires not only that we
re-implement a block I/O request scheduler, but that we
also re-design the scheduler to handle both issuing and
polling phases of every single request.

3.2.5 Indirections Designed for Direct Access
Although the kernel storage stack is a robust and solid
starting point, implementing an identical stack within the

file system process is not our ultimate goal. Instead, we
foresee changes to these layers and components inside
each layer for several reasons.

First, modern storage devices provide new advanced
features which could make certain aspects of the file
system process much simpler. For example, the power-
loss protection capacitors inside flash devices provide
new opportunities for crash consistency [19]. Second,
this multi-layer software architecture can be harmful to
performance, due to the excessive costs of modularity.
For example, a recent study [46] has found that linux mul-
tiqueue [4] (inside the BIO layer), developed to improve
flash performance, fails to exploit device performance
and incurs long latencies. Third, researchers have pointed
out the defects of current storage layers. For example, the
block-I/O scheduler cannot reorder I/O requests due to
consistency semantics [44], thus limiting performance.

Given that the file system process must be created
from scratch, perhaps there exists a new opportunity to
reconsider file system architecture. By considering these
concerns from the start, it is possible that a new, more
efficient, and coherent whole can be realized.

4 DashFS Prototype
We implement a prototype of file system process, DashFS,
to further examine the issues in realizing the FSP
approach. We first describe its design principles, then
briefly sketch its implementation, and finally show results
from an early evaluation.

4.1 DashFS Design Principles
From the challenges listed in the last section, we have
derived the following design principles:
Trust boundary: DashFS is regarded as a trusted
extension of the kernel. User applications are not trusted
and must be isolated from other users and the DashFS
address space.
Minimal kernel interaction: Kernel involvement is
heavyweight and should be avoided. The number of traps
into the kernel should not scale with I/O requests.
Concurrency awareness: To provide a fully functional
file system, DashFS should be designed with sharing in
mind and scale gracefully under load.
4.2 Implementation
We implement DashFS by extending the user-level NVMe
driver provided by SPDK [45]. Our current DashFS proto-
type supports regular file system operations without con-
sidering crash consistency and uses simple data structures.

The FS Lib library implements an interface that is
similar to POSIX, including open(), read(), write(),
stat() and close(). The FS Lib also offers init() for
a user application to begin file system usage, which
creates a private communication channel for each user
application. The communication channel is based upon

shared memory, organized as several request buffers, data
buffers, and a lockless request queue.

In the current DashFS implementation of Frontend,
we maintain a thread pool with a configurable number
of threads. Each thread handles the whole lifetime of
a request. We also proactively pull requests from the
request ring to avoid kernel trapping.

During initialization (init()), an application sends a
message via UNIX domain socket to DashFS. The kernel
(while processing the socket) copies the application’s
credential information to the DashFS address space from
an in-kernel process structure, allocates a shared memory
segment for the private communication channel, and
returns a key for the channel to the user application. In
the block I/O layer (BIO) of our prototype, each thread in
Frontend synchronously polls for completion of a request.

4.3 Preliminary Evaluation
Considering our preference for simplicity in DashFS, we
do not yet expect DashFS to outperform state-of-the-art
file systems. However, we believe it is valuable to
understand the basic performance implications of DashFS
and start examining the challenges. In this section, we
first present results of simple micro-benchmarks; we
then demonstrate the effectiveness of our communication
channel, which can serve as a solid basis for future
development of DashFS.

All experiments are conducted on a system with
Intel(R) Core(TM) i7-8700K CPU, 32G RAM and Intel
Optane SSD 905P (960GB). The maximal throughput
of the device is reported as 575K IOPS [10].

4.3.1 Micro-benchmark
We use a single-thread micro-benchmark to measure the
basic latency of file system operations. The benchmark
creates 1,000 files,writes a 4KB block to each file followed
by issuing a fsync, and then closes the file. The page cache
is cleared for each iteration. When using ext4, the applica-
tion must trap into the OS at least four times for each file;
hence average latency is 74.5us for each operation, With
DashFS, the average latency decreases to 41.7us.

For deeper insight on the overheads of ext4’s kernel soft-
ware stack, we measure the latency for single 4KB write
requests with O DIRECT enabled for a pre-allocated file and
observe the average latency as 11.52us. In contrast, using
the direct-access NVMe driver reduces access latency
to just 6.68us, a 43% reduction. While it is too early to
claim that DashFS outperforms kernel-level file systems,
the results show the potential gains with direct-access that
one could achieve after further improvements.

4.3.2 Evaluation of Communication Channel
We now investigate the raw costs of IPC. Our experiments
show that sub-microsecond latency is achievable on
modern hardware.

1 2 4 8 16 32
0

2.5

5

7.5

10

App Thread Number

IO
P

S
 (

M
ill

io
n
 R

e
q
s/

se
c)

0.0

0.2

0.4

0.6

L
a
te

n
cy

 (
u
s)

IOPS
Latency

Figure 3: Performance of Communication Channel
Our communication channel between DashFS and

each user application uses a shared lockless ring buffer.
In our experiment (Figure 3), we configure the ring buffer
to 64 entries and let user processes issue 4KB sequential
file system write requests. We use memory as DashFS’s
backend to isolate the overhead of this communication
channel. Each user thread continuously appends to
different files with DashFS having two serving threads.
The overall latency of each request includes adding the
request to the request ring, dequeuing the request from the
ring, copying the data from the corresponding data buffer
region associated with the operation, and finally the user
application checking the return value of the I/O request.
This experiment demonstrates that with an increasing
number of user threads, the communication channel
scales well in terms of both latency and throughput.

Based on our preliminary results, the communication
channel between the file system process and application
threads can be regarded as efficient enough to support the
performance goals of our file system process. First, for a
reasonable level of user concurrency, our communication
channel is able to achieve sub-microsecond latency.
Second, as modern NVMe devices currently can deliver
roughly one million IOPS, the communication channel
is unlikely to be a throughput bottleneck [10].

5 Conclusion
Accessing fast storage without kernel involvement has
been a central concern for many years. In this paper, we
have argued that file systems as processes may be one
avenue for progress in this important direction. Our study
on the challenges of realizing such a file system reveals
some promise, but many future hurdles must be overcome
to fully reap the benefits that this new (and yet, old) idea
promises.

Acknowledgements
We thank Bill Bolosky (our shepherd), the anonymous
reviewers and the members of ADSL for their valuable
input. This material was supported by funding from NSF
grants CNS-1421033, CNS-1763810 and CNS-1838733,
and DOE grant DE-SC0014935. Any opinions, findings,
and conclusions or recommendations expressed in this
material are those of the authors and may not reflect the
views of NSF, DOE, or any other institutions.

References
[1] Remzi H. Arpaci-Dusseau and Andrea C. Arpaci-Dusseau.

Operating Systems: Three Easy Pieces. Arpaci-Dusseau
Books, 1.00 edition, August 2018.

[2] Luiz Barroso, Mike Marty, David Patterson, and
Parthasarathy Ranganathan. Attack of the Killer Microsec-
onds. Communications of the ACM, 60(4):48–54, 2017.

[3] Adam Belay, George Prekas, Ana Klimovic, Samuel
Grossman, Christos Kozyrakis, and Edouard Bugnion.
IX: A Protected Dataplane Operating System for High
Throughput and Low Latency. In Proceedings of the 11th
Symposium on Operating Systems Design and Implemen-
tation (OSDI ’14), Broomfield, CO, October 2014.

[4] Matias Bjørling, Jens Axboe, David Nellans, and Philippe
Bonnet. Linux Block IO: Introducing Multi-queue SSD
Access on Multi-core Systems. In Proceedings of the 6th
ACM International on Systems and Storage Conference
(SYSTOR ’13), Haifa, Israel, June 2013.

[5] Nathan Bronson, Zach Amsden, George Cabrera, Prasad
Chakka, Peter Dimov, Hui Ding, Jack Ferris, Anthony
Giardullo, Sachin Kulkarni, Harry Li, et al. TAO:
Facebook’s Distributed Data Store for the Social Graph. In
Proceedings of the USENIX Annual Technical Conference
(USENIX ’13), San Jose, CA, June 2013.

[6] Brendan Burns, Brian Grant, David Oppenheimer, Eric
Brewer, and John Wilkes. Borg, Omega, and Kubernetes.
ACM Queue, 14(1):10, 2016.

[7] Adrian M. Caulfield, Todor I. Mollov, Louis Alex Eisner,
Arup De, Joel Coburn, and Steven Swanson. Providing
Safe, User Space Access to Fast, Solid State Disks. In
Proceedings of the 17th International Conference on
Architectural Support for Programming Languages and
Operating Systems (ASPLOS XVII), London, England,
UK, March 2012.

[8] Fay Chang, Jeffrey Dean, Sanjay Ghemawat, Wilson C.
Hsieh, Deborah A. Wallach, Mike Burrows, Tushar
Chandra, Andrew Fikes, and Robert E. Gruber. Bigtable:
A Distributed Storage System for Structured Data. ACM
Transactions on Computer Systems, 26(2):4, 2008.

[9] Wooseong Cheong, Chanho Yoon, Seonghoon Woo,
Kyuwook Han, Daehyun Kim, Chulseung Lee, Youra
Choi, Shine Kim, Dongku Kang, Geunyeong Yu, et al. A
Flash Memory Controller for 15µs Ultra-Low-Latency
SSD Using High-Speed 3D NAND Flash with 3µs Read
Time. In 2018 IEEE International Solid-State Circuits
Conference-(ISSCC). IEEE, 2018.

[10] Intel Cooperation. Intel Optane SSD 905P Series Spec-
ification. https://ark.intel.com/content/www/us/en/ark/
products/series/129835/intel-optane-ssd-905p-series.
html.

[11] Annie Foong and Frank Hady. Storage As Fast As Rest
of the System. In 2016 IEEE 8th International Memory
Workshop (IMW), pages 1–4. IEEE, 2016.

[12] Sanjay Ghemawat, Howard Gobioff, and Shun-Tak Leung.
The Google File System. In Proceedings of the 19th ACM

Symposium on Operating Systems Principles (SOSP ’03),
Bolton Landing, New York, October 2003.

[13] David B. Golub, Daniel P. Julin, Richard F. Rashid,
Richard P. Draves, Randall W. Dean, Alessandro Forin,
Joseph Barrera, Hideyuki Tokuda, Gerald Malan, and
David Bohman. Microkernel Operating System Architec-
ture and Mach. In Proceedings of the USENIX Workshop
on Micro-Kernels and Other Kernel Architectures, 1992.

[14] Frank T. Hady, Annie Foong, Bryan Veal, and Dan
Williams. Platform Storage Performance With 3D XPoint
Technology. Proceedings of the IEEE, 105(9):1822–1833,
2017.

[15] Per Brinch Hansen. The Nucleus of a Multiprogramming
System. Communications of the ACM, 13(4):238–241,
1970.

[16] Boaz Harrosh. Zero Copy User-Mode FileSystem.
https://lwn.net/Articles/756625/.

[17] William Jannen, Jun Yuan, Yang Zhan, Amogh Akshintala,
John Esmet, Yizheng Jiao, Ankur Mittal, Prashant Pandey,
Phaneendra Reddy, Leif Walsh, et al. BetrFS: A Right-
Optimized Write-Optimized File System. In Proceedings
of the 13th USENIX Symposium on File and Storage
Technologies (FAST ’15), Santa Clara, CA, February 2015.

[18] EunYoung Jeong, Shinae Wood, Muhammad Jamshed,
Haewon Jeong, Sunghwan Ihm, Dongsu Han, and
KyoungSoo Park. mTCP: a Highly Scalable User-level
TCP Stack for Multicore Systems. In Proceedings of
the 10th Symposium on Networked Systems Design and
Implementation (NSDI ’14), Seattle, WA, April 2014.

[19] Sudarsun Kannan, Andrea C. Arpaci-Dusseau, Remzi H.
Arpaci-Dusseau, Yuangang Wang, Jun Xu, and Gopinath
Palani. Designing a True Direct-Access File System with
DevFS. In Proceedings of the 16th USENIX Conference
on File and Storage Technologies (FAST ’18), Oakland,
CA, February 2018.

[20] Hyeong-Jun Kim, Young-Sik Lee, and Jin-Soo Kim.
NVMeDirect: A User-space I/O Framework for
Application-specific Optimization on NVMe SSDs. In
8th USENIX Workshop on Hot Topics in Storage and File
Systems (HotStorage ’16), Denver, CO, June 2016.

[21] Ana Klimovic, Heiner Litz, and Christos Kozyrakis.
ReFlex: Remote Flash ⇡ Local Flash. In Proceedings
of the 22nd International Conference on Architectural
Support for Programming Languages and Operating
Systems (ASPLOS ’17), Xi’an, China, April 2017.

[22] Sungjoon Koh, Changrim Lee, Miryeong Kwon, and
Myoungsoo Jung. Exploring System Challenges of
Ultra-Low Latency Solid State Drives. In 10th USENIX
Workshop on Hot Topics in Storage and File Systems
(HotStorage ’18), Boston, MA, July 2013.

[23] Patrick Kutch. PCI-SIG SR-IOV Primer: An introduction
to SR-IOV technology. Intel application note, pages
321211–002, 2011.

[24] Youngjin Kwon, Henrique Fingler, Tyler Hunt, Simon
Peter, Emmett Witchel, and Thomas Anderson. Strata:

A Cross Media File System. In Proceedings of the 26th
ACM Symposium on Operating Systems Principles (SOSP
’17), Shanghai, China, October 2017.

[25] Jochen Liedtke. On-µkernel Construction. In Proceedings
of the 15th ACM Symposium on Operating Systems
Principles (SOSP ’95), Copper Mountain Resort, CO,
December 1995.

[26] Zeyu Mi, Dingji Li, Zihan Yang, Xinran Wang, and
Haibo Chen. SkyBridge: Fast and Secure Inter-Process
Communication for Microkernels. In Proceedings of the
EuroSys Conference (EuroSys ’19), Dresden, Germany,
March 2019.

[27] Amy Ousterhout, Joshua Fried, Jonathan Behrens, Adam
Belay, and Hari Balakrishnan. Shenango: Achieving
High CPU Efficiency for Latency-sensitive Datacenter
Workloads. In Proceedings of the 16th Symposium on
Networked Systems Design and Implementation (NSDI
’15), Boston, MA, February 2019.

[28] Vivek S. Pai, Peter Druschel, and Willy Zwaenepoel. IO-
Lite: A Unified I/O Buffering and Caching System. ACM
Transactions on Computer Systems, 18(1):37–66, 2000.

[29] Simon Peter, Jialin Li, Irene Zhang, Dan R. K. Ports, Doug
Woos, Arvind Krishnamurthy, Thomas Anderson, and
Timothy Roscoe. Arrakis: The Operating System Is the
Control Plane. ACM Transactions on Computer Systems,
33(4):11:1–11:30, 2016.

[30] Thanumalayan Sankaranarayana Pillai, Ramnatthan
Alagappan, Lanyue Lu, Vijay Chidambaram, Andrea C.
Arpaci-Dusseau, and Remzi H. Arpaci-Dusseau. Appli-
cation Crash Consistency and Performance with CCFS.
ACM Transactions on Storage, 13(3):19:1–19:29, 2017.

[31] Aditya Rajgarhia and Ashish Gehani. Performance and
Extension of User Space File Systems. In Proceedings
of the 2010 ACM Symposium on Applied Computing (SAC

’10), March 2010.

[32] Sudharsan Seshadri, Mark Gahagan, Sundaram Bhaskaran,
Trevor Bunker, Arup De, Yanqin Jin, Yang Liu, and Steven
Swanson. Willow: A User-Programmable SSD. In
Proceedings of the 11th Symposium on Operating Systems
Design and Implementation (OSDI ’14), Broomfield, CO,
October 2014.

[33] Livio Soares and Michael Stumm. FlexSC: Flexible
System Call Scheduling with Exception-Less System
Calls. In Proceedings of the 9th Symposium on Oper-
ating Systems Design and Implementation (OSDI ’10),
Vancouver, Canada, December 2010.

[34] Akshitha Sriraman and Thomas F. Wenisch. µTune:
Auto-Tuned Threading for OLDI Microservices. In
Proceedings of the 13th USENIX Conference on Operating
Systems Design and Implementation (OSDI ’18), Carlsbad,
CA, October 2018.

[35] Christopher A. Stein, John H. Howard, and Margo I.
Seltzer. Unifying File System Protection. In Proceedings
of the USENIX Annual Technical Conference (USENIX

’01), Boston, MA, June 2001.

[36] Miklos Szeredi. Filesystem in Userspace.
https://github.com/libfuse/libfuse.git.

[37] Bharath Kumar Reddy Vangoor, Vasily Tarasov, and
Erez Zadok. To FUSE or Not to FUSE: Performance
of User-Space File Systems. In Proceedings of the 15th
USENIX Conference on File and Storage Technologies
(FAST ’17), Santa Clara, CA, February 2017.

[38] Haris Volos, Sanketh Nalli, Sankarlingam Panneerselvam,
Venkatanathan Varadarajan, Prashant Saxena, and
Michael M. Swift. Aerie: Flexible File-system Interfaces
to Storage-class Memory. In Proceedings of the EuroSys
Conference (EuroSys ’14), Amsterdam, The Netherlands,
April 2014.

[39] Thorsten Von Eicken, Anindya Basu, Vineet Buch, and
Werner Vogels. U-Net: A User-level Network Interface for
Parallel and Distributed Computing. In Proceedings of the
15th ACM Symposium on Operating Systems Principles
(SOSP ’95), Copper Mountain Resort, CO, December
1995.

[40] Carsten Weinhold and Hermann Härtig. VPFS: Building
a Virtual Private File System with a Small Trusted Com-
puting Base. In Proceedings of the EuroSys Conference
(EuroSys ’08), Glasgow, Scotland UK, March 2008.

[41] Zev Weiss, Andrea C. Arpaci-Dusseau, and Remzi H.
Arpaci-Dusseau. DenseFS: a Cache-Compact Filesystem.
In 10th USENIX Workshop on Hot Topics in Storage and
File Systems (HotStorage ’18), Boston, MA, July 2013.

[42] Matt Welsh, David Culler, and Eric Brewer. SEDA: An
Architecture for Well-conditioned, Scalable Internet
Services. In Proceedings of the 18th ACM Symposium on
Operating Systems Principles (SOSP ’01), Banff, Canada,
October 2001.

[43] Jisoo Yang, Dave B. Minturn, and Frank Hady. When
Poll Is Better than Interrupt. In Proceedings of the 10th
USENIX Symposium on File and Storage Technologies
(FAST ’12), San Jose, CA, February 2012.

[44] Suli Yang, Tyler Harter, Nishant Agrawal, Salini Selvaraj
Kowsalya, Anand Krishnamurthy, Samer Al-Kiswany,
Rini T. Kaushik, Andrea C. Arpaci-Dusseau, and Remzi H.
Arpaci-Dusseau. Split-level I/O Scheduling. In Proceed-
ings of the 25th ACM Symposium on Operating Systems
Principles (SOSP ’15), Monterey, California, October
2015.

[45] Ziye Yang, James R. Harris, Benjamin Walker, Daniel
Verkamp, Changpeng Liu, Cunyin Chang, Gang Cao,
Jonathan Stern, Vishal Verma, and Luse E. Paul. SPDK:
A Development Kit to Build High Performance Storage
Applications. In 2017 IEEE International Conference on
Cloud Computing Technology and Science (CloudCom),
pages 154–161. IEEE, 2017.

[46] Jie Zhang, Miryeong Kwon, Donghyun Gouk, Sungjoon
Koh, Changlim Lee, Mohammad Alian, et al. FlashShare:
Punching Through Server Storage Stack from Kernel to
Firmware for Ultra-Low Latency SSDs. In Proceedings
of the 13th USENIX Conference on Operating Systems
Design and Implementation (OSDI ’18), Carlsbad, CA,
October 2018.

