Platform-Agnostic Lightweight Deep Learning for Garbage Collection Scheduling in SSDs

Junhyeok Jang, Donghyun Gouk, Jinwoo Shin, Myoungsoo Jung

Motivation

Hiding GC latency : Background GC

Hiding GC latency : Background GC

GC-Tutor

DNN-based GC scheduler

- Precisely predict future request arrivals
- Schedules GC in user-invisible time
- Consistently accurate regardless of workload with lightweight online learning mechanism

DNN-based GC Scheduling

DNN-based Idle Time Prediction

Background GC

6

Problem : *A fixed DNN model fails to predict unseen workloads*

DNN-based GC Scheduling

DNN-based Idle Time Prediction

Background GC

7

Problem : A fixed DNN model fails to predict unseen workloads

Online Learning!

Lightweight Online Learning

Evaluation

GC-Tutor can accurately predict idle time

- Consistently higher accuracy on trained workloads
- Significantly higher accuracy on unseen workloads
 - prxy, stg :

Very different idle time distribution compared to trained workloads

GC-Tutor can reduce GC-induced delays by 82.4%, on average, compared to rule-based GC scheduler

KΛ

Conclusion : GC-Tutor

DNN-based GC scheduler

- Accurate request arrival prediction using DNN model
- Meta learning-based light-weight online learning mechanism

Making GC overhead invisible to users!

Thank you!

Junhyeok Jang

Electrical Engineering, KAIST

