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Abstract
Memory pressure is inevitable as the size of working sets

is rapidly growing while the capacity of dynamic random-
access memory (DRAM) is not. Meanwhile, storage devices
have evolved so that their speed is comparable to the speed
of DRAM while their capacity scales are comparable to that
of hard disk drives (HDD). Thus, hierarchial memory sys-
tems configuring DRAM as the main memory and high-end
storages as swap devices will be common.

Due to the unique characteristics of these modern storage
devices, the swap target decision should be optimal. It is es-
sential to know the exact data access patterns of workloads for
such an optimal decision, although underlying systems cannot
accurately estimate such complex and dynamic patterns. For
this reason, memory systems allow programs to voluntarily
hint their data access pattern. Nevertheless, it is exhausting
for a human to manually figure out the patterns and embed
optimal hints if the workloads are huge and complex.

This paper introduces a compiler extension that automat-
ically optimizes a program to voluntarily hint its dynamic
data access patterns to the underlying swap system using a
static/dynamic analysis based profiling result. To our best
knowledge, this is the first profile-guided optimization (PGO)
for modern swap devices. Our empirical evaluation of the
scheme using realistic workloads shows consistent improve-
ment in performance and swap device lifetime up to 2.65
times and 2.98 times, respectively.

1 Introduction

As modern workloads such as clouds, big data, and machine
learning are becoming more widespread, the size of work-
ing sets is rapidly growing [17, 29]. Compared to this, the
size of the main memory (DRAM) in a single physical ma-
chine is even relatively shrinking [29]. Furthermore, cloud
systems, one of the prevalent and promising computing envi-
ronments, usually recommend memory overcommitment [11].
This trend implies that the main memory alone will not be

able to accommodate all of the working set data. Fortunately,
modern storage devices, such as solid state drives (SSD) or
non-volatile memory (NVM), have rapidly evolved. These
devices are fast enough to be compared even to DRAM and
large enough to be even compared with HDD [2, 6]. Thus,
computing systems utilizing hierarchical memory constructed
with DRAM and fast storage devices will likely spread widely
in the near future.

For this reason, various companies and researchers have
proposed their design schemes [12, 14, 21] for such hierarchi-
cal memory systems. Despite the remarkable improvements
that such designs provide, many of them cannot be instantly
adapted in commodity systems because their new schemes
usually require complex modifications. In contrast, the swap
system can readily serve as a hierarchical memory as almost
every commodity system has embedded and used it, even
decades ago. That said, the swap system should be optimized
because it is designed for HDDs rather than modern storage
devices [24], and there are many differences in the character-
istics of HDD and modern storage devices. Writes for those
are slower than reads; they may even be worn out if the total
number of writes for them exceeds a limit.

The most important part of the hierarchical memory system
is the decision of a location for each data item. Items that
will be frequently accessed should be in the main memory
(DRAM), and the number of writes to the auxiliary memory
(swap device) should be minimized. The swap system in the
Linux kernel has been employing a pseudo least recently used
(LRU) technique [18] for swap target decision, and various
alternative schemes also exist [13, 26, 27]. Nevertheless, such
estimation-based schemes cannot make the optimal decision
for programs with unpredictable dynamic data access patterns.

For this reason, most operating systems provide special
system calls [3, 5] that allow user programs to voluntarily
hint their data access patterns for a specific memory region
to the underlying memory system. For example, the mlock()
system call [5] forces page frames for a specified memory
region to be locked in the main memory. The correct use
of these system calls can significantly improve performance



of memory-intensive workloads and the durability of swap
devices. However, it is exhaustive for a human to manually
analyze detailed dynamic data access patterns of a huge and
complex program. Worse yet, modifying the program to volun-
tarily provide the optimal hints to an underlying swap system
with minimal overhead is excessively hard as well.

We introduce a data access pattern hint injecting compiler
extension, DAPHICX, which aims to automate such tasks.
It receives a program source code and analyzes its data ac-
cess patterns via static/dynamic analysis based profiling. In
detail, the profiling is based on program execution contexts
because the dynamic data access pattern of a code section
depends on its execution context. Though the context-based
profiling guarantees high accuracy, the profiling result is too
large and verbose. Therefore, directly providing the informa-
tion to the underlying swap system can result in an excessive
overhead. To mitigate the overhead, DAPHICX optimizes the
large amount verbose information into compact and meaning-
ful hints. Using the hints, it injects system call invocations
into the program so that the generated program voluntarily
notifies the optimized hints to the underlying swap system. To
our best knowledge, this is the first profile-guided optimiza-
tion (PGO) [9] for a swap system employing modern storage
devices.

We implemented the prototype based on LLVM [8] and
evaluated it with a number of realistic memory-intensive work-
loads. The evaluation results showed consistent improvement
of performance and swap device lifetime of up to 2.65 and
2.98 times, respectively.

2 DAPHICX: Data Access Pattern Hint In-
jecting Compiler eXtension

The overall architecture of a system employing the DAPHICX
is shown in Figure 1. Because the DAPHICX is a compiler
extension, it essentially works as a part of a compiler, which
receives the source code of a program as an input and returns
an executable binary file as an output. The DAPHICX pro-
files dynamic the data access patterns of a given program,
decides which hints to give to the underlying swap system,
and injects system call invocation code into the executable
binary that transfers the hints to the underlying swap system.
After, the hint is transferred to the underlying swap system
when the hint-injected program is executed. Then, the swap
system places data in the DRAM or swap devices based on
the received hints.

2.1 Data Access Pattern Profiling

A program is composed with multiple code sections (e.g.,
functions or loops), and each section has unique character-
istics. Further, even a single code section can have multiple
characteristics depending on its execution context. Because
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Figure 1: A system employing the DAPHICX.

the data access pattern also depends on the context, the DAPH-
ICX first extracts the execution context information from the
received program via static analysis. In detail, it constructs an
execution flow tree by following the execution flow of a given
source code. We call the tree a context tree. Listing 1 and
Figure 2 show an example program source code and its con-
text tree, respectively. In this example, executions of bar()
from foo() and from main() are distinguished as different
contexts.

After the extraction of the context tree, it identifies memory
objects in the program based on the contexts where they
are allocated. In other words, a memory region allocated
from a different execution context is identified as a different
memory object. Finally, it injects memory access profiling
code, which records the number of accesses to each memory
object during the execution of each context into the program
and then executes the profiling code injected program. After
this execution completes, users can finally access the detailed
data access patterns of the program.

2.2 Small Contexts to Meaningful Phases
One straightforward approach is notifying the data access
pattern of each context to the underlying swap system just
before the context starts execution. However, because the
hinting operation itself also has an inherent overhead, this
naive approach can induce significant overhead if the execu-
tion time of each context is not long enough to conceal the
overhead of the hinting operation. In actuality, such cases
are common. For example, the workload of the simulation
environment for quantum chromodynamics [1] that we use
in Section 3 completes running in about 300 seconds, and
it changes its context more than a billion times. This mea-
surement implies the fact that each context in the application
consumes less than one microsecond on average. Thus, if
notifying a data access pattern for a context requires more
than one microsecond, execution of the hint-injected binary
will be dominated by the execution of those hinting opera-



1 i n t b a r ( ) {
2 re turn 4 2 ;
3 }
4
5 void foo ( ) {
6 f o r ( i n t i = 0 ; i < 3 ; i ++)
7 b a r ( ) ;
8 }
9

10 i n t main ( void ) {
11 foo ( ) ;
12 re turn b a r ( ) ;
13 }

Listing 1: An example code.

main()

foo()

for()

bar()

bar()

Figure 2: A context tree of the example code.

tions. To mitigate such overheads, the DAPHICX integrates
small or meaningless contexts into bigger and meaningful
ones, which we call phases, based on two metrics. The first
metric is the execution time of each context. If the execution
time of a context is shorter than a pre-defined threshold, the
context is merged into its parent context until the execution
time of the merged context exceeds the threshold. The second
metric is the data access pattern similarity. If a context and
its parent context have similar data access patterns, we merge
them into one phase to further minimize meaningless hint
notification overheads. Finally, the DAPHICX injects the data
access pattern hinting code for each phase into the program.

2.3 Hinting Data Access Pattern
Among system calls, we use mlock() and munlock() system
calls [5] to hint the data access pattern to the swap system.
In detail, those system calls are used to notify important and
unimportant memory objects respectively, as mlock() guar-
antees page frames for the specified memory region to be
locked in the main memory while munlock() invalidates
those guarantees.

For the selection of memory objects to be locked in, we
calculate a priority for each memory object based on the fol-
lowing two observations. By locking an object, the program
(1) takes benefits from the increased DRAM hit by the number
of accesses to the object and (2) sacrifices available memory

by the size of the object. Consequently, rarely accessed and/or
large memory objects should not be locked in and vice versa.
Based on this simple idea, we designed Equation 1 for the
prioritization of memory objects. The priority of an object
(priority(ob ject)) becomes greater as the number of accesses
to the object (ob ject.nr_accesses) increases and the size of
the object (ob ject.mem_size) becomes smaller. α and β con-
trol the growth rate of each metric’s impact, respectively.

priority(ob ject) =
ob ject.nr_accessesα

ob ject.mem_sizeβ
(1)

After assigning a priority score to every object, we select a
group of important memory objects to be placed in the main
memory for each phase. The total size of the selected objects
should be equal to or smaller than that of the available main
memory, and the sum of the priority of those objects should be
the highest among every possible selection. This requirement
is similar to the knap-sack problem [22]. Because the knap-
sack problem is NP-hard, and we need to trade-off between the
overhead and accuracy, we designed another straightforward
algorithm: the greedy knapsack (Algorithm 1).

Algorithm 1: The greedy knapsack for the objects’ selec-
tion.

Input: ob jects[],mem_limit
1 to_lock← [ ]
2 size_locked← 0
3 Sort ob jects by priority
4 for each Object o in ob jects do
5 if size_locked +o.mem_size < mem_limit then
6 ob jects.remove(o)
7 size_locked← size_locked +o.mem_size
8 to_lock.append(o)
9 else if size_locked < mem_limit×0.9 then

10 Split o in half
11 go to 3
12 end
13 end
14 return to_lock

For each phase, it receives (1) a list of objects (ob jects)
and (2) the available memory size (mem_limit) as input and
returns a set of objects to be locked into (to_lock) the available
memory during the execution of the phase. Lines 1–2 initialize
variables to be used. to_lock is a list of objects to be locked
in, and size_locked is the total size of the objects selected to
be locked in. Line 3 sorts the objects by their priority score
in descending order. In the f or loop spanning lines 4–12,
if the size of the object that has the highest priority in the
unselected list (ob jects) is small enough to be located in the
main memory with previously selected objects (line 5), the
object is moved from the unselected objects list to the selected
objects list (lines 6–8).



If the condition in line 5 is false (the highest priority object
is too large to be placed in the available memory with the
previously selected objects), and the memory utilization rate
with the currently selected objects is lower than 90% (line 9),
it splits the current object in half (line 10) and goes back to
the priority-based sorting task (line 11) and restarts the loop.
As a result, about 90% of the main memory is filled with the
highest priority memory objects.

After this selection, the DAPHICX finally injects the hint-
ing code into the target program. The injected code is exe-
cuted just before the start of each phase of the program. It
calls munlock() for objects not selected to be locked in for
the phase if necessary and locks objects selected to be locked
in via mlock(). Then, the injected hint code is completed and
the original application code for the phase resumes execution.

3 Evaluation

We implemented a prototype of the DAPHICX based on
LLVM [8] for empirical evaluations. The implementation
consists of about 5,000 lines of code for profiling, 1,300 lines
of code for hint injection, and 200 lines of code for hinting
object selection.

3.1 Evaluation Setup
The server we use for evaluation runs the Linux kernel v4.14
and equips an Intel Xeon E7-8837 processor, 128 GB DRAM,
and an Intel Optane SSD as a swap device. We choose
eight benchmarks from the SPEC CPU 2006 benchmark
suite [7]. In the selected benchmarks, both memory-intensive
and compute-intensive workloads are mixed [20].

We simulate memory pressure by reducing the size of the
available memory under the working set size of each work-
load using the memory resource controller [4] of the cgroups
in the Linux kernel. We increase the memory shortage to up
to 30% of the working set size because Openstack, one of
the widely adopted cloud systems, officially recommends a
1.5:1 memory overcommitment [11]. This would not be a
common case, though, because Openstack also attempts to
minimize these situations. We heuristically set thresholds and
constants, such as the time threshold and data access pattern
similarity threshold for the context merging and α and β of
Equation 1. The available memory size for Algorithm 1 is
statically fixed as only 70% of each workload’s working set
size. This pessimistic setup is reasonable for cloud administra-
tors who need to prepare for unpredictable memory pressures.
We repeatedly run every workload three times and use the
average result to minimize the measurement error.

3.2 Evaluation Result
Figures 3(a) and 3(b) show that the DAPHICX achieved im-
provements in the performance and in the lifetime of the swap
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Figure 3: Hint-injected version achieved improvements in the
performance and in the lifetime of the swap device for each
workload with varying amount of memory pressure.

device for each workload, respectively. We define the per-
formance improvement as the runtime ratio of the original
version to the hint-injected version (runtime speedup) and the
lifetime improvement as the ratio of the number of swap out
events (number of reduced writes).

The DAPHICX consistently improves the performance of
every workload. The amount of improvement grows as the
memory shortage becomes severe. It shows a significant per-
formance improvement (over 40% and up to 265%) for five
workloads (482.sphinx3, 429.mcf, 433.milc, 462.libquantum,
and 460.lbm) while the other workloads (401.bzip2, 456.hm-
mer, and 458.sjeng) shows neither improvement nor degrada-
tion. The DAPHICX shows no performance degradation for
any case, including the absence of memory pressure due to
our optimizations and tradeoffs. Nevertheless, 470.lbm shows
a slight performance drop under a memory shortage of 5%
though the amount is negligible.

Our work also consistently reduces the number of writes to
the swap device at up to 2.98 times. Interestingly, 482.sphinx3
shows a swap device lifetime decrease when small memory
pressures are induced though it eventually improved the life-
time about 50% under 30% memory pressure. The workload
has plethora of memory objects, so the data for the hint itself



becomes even larger than the working set size (about 50 MB)
of the original workload. As a result, the working set size
of the hint-injected version becomes significantly larger than
that of the original version, and more swap out events occur.
That said, the hint-injected version still shows no performance
degradation for any case and eventually improves swap device
lifetime with 30% memory pressure because the hint code
itself is effectively optimized.

4 Related Works

A couple of context-based write grouping schemes [19, 23]
for SSD have been proposed. Those schemes utilize context
information, which is conceptually similar to ours, for the
classification of data items or write requests with similar up-
date patterns. These approaches, though, capture the context
information via dynamic stack tracing while we extract it with
a static program analysis.

A number of novel schemes for data placement automation
in heterogeneous memory systems [16, 28, 30] exist. Such
works profile data access patterns, calculate priority, and dis-
cern the optimal place for each or classes of memory objects.
Though their target memory structure, which is heterogeneous,
is different than ours, which is hierarchical, the basic ideas
behind theirs and ours are somewhat similar and compatible.
Nevertheless, their works are not aware of the dynamic data
access pattern for each phase of a given workload. Thus, the
dynamic data access pattern awareness of DAPHICX is its
key difference.

Lagar-Cavilla et al. [15,25] introduced how Google utilizes
their hierarchical memory system for their cluster environ-
ments. The system equips an in-memory compressed block
device [10] as a swap device and proactively swaps out idle
pages to minimize memory pressure. To classify the idle
pages, it tracks page table access bits with a dedicated CPU
core and tunes logic parameters via machine learning. The
access pattern tracking overhead can be arbitrarily high as the
working set size of given workloads grows, and its time granu-
larity of proactive reclamation, two minutes, is somewhat too
coarse. Meanwhile, our approach incurs almost no production
runtime overhead and provides finely grained hints with only
negligible runtime overhead.

5 Future works

In spite of the demonstrated improvement of DAPHICX, a few
things still remain for future work. The object priority calcu-
lation algorithm of the DAPHICX has the naive assumption
that the memory region inside each memory object is uni-
formly accessed. Though such access patterns are common,
some programs optimized for special purposes can access
sub-memory regions in a single memory object with different
patterns. In such a case, the prioritization algorithm of DAPH-

ICX can generate inappropriate hints. We intend to profile
the access pattern inside an object and apply the result in the
future.

Offsets for merging contexts are important for the effective
trade-off between overhead and accuracy. However, the offsets
in this paper are only selected by a heuristic. If the offsets are
too small, the program will have an overmuch phase and a
high overhead for hint notification and vice versa. Therefore,
we will develop an algorithm or a model for selecting the
optimal offset automatically.

Though we focused on the swap system due to its unique
stability and wide avalability, other multi-tier memory systems
will eventually be matured. Expanding our schme to such
other systems would only require affordable efforts because
of its generality. In particular, the priority calcuation model
is adoptable for a general multi-tier memory and is tunable
for a specific one. All the things required to the systems for
adoption of our scheme are mlock()-like user level access
pattern hint primitives and general programming model that
our static analysis could be applied.

6 Conclusion

Data-intensive workloads with huge working sets are becom-
ing widespread, and high-end storage devices today are even
able to be compared with the speed of DRAM and the ca-
pacity of HDD. These recent trends intimate the widespread
use of hierarchical memory in the near future. In particular,
the swap system will be widely adopted for its availability
and ease of use. Nevertheless, the modern storages are still
obviously slower than the DRAM, and those storages could
be worn out if the number of writes exceeds a limit. Thus, the
swap target decision should be as optimal as possible. For this
reason, memory systems allow programmers to voluntarily
hint data access patterns of the program though analyzing the
patterns and injecting hints into the program is exhaustively
difficult for a human.

To automate the exhaustive tasks, we introduced a data
access pattern hint injecting compiler extension, DAPHICX,
which applies profile-guided optimization for accurate and
efficient swap target decisions. It profiles a program to get the
data access pattern of each program context, transforms the
detailed but verbose information to efficient and meaningful
hints, and injects a code for the hints into the program. Our
evaluation of a prototype achieved up to 2.65 times speedup
and up to 2.98 times swap device lifetime improvement.
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7 Discussions

Because this paper introduces the early results of ongoing
research rather than a completed study, we are looking for
feedback and opinions about the following topics for the fu-
ture development of this work.

Adoption of the swap system into modern computing
area. Because the swap system was traditionally considered
harmful, many environments recommend or are even forced
to disable the swap system. Kubernetes is a good example.
Though we believe that the ease of use of the swap system,
the trend of data exploitation, and the evolvement of hardware
(DRAM and modern storage devices) implies widespread use
of the swap system in the near future, others could have dif-
ferent opinions. Therefore, we would like to receive feedback
about the prospect and the opinions of others and/or their
usage experience concerning the swap system, from both
academic and industry experts.

Feasibility of our memory object priority calculation
and heuristics. The equation for memory object priority, con-
stants in the equation that leverage weights of the metrics, and
the offsets for tradeoffs between accuracy and overhead are
the most important keys of our scheme. Though the equation
and values we used in this paper have been carefully devel-
oped and successfully adapted to multiple realistic workloads,
these are based on straightforward insights and leave the deci-
sion of the optimal value for important constants and offsets
to users. Though we have already started to develop more
sophisticated schemes, we want to hear the others’ feedback
and recommendations concerning known models.

Additional requirements for adoption into other areas.
We manifestly specified the target environments that our
scheme is aiming to be adopted within. That said, we believe
that this whole of or part of the technique could be useful for
other environments we did not consider. For example, mobile,
IoT, real-time, and firmware levels could be such targets. Be-
cause there could be many storage experts from various areas,
we would like to request comments and feedback about the
challenges and requirements of our techniques for extended
adoption into other areas.
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