
Reducing Garbage Collection Overhead in SSD Based on Workload Prediction

Pan Yang, Ni Xue, Yuqi Zhang, Yangxu Zhou, Li Sun, Wenwen Chen,

Zhonggang Chen, Wei Xia, Junke Li, Kihyoun Kwon

Samsung R&D Institute China Xi'an, Samsung Electronics

Abstract

In solid-state drives (SSDs), garbage collection (GC) plays a

key role in making free NAND blocks for newly coming

data. The data copied from one block to another by GC af-

fects both the performance and lifetime of SSD significantly.

Placing the data with different “temperature” into different

NAND blocks can reduce data copy overhead in GC. This

paper proposes a scheme to place data according to its pre-

dicted future temperature. A neural network called LSTM is

applied to increase the accuracy of temperature prediction in

both temporal and spatial dimensions. And it also uses K-

Means to do clustering and automatically dispatch similar

“future temperature” data to the same NAND blocks. The

results obtained show that performance and write amplifica-

tion factor (WAF) are improved in various applications. In

the best case, the WAF and 99.99% of the write latency are

reduced by up to 43.5% and 79.3% respectively.

1 Introduction

NAND flash-based solid-state drives (SSDs) have found

wide use recently. But due to the side effect of garbage col-

lection, the performance of SSD may be degraded and the

lifetime may be shortened.

In SSD, the programmed page cannot be reprogrammed

before erasure. If the data in NAND page is no longer need-

ed, the page will be marked as “invalid”. However, flash

memory can only be erased in the unit of block which is

composed of multiple pages. As more and more invalid

page occupies storage space, to reclaim free space, SSD

needs to find a block, called the victim block, usually with

the largest number of invalid pages. Then valid data in vic-

tim block are copied to an available, previously-erased

block, making the victim block ready for erasure and subse-

quent reuse. This process is called garbage collection (GC).

GC is the most efficient if the victim block contains no valid

page. However, as SSD is continuously written, the valid

and invalid pages will exist in the same block. Thus, valid

pages must be copied by GC, and the actual amount of data

written into flash memory can be larger than the amount the

host system issues. The ratio of them is write amplification

factor (WAF). High WAF means that there are a large num-

ber of copies of valid pages in GC, which brings big trouble

for SSD. For one thing, moving the valid pages consumes

internal computing and bandwidth resources and decreases

the I/O response performance. For another, the more data

are migrated, the quicker NAND flash will be worn out, and

consequently, the lifetime of SSD is decreased as well.

The main method for improving GC is to optimize the valid

pages’ copy to reduce WAF. Wu et al. [1] chose the block

with the least number of valid pages as a victim block.

Zhang et al. [2] used the idle time to copy some valid pages

in order to improve the copy efficiency in GC. Kim et al. [3]

predicted the data lifetimes by using write program contexts

in RocksDB. This can reduce the valid page of the victim

block. However, the prediction is highly depended on appli-

cations. Another idea is using data temperature as data with

the same temperature may get invalid simultaneously. Jang

et al. [4] classified the data into three types with different

temperature (hot, cold, and warm); and different types of

data were stored in different blocks. Rho et.al [5] distin-

guished the temperature based on file type. This is a coarse-

grained division and requires researchers to be familiar with

the host application.

In this paper, we adopt the idea of placing data according to

data temperature to optimize GC. In addition, we introduce

machine learning technology to predict the future tempera-

ture of data. The main contributions are as follows:

 This paper predicts data temperature in temporal and

spatial dimensions according to the previous tempera-

tures and I/O profile features by using a neural network

called long short-term memory (LSTM).

 This paper uses K-Means to cluster the data with differ-

ent temperature and dispatches them to different blocks

accordingly.

 This paper also tests the proposed scheme in real SSD

with four different applications. The evaluations show

that, in the ideal scenario, it can reduce the WAF by 44%

and 99.99% of the write latency by 79.3%.

2 Background and related work

2.1 Data placement based on temperature

Since the host continues to perform I/O operations, the same

logical address may be written multiple times, known as the

update operation. The temperature is measured by the up-

date frequency of a logical sector, i.e., the write count of a

logical address over a period of time. A high frequency

means a hot temperature, which indicates the data in flash

will be invalid in a short period of time.

Placing data into different block according to different tem-

perature can reduce the copy of valid pages. As Fig. 1 shows

in (a), without considering temperature difference, all data is

placed into the flash in time sequence. Each block consists

of valid data and invalid data after a while and leads to the

increase of valid page copy in GC. In (b), data is placed

based on their temperature, i.e., the cold data and hot data

are stored separately. After a short period of time, all of the

hot data become invalid and there is no valid page copy

before erasure. Therefore, placing data based on temperature

is an effective method to reduce WAF.

(a) Without considering temperature, the “Cold 2” page is valid

and needed to be copied during GC.

(b) Considering temperature, no copy is needed for block 1.

Fig. 1. Data placement based on GC

2.2 Temperature detection and prediction

Numerous researches focused on detecting data temperature

to diminish the influence of GC. For example, Park et al. [6]

identified hot/cold data and stored them in different blocks.

Stoica et al. [7] estimated data temperature according to the

data update frequency. Luo et al. [8] proposed an effective,

window-based on-line algorithm to identify frequently-

written page. Yang et al. [9] combined some other attributes

to detect data temperature and separated them into multiple

levels (more than just three levels).

In all these papers, the temperature is obtained by detecting

its present state. Fig. 2 shows different workloads have dif-

ferent temperature change rules. For MySQL, different

chunks have different temperatures which change slightly

over time. For FIO, the temperature translates from one

chunk to another. For RocksDB and Docker, the change is

in both temporal and spatial dimensions. The temperature

detection may be suitable for the case wherein the tempera-

ture changes slightly (e.g., MySQL). For the case in which

the temperature changes sharply (e.g., RocksDB), the future

temperature is very different from the present. If the identi-

fied hot data is put into a hot block, it may turn cold and still

be valid in the future. This increases the data copy of GC on

the hot blocks. Thus, future temperature should be taken

into account in data placement. Based on this, the research

intends to predict the future data temperature to guarantee

dispatch accuracy.

(a) MySQL (b) FIO (c) RocksDB (d) Docker

Fig. 2. Different gray levels in vertical means different temperature

in different regions, while different gray levels in horizontal means

temperature is changing over time.

3 Scheme Design

GC can be improved by placing the data with different fu-

ture temperature into different blocks. Our scheme predicts

the future temperature and dispatches data into different

blocks according to the prediction. The scheme mainly in-

cludes three modules: the workload features capture (WFC),

the temperature prediction (TP), and the block dispatch

(BD). The architecture of our scheme is shown in Fig. 3.

Fig. 3. Scheme architecture

3.1 Workload features capture

To get the I/O profile, WFC module is deployed on the path

where data is written by host to device. Workload features

are captured in the help of our self-developed tool called

StoneNeedle. StoneNeedle can capture more than 30 types

of features such as the throughput, bandwidth, and I/O

size/count of each logical sector. We can choose features to

be captured according to the actual situation.

Workload features are continuously changing. StoneNeedle

outputs the features captured in each period of time (1s, 5s

or 10s).

A system normally has a large number of logical sectors to

store data. It is resource-consuming and unnecessary to pro-

cess the information for each sector. In WFC, the entire ad-

dress space is divided equally into chunks, with each chunk

containing a fixed size of sectors. For different applications,

the larger the temperature changes, the smaller the size of

the chunk should be. All the I/O requests falling in the same

chunk will be treated as the feature of this chunk.

Only a part of the features captured by StoneNeedle have a

great impact on temperature. Therefore, using all these fea-

tures to predict the future temperature is time-consuming

and may even interfere with the prediction. We choose fea-

tures that are strongly correlated with temperature using

Pearson correlation coefficient (PCC) [10]. The closer the

value is to 1 or -1, the more relevant it is to temperature. Fig.

4 shows the PCC between temperature and other features in

RocksDB.

Fig. 4. Correlation coefficient in RocksDB

As shown above, there are four features (red bars) correlated

to temperature. So these 4 features are selected as correlated

features to predict future temperature in dockerized applica-

tion. Note that the correlated features may be different in

different applications.

StoneNeedle outputs temperature and correlated features

collected during each fixed period of time and makes up a

record:

𝒓𝒆𝒄𝑡 (𝑓1 𝑡
, 𝑓2 𝑡

, 𝑓3𝑡
, … , 𝑇𝑡)

where Tt represents the temperature of each chunk in the tth

period of time, and 𝑓𝑖 𝑡
 represents a correlated feature value

(e.g., throughput) during the tth period of time.

The records of all periods assemble into a serial data set

which is the sequence of rec1, rec2, …, rect, denoted as R.

3.2 Temperature prediction

There are some challenges in the prediction of future tem-

perature. Firstly, the temperature may change sharply in

different periods. Secondly, a chunk’s temperature may be

related to other chunks. Thirdly, as mentioned before, the

temperature may also be impacted by other features. Take

RocksDB as an example. Firstly, many hot chunks often

become cold in the next period. This is a change in the tem-

poral dimension. Secondly, the accesses of some chunks are

often followed by other chunks. Thus, the temperature will

translate from some chunks to other chunks. This is a

change in the spatial dimension. Thirdly, as is shown in Fig.

4, the temperature is highly related to the feature of write IO

size, throughput, etc.

Considering the above three issues, we think LSTM [11] is

the most suitable solution. Many prediction algorithms can

be used for time series, but most can only use the historical

temperature to predict future temperature. However, LSTM

can comprehensively consider multiple factors for predic-

tion and is thus deemed as an ideal model to solve the issues

in our research.

For the given time step k, LSTM uses the k historical rec-

ords (from t-k+1th to tth) to output the predicted temperature

Tt+1. As shown in Fig. 5, the input is the sequence of rect-

k+1, …, rect-1, rect in k time periods, with each dimension of

input corresponding to a feature in rec. The output is the

predicted temperature T't+1 of the next time period.

Fig. 5. Temperature prediction by using LSTM

This can be seen as a function:

 𝑇′𝑡+1 = LSTM(𝑹𝑡−𝑘+1,𝑘) (1)

where Rt-k+1,k represents the subset of R that has k sequent

records starting with the t-k+1th record. Apparently, since

the input data includes the correlated features, the tempera-

ture of all chunks, as well as the k time periods records,

LSTM can predict the future temperature more accurately.

For a large-volume SSD with a huge number of chunks, it is

unrealistic to input all the chunks to LSTM simultaneously,

which requires large computing resources and training sets.

To handle this problem, for one thing, we treat the chunks

with similar I/O patterns as one chunk to reduce the number

of chunks, referring to the workload pattern similarity anal-

ysis [12]; for another, we put chunks in batches (one batch

at a time) and output the predicted temperature of chunks of

the current batch.

3.3 Physical NAND block dispatch

When the host issues a write request, we need to choose a

NAND block in SSD to store data. The block is chosen

based on the predicted temperature T' of the coming data. In

this paper, the temperature is predicted in the unit of chunk,

so the temperature of data is determined by that of chunk in

which the data falls. All chunks will be divided into several

temperature ranges. Each range corresponds to a physical

block. Thus, chunks with similar temperature will be

mapped to the same block, and chunks with large tempera-

ture differences are mapped to different blocks.

In each period of time, the next period’s temperature of all

the chunks has been predicted by LSTM model. In order to

gather the chunks with similar temperature, K-Means is

adopted to cluster all the chunks according to their predicted

-1
-0.8
-0.6
-0.4
-0.2

0
0.2
0.4
0.6
0.8

1

w
r_

io
_

si
ze

rd
_
io

_
si

ze

rd
_
io

_
co

u
n

t

to
ta

l_
w

r_
b
y

te
s

to
ta

l_
rd

_
b

y
te

s

rw
_

ra
ti

o

th
ro

u
g
h

p
u

t

b
an

d
w

id
th

w
r_

st
ri

d
e_

se
ct

o
r

rd
_
st

ri
d

e_
se

ct
o

r

w
r_

se
q
_

se
ct

o
r

rd
_
se

q
_
se

ct
o

r

ra
n

d
_

w
r_

io
s

ra
n

d
_

rd
_
io

s

C
o
rr

el
a
ti

o
n

 C
o
ef

fi
ce

n
t

w
r_

io
_

si
ze

to
ta

l_
w

r_
b

y
te

s

th
ro

u
g

h
p

u
t

ra
n

d
_

w
r_

io
s

temperature. Note that, there are also many algorithms used

for clustering. We choose K-Means because of its relatively

high efficiency and the ability to output a specific number of

clusters. By inputting the predicted temperature of all the

chunks and the number of the required cluster c, K-Means

clusters all the chunks into c clusters. As a result, the chunks

in the same cluster have the similar temperature, and data

falling in these chunks will be dispatched to the same block.

For example, chunk a is in cluster A which is mapped to

physical block I; then all the write requests falling in chunk

a will be dispatched to block I.

3.4 Implementation of GC improvement scheme

Before prediction, training, whether online or offline, is

required to improve the prediction accuracy of LSTM model.

In the prediction process, when a time period ends, WFC

module outputs rect, LSTM predicts T't+1 using formula (1),

and BD module clusters the chunks according to T't+1. From

then on, the new write requests will be dispatched to blocks

according to the new cluster result till the next prediction

and clustering.

LSTM and K-Means can be easily implemented by using

Python. BD module needs the support of SSD controller.

Fortunately, the “Directives and Streams” feature in NVMe

1.3 [13] provides the technical support for dispatch. In this

paper, Multi-stream SSD (MS SSD) [14] which satisfies this

feature is adopted to implement the dispatch. By giving MS

SSD a stream ID along with write request, data will be dis-

patched to a specified block automatically. In this way, the

data with same stream ID will be dispatched to the same

block (unless it is full), and those with different stream ID

will be dispatched to different blocks. Therefore, after clus-

tering, BD outputs a mapping table where chunks are map-

ping to stream IDs according to their clusters. Then, the data

falling in the chunk will be dispatched to the corresponding

stream ID. Since the data stored in a block have similar

temperature, the data in the same block has a great probabil-

ity of being invalid simultaneously. GC will obviously be

improved then. The prediction process is shown in Fig. 6.

Fig. 6. Prediction process

4 Evaluations

In this section, we evaluate the benefit and cost of our pro-

posed scheme in different environments on real SSD. The

detailed configuration about the evaluation system is shown

in Table 1.

Table 1. Evaluation system configuration

Processor

/Memory

Processor Dual Socket: Intel (R) Xeon (R) CPU
E5-2620 v4 @ 2.10GHz/16 cores
Total Logical CPU: 32
Total Memory: 64 GB

GPU: NVIDIA GTX 1080, 8G

Operating

System

Distro: CentOS Linux release 7.5.1804 (Core)
Kernel: 4.4.2, patched for multi-stream support
Arch : x86_64

SSD

SSD: Samsung NVMe PM963 2.5”, 960GB
(Support both “normal” and “multi-stream” mode
with 8 streams, with NAND write and host write
values in additional S.M.A.R.T)

Since MS SSD has 8 streams, we set the number of the re-

quired cluster c as 8. Each time period lasts for 5 seconds.

The time step k of LSTM is 5. LSTM predicts the tempera-

ture of 100 chunks each batch. The entire address is divided

into 10,000 chunks. Thus, it will take 100 batches for LSTM

to predict the temperature of all chunks. Our machine learn-

ing algorithm runs on the GPU, and its efficiency will be

analyzed in Section 4.2.

4.1 Scheme effectiveness

Our scheme aims to reduce GC overhead. WAF is used to

measure the effect of improvement. It is computed as fol-

lows:

 WAF =
𝑡𝑜𝑡𝑎𝑙_𝑠𝑖𝑧𝑒_𝑜𝑓_𝑑𝑎𝑡𝑎_𝑐𝑜𝑚𝑚𝑖𝑡𝑡𝑒𝑑_𝑡𝑜_ 𝑓𝑙𝑎𝑠ℎ

𝑡𝑜𝑡𝑎𝑙_𝑠𝑖𝑧𝑒_𝑜𝑓_𝑑𝑎𝑡𝑎_received_𝑓𝑟𝑜𝑚_ℎ𝑜𝑠𝑡
 (2)

For a fixed total size of data received from the host, a lower

WAF means less copy of valid data in GC.

We design four workloads for the test: FIO [15], RocksDB,

MySQL and dockerized environment. Besides, we compare

our scheme (LSTM+KM) with the other two schemes. The

“baseline” is the original scheme that dispatches data with-

out considering temperature. Furthermore, we also compare

our scheme with a state-of-art technology called Auto-

Stream [9]. It uses the current temperature as the prediction

of the next time period, i.e., T't+1 = Tt.

The WAF of each scheme with different applications is

shown in Fig. 7. As GC is improved, the performance will

also be increased. Different applications have different per-

formance measuring metrics. MySQL returns tpmC (the

higher the better). FIO and RocksDB return 99.99% write

latency (the lower the better). The performance comparison

result is shown in Fig. 8. Note that, baseline is assigned the

value 1 to get the normalized results.

FIO is an I/O tool used for benchmark and stress/hardware

verification. In this test, several FIOs with fixed IOPS oper-

ated simultaneously. Each FIO had its own access area,

write queue depth and request size. It can simulate a work-

load in which different chunks have different temperatures

and have a close relationship with its neighbor chunks. And

the temperature changes regularly. Fig. 7 shows that, alt-

hough the chunk temperature changes frequently, our

scheme can predict the change, so WAF is reduced by 43.5%

and 10.7% compared with baseline and AutoStream respec-

tively. Furthermore, as shown in Fig. 8, under the high

depth write queue pressure, the latency is high in baseline

and AutoStream scheme. However, with less data to copy

during GC in our scheme, the write latency is improved by

79.3%. These indicate that our scheme makes a significant

improvement in the ideal environment.

RocksDB is a widely used open-source distributed NoSQL

database. RocksDB generated large sequential I/O requests,

and therefore only a few chunks ware accessed at the same

time. Fig. 7 shows that the WAF of our scheme is reduced

by 35.9% and 10.7% compared with baseline and Auto-

Stream, respectively. This indicates that our scheme can

obviously reduce the number of valid page copy in SSD and

thus promote GC efficiency. Successively, write latency is

also improved by 29% as shown in Fig. 8.

MySQL is a widely used relational database. Most write

requests in MySQL are random and distributed through the

whole address. As shown in Fig. 7, WAF of our scheme is

improved by 21% compared with baseline. But it only

achieves 4% improvement compared with AutoStream. The

reason is that the temperature of MySQL in each chunk is

different but it changes slightly. Thus, dispatching according

to temperature can benefit GC, but for the application in

which temperature changes slightly, the effectiveness of

LSTM will be discounted.

Docker is a computer program that performs operating-

system-level virtualization, also known as "containeriza-

tion". In order to measure the performance of our scheme in

complex scenario with heavy workload, we ran 2 RocksDB

instances simultaneously with different configurations in

Docker. In Docker, applications run independently with

each having their own performance. But the WAF of SSD is

impacted by all of the applications. As shown in Fig. 7, our

proposed scheme still works well under the multi-

application environment. Compared with baseline, in this

complex scenario with a heavy workload, the WAF of our

scheme is still reduced by 34%, along with an average of 28%

performance improvement for each application in Docker.

Above all, our scheme achieves an obvious improvement for

GC in SSD. Compare with AutoStream, LSTM can predict

the future temperature and improve the optimization effect

especially for workloads with a great change in temperature.

4.2 Resource consumption

Our scheme will consume some system resources at runtime.

It takes less than 80 ms to generate new mapping table from

captured features. This mapping table will be used in the

next 5 s. Compared with 5 s, the runtime of machining

learning is acceptable. The GPU utilization of LSTM is less

than 17%. We also test the resource consumption of our

scheme by comparing the CPU utilization and memory us-

age of our scheme to baseline.

Fig. 9. Resource consumption of CPU & memory

Fig. 9 shows the CPU utilization and memory usage of our

scheme in the three cases during the test, which indicates

that our scheme consumes almost as many resources as leg-

acy SSD with the difference within 5%.

5 Conclusion

To better adapt to the application scenarios with temperature

changes, a scheme to predict the future temperature by using

LSTM is proposed in this paper. The scheme employs K-

Means to dispatch chunks to different blocks according to

the predicted temperature. LSTM increases the prediction

accuracy, and K-Means clusters chunks in a more reasona-

ble way. As a result, in different types of workload scenari-

os, the reduction of WAF illustrates the improvement of GC,

and I/O performance is also improved meanwhile. In the

future, we will focus on: 1) improving the efficiency and

accuracy of our proposed machine learning models, and 2)

optimizing the scheme of managing the NAND blocks with

the help of host FTL technology [16].

Acknowledgments

We sincerely thanks our project members, Chunchao Ye,

Pengli Ju, Lei Geng for their awesome support and the re-

viewers, Jungmin Seo and Chunyu Guo, for their helpful

advice. We also thank for the help of Avani Wildani.

1.3

11.0
10.5

88.0

6.2

96.6

4.8

93.4

0.9
9.7

11.2

91.1

6.5

96.8

5.6

97.1

1.5
10.6 10.5

90.0

6.8

95.9

5.7

97.2

0

30

60

90

CPU Memory CPU Memory CPU Memory CPU Memory

FIO MySQL RocksDB Docker

U
ti

li
za

ti
o
n

(%
)

Baseline AutoStream LSTM+KM

Fig. 7. WAF in different applications

Fig. 8. Performance in different applications

1 1 1 1

0.63

0.83
0.72 0.72

0.56

0.79
0.64 0.66

0

0.4

0.8

1.2

FIO MySQL RocksDB Docker

R
el

a
ti

v
e

W
A

F

Baseline AutoStream LSTM+KM

1 1 1 1

0.67

1.02 0.91 0.87

0.21

1.01

0.71 0.72

0

0.4

0.8

1.2

FIO MySQL RocksDB Docker

R
el

a
ti

v
e

T
p

m
c

/

W
ri

te
 L

a
te

n
cy

Baseline AutoStream LSTM+KM

Discussion

This paper tries to reduce GC overhead by dispatching data

according to their temperatures. This is also an attempt to

enhance SSD using machine learning. Training an ideal

model with high efficiency and accuracy is always an open

problem. We have done some efforts on that. For example,

as we have mentioned in this paper, we selected features

correlated to temperature, tried to combine chunks with

same IO pattern, and inputted chunks of temperature in

batches. These can benefit the test results, but they still re-

quire in-depth research. We also tried different LSTM mod-

els (with different number of hidden layers and different

number of nodes in a layer), different model parameters

(e.g., time step, learning rate), and different algorithms of

normalization and gradient descent. Due to the limitations of

the paper, the details are not shown. And we believe that

there are many details that can be optimized to get a better

machine learning model.

Another problem is about the block dispatch. There is no

commercial SSD supporting host to choose a block for writ-

ing currently. We use multi-stream SSD instead of simula-

tors to test in orter to get a more convincing result. With this

SSD, host can choose a group of blocks for writing. SSD

will choose the specific block for host. At least, it ensures

that different data with different Stream ID be dispatched to

different blocks. But the number of stream is limited. And

how to choose block is a black box. So we are researching

on dispatch block using host FTL technology, such as Open

Channel SSD. The host FTL has been added to the Linux

kernel with an exquisite design (including block dispatch) to

achieve high parallelism. Thus, how to realize block dis-

patch for our scheme without loss parallelism is still a diffi-

cult task.

At present, our program still has a lot of room for improve-

ment. We expect to share our experiences with researchers

and look forward to gaining more advice about how to im-

prove our scheme.

References
[1] M. Wu, and W. Zwanepoel, “eNvy: a non-volatile main

memory storage system,” In Proceedings of the 6th Interna-
tional Conference on Architecture Support for Programming
Languages and Operating Systems, pp. 86-97, 1994

[2] Zhang, Q. et al. Lazy-RTGC: A real-time lazy garbage collec-
tion mechanism with jointly optimizing average and worst per-
formance for NAND flash memory storage systems. ACM

Trans. Des. Autom. Electron. Syst. 20, 1-32 (2015)

[3] Kim, T. et al. PCStream: Automatic Stream Allocation Using
Program Contexts. HotStorage (2018)

[4] Jang, K. H. & Han, T. H. Efficient garbage collection policy
and block management method for NAND flash memory. In
International Conference on Mechanical and Electronics Engi-
neering (2010)

[5] E. Rho, K. Joshi, S. Shin, N. Shetty, J. Hwang, S. Cho. and D.
Lee. FStream: Managing Flash Streams in the File System. In
Proceedings of the 16th USENIX Conference on File and
Storage Technologies (FAST’18), 2018.

[6] Park, D. & Du, D. H. C. Hot data identification for flash-based

storage systems using multiple bloom filters. In MSST (2011)

[7] Stoica, R. & Ailamaki, A. Improving flash write performance
by using update frequency. Proc. VLDB Endowment 6, 733-
744 (2013)

[8] Luo, Y. et al. Warm: Improving NAND flash memory lifetime
with write-hotness aware retention management. In MSST
(2015)

[9] Yang, J. et al. AutoStream: Automatic Stream Management

for Multi-streamed SSDs. In SYSTOR (2017)

[10] Wikipedia, Pearson correlation coefficient, https://en.wikipedi-
a.org/wiki/Pearson_correlation_coefficient (2018)

[11] Hochreiter, S. & Schmidhuber, J. Long short-term memory.
Neural Computation 9, 1735–1780 (1997)

[12] V. Tarasov. et al. Extracting Flexible, Replayable Models
from Large Block Traces. In FAST(2018)

[13] http://nvmexpress.org/wpcontent/uploads/NVM_Express_Re-

vision_1.3.pdf

[14] Kang, J. U. et al. The multi-streamed solid-state drive. In
HotStorage (2014)

[15] https://github.com/axboe/fio

[16] Matias Bjørling, Javier Gonzalez, and Philippe Bonnet.
Lightnvm: the linux open-channel SSD subsystem. In 15th
USENIX Conference on File and Storage Technologies (FAST
17), 359–374. Santa Clara, CA, 2017. USENIX Association.

