Desperately Seeking ... Optimal Multi-Tier Cache Configurations

12th USENIX Workshop on Hot Topics in Storage and File Systems (HotStorage '20)

<u>Tyler Estro¹</u>, Pranav Bhandari², Avani Wildani², and Erez Zadok¹

¹Stony Brook University; ²Emory University

Desperately Seeking ... Optimal Multi-Tier Cache Configurations (HotStorage '20)

Motivation

- Cache Analysis
- Multi-Tier Cache Simulation
- Evaluation
- Conclusion

Motivation

- Multi-tier cache configuration space is huge
 - Many tiers, partitions, and arrangements
 - Virtual machines, cloud storage, distributed systems
 - Continuous advances in hardware and firmware
- Workloads and access patterns are evolving
 - Big data and growing working sets
 - Complex access patterns and multi-tenancy
 - Frequency and distribution of data reusage

Key Problems

- Cache analysis practices are short-sighted
 - Performance is often the sole focus
 - e.g., Miss ratio curves (MRCs)
 - Only a single tier of cache is analyzed
- Evaluated metrics are not comprehensive
 - Most common
 - Hit/miss ratio, average throughput, average latency
 - Fail to examine relationship between metrics
 - Is your cache \$cost efficient?

Challenges

- Physical experiments are \$costly and time-consuming
- Lack of a general, *n*-level I/O simulator
 - Publicly available I/O simulators
 - Simulate a fixed or limited number of tiers
 - Missing key features
 - Limited analysis tools
 - Not easily extendable
 - Proprietary and ad-hoc simulators

We propose best practices in cache research including the analysis of multi-tier configurations and a more comprehensive set of evaluation metrics (e.g., monetary cost)

5

Motivation

- Cache Analysis
- Multi-Tier Cache Simulation
- Evaluation
- Conclusion

Cache Analysis Metrics

- Performance is constrained by \$cost
 - Best practice: evaluate \$cost and performance together
- Relevant metrics
 - Tail latency (P95/P99)
 - Total cost of ownership (TCO)
 - Purchase cost, energy cost, device lifetime, manpower, …
 - Inter-cache & network traffic
- Complex metrics can improve design decisions
 - Throughput/\$, throughput/energy, ...

Multi-Tier Analysis

- Performance gains do not translate to \$cost efficiency
 - Behavior in one tier cascades throughout the system
 - Device characteristics of each tier can widely vary
 - Relative latency between tiers
 - Device durability (e.g., DRAM vs. SSD)
 - Best practice: analyze multi-tier configurations whenever possible
- Visualization
 - Trends in objectives are not obvious in multi-tier
 - Pareto frontier to locate optimal configurations
 - Interactive visual analytics [Cao et al., HotStorage '19]

- Motivation
- Cache Analysis

Multi-Tier Cache Simulation

- Evaluation
- Conclusion

Multi-Tier I/O Simulator Features

- Write policy
 - Write through, write back, write around, user-defined
- Admission policy
 - Restrict admission of data at any tier(s) based on size or even ML algorithms
 - Inclusive, exclusive, or non-inclusive non-exclusive (NINE)
- Eviction policy
 - Individual layer algorithms, global-aware algorithms, or some mix
 - e.g., Adaptive Level-Aware Caching Algorithm (ALACA) [Cheng et al.]
- Trace sampling
 - Miniature Simulations [Waldspurger et al.]
- Preteching
 - MITHRIL [Yang et al.]

Reverse Miniature Simulations

- Multi-tier caching requires large datasets
 - Entire working set should not easily fit into DRAM
- Simulating large traces is extremely time-consuming
 - Use Miniature Simulations to sample the trace [Waldspurger et al.]
- What if our trace is too small?
 - Treat an original trace as if it is a scaled down version of a much larger trace

PyMimircache

PyMimircache

- Single layer cache simulator
- Python framework with an efficient C backend
- Supports numerous eviction algorithms
- Multi-tier PyMimircache extension
 - Write-through and write-back
 - MySQL and ElasticSearch
 - Simulate n cache tiers serially

PyMimircache Extension

UNIVERSITY

University

Desperately Seeking ... Optimal Multi-Tier Cache Configurations (HotStorage '20)

- Motivation
- Cache Analysis
- Multi-Tier Cache Simulation
- Evaluation
- Conclusion

Experimental Setup

- Microsoft Research (MSR) Cambridge block traces
 - 13 enterprise data center servers, 36 volumes [Narayanan et al.]
- Device information
 - DRAM (D), SSD (S), HDD (H)
 - High-end (1), mid (2), low (3)
- Reverse miniature simulation scaled 1000x
 - MSR traces access <1GB of data

Evaluation 1: DRAM Performance

Stony Brook

University

UNIVERSITY

Desperately Seeking ... Optimal Multi-Tier Cache Configurations (HotStorage '20)

Evaluation 2: SSD Degradation

- Motivation
- Cache Analysis
- Multi-Tier Cache Simulation
- Evaluation
- Conclusion

Conclusion

- Proposed best practices in cache research
 - Analysis of multi-tier systems
 - Evaluation of more comprehensive metrics
- Counter-intuitive simulation results
 - Demonstrated the need for multi-tier analysis and simulation
- Development of an n-level I/O cache simulator
- Visual Analytics

Desperately Seeking ... Optimal Multi-Tier Cache Configurations

Tyler Estro, Pranav Bhandari, Avani Wildani, and Erez Zadok

{testro, ezk}@cs.stonybrook.edu, pranav.bhandari@emory.edu, avani@mathcs.emory.edu

Thank You Q&A

Desperately Seeking ... Optimal Multi-Tier Cache Configurations (HotStorage '20)

Desperately Seeking ... Optimal Multi-Tier Cache Configurations

Tyler Estro, Pranav Bhandari, Avani Wildani, and Erez Zadok

{testro, ezk}@cs.stonybrook.edu, pranav.bhandari@emory.edu, avani@mathcs.emory.edu

Thank You Q&A

Discussion

- 1. Multi-tier simulator features.
- 2. Is monetary cost the primary metric?
- 3. Cache reconfiguration.
- 4. Other best practices in cache research.
- 5. Algorithmic multi-tier solutions.
- 6. Existing I/O simulators.

