
Neural Trees
Using Neural Networks as an Alternative to Binary
Comparison in Classical Search Trees

Douglas Santry

Introduction – Finding Stuff
§ Binary Comparison
§ The < operator has been directly supported by even the earliest digital computers.
§ Binary search was used from the beginning, but binary search as we know it is the result of Lehmer’s paper

in 1960.
§ N･log2(N) search is provably optimal for binary comparison.

§ B Tree
§ Described by Bayer in 1970.
§ Provably optimal with respect to the number of comparisons.
§ The parameter, B, trades off memory for number media accesses.
§ Countless permutations.

§ Bε spectrum
§ Today we think in terms of the Bε spectrum: ε trades off between updates and searches.
§ The spectrum is the direct result of the binary comparison operator: it totally determines the physical

structure of the tree.

2

Alternatives to Binary Comparison Are Not New
§ Learned Indices (Kraska et al, SIGMOD 2018)
§ Data are considered as a cumulative distribution: indexi+1 = Ni･CDFi(key)
§ A tree with a neural network root, linear regression between root and leaves.
§ Binary comparison is used in the leaves.

§ Interpolation Search (Van Sandt et al, SIGMOD 2019)
§ Originally proposed in 1957 by Petersen.
§ Search based on linear regression.

§ Operates on in-memory contiguous arrays of sorted data.
§ Binary comparison determines physical layout.
§ Insertion requires memcpy() of everything in front.

§ Not appropriate for secondary storage as indexi requires indirection.

§ Learn the data directly (distribution)

§ Read-only

3

Key Technical Contributions
§ Supports secondary storage.
§ Discards requirement for contiguous sorted array in memory.
§ Indexing secondary storage is not a CDF, it is a mapping.

§ Neural networks inherently include the indirection required for secondary storage.
§ Linear interpolation requires a mapping from logical index to physical address.

§ Employs many tiny neural networks that are quick to train.
§ Training is in the write path.

§ Straddles classical search trees by learning paths, not the data directly.
§ There are fewer paths than data.
§ Paths are relatively static compared to data.
§ Neural networks are more like network routers.

§ Addresses inference error
§ Inferencing mistakes are expensive in a secondary storage index: superfluous reads.

4

Single Layer Perceptrons (SLP)

5

v

x

1
y

1
2.14

9.31

-2.71

-11.3

0.31

-5.12

243.18

-8.39

75.4

3.14

Neural Tree Architecture

6

1

2
3

5

6

1 2 3 4 5 6 7 8

Model Blocks

Leaf Blocks

Logical Structure Physical Structure

Neural Tree Architecture

7

1

2
3

5

6

1 2 3 4 5 6 7 8

Model Blocks

Leaf Blocks

Logical Structure Physical Structure

Neural Tree Architecture

8

1

2
3

5

6

1 2 3 4 5 6 7 8

Model Blocks

Leaf Blocks

Logical Structure Physical Structure

Overflow

9

1

2
3

5

76

1

2
3

5

6

Learning on Write (LoW)

10

1

2
3

5

76

1

2
3

5

6

LoW

Learning on Write (LoW)

11

1

2
3

5

76

1

2
3

5

6

Cost of
training

amortized
over all

future inserts
in sub-tree

Neural Tree Media Access Tuning

12

1

2
3

5

6

1 2 3 4 5 6 7 8

Model Blocks

Leaf Blocks

Logical Structure Physical Structure

Neural Tree Media Access Tuning: Swap Models

13

1

2
3

5

6

1 2 3 5 4 6 7 8

Model Blocks

Leaf Blocks

Logical Structure Physical Structure

Neural Tree Media Access Tuning: Short Circuit Models

14

1

2
3

5

6

1 2 3 4 5 6 7 8

Model Blocks

Leaf Blocks

Logical Structure Physical Structure

Neural Tree Models
§ SLP neural networks so the number of weights is 3∙N + 1
§ C float
§ Cacheline efficient
§ Information density higher per byte, 4k pages yield fan-out: 723 vs. 500

§ Neural networks have ranges and domains of [-1, 1].

§ The keys and values of an index are arbitrary: they can be anything.
§ The first job is to turn the key in to a number between [-1, 1]: a(key)
§ The inference needs to be something useful (address of next model or leaf): b(y)

§ Recursive: fi(a(key); wi) ® y, fi+1 = b(y)
§ α and β are the "secret sauce" of a NT implementation.

§ Training set constructed as: { <x1, 𝛽"#"(address1)>, …, <xN, 𝛽$#"(addressN)> }

§ α() maps a key to a known “good value”, a value from the training set.
§ The guarantee: a (any key) ∊ { x1, … xN}
§ Thus y will also be in the training set, by design.
§ This means that error is totally controlled in the training process.

15

Evaluation: Insertion as a Function of Height

16

Evaluation: Effects of Population on Insertion Times

17

Future Work

§ The ”secret sauce” of a Neural Tree implementation is the pair of functions, (a, b). Many
are possible. Neural Trees let us control the data layout. Are there richer ways?
§ Temporal: organize data according to creation or access time?
§ Ontological, what would annotated data look?

§ Neural Trees can also mimic other data structures. For example, geometric applications
often use R-Trees and Hilbert Trees. Can a Neural Tree can be used to mimic both?
§ Moreover, once a Neural Tree has been implemented, can new behaviors simply be programmed with a new
a()? This should be far easier (and cheaper) than implementing an entire new data structure.

§ What would a file system based on Neural Trees look like?
§ Directory search could be so much richer than lexical matching.

§ What do snapshots look like in a LoW world?
§ CoW on the physical structure would work, but can something be done with LoW in the logical

representation?
18

19

Thank you.

