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PFS failures are frequent and expensive
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41% of PFSes suffer from monthly or weekly failures,
their recovery process is expensive & time consuming

Source: Hyperion Research 2019
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Introduction to parallel file systems

HPC Applications
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HPC I/O stack is much more complex than the traditional I/O stack




A PFS failure example

n TEXAS TECH UNIVERSITY

'@ Information Technology Division

High Performance Computing Center

To All HPCC Customers and Partners,

As we have informed you earlier, the Experimental Sciences Building experienced a major power outage
Sunday, Jan. 3 and another set of outages Tuesday, Jan. 5 that occurred while file systems were being
recovered from the first outage. As a result, there were major losses of important parts of the file systems for
the work, scratch and certain experimental group special Lustre areas.

The HPCC staff have been working continuously since these events on recovery procedures to try to restore
as much as possible of the affected file systems. These procedures are extremely time-consuming, taking
days to complete in some cases. Although about a third of the affected file systems have been recovered,
work continues on this effort and no time estimate is possible at present.

User home areas have been recovered successfully. At present, no user logins are being permitted while
recovery efforts proceed on the remaining Lustre areas. Your understanding and patience are appreciated.

If you have questions, please contact us at hpccsupport@ttu.edu or 806-742-4350. Thanks.

Sincerely,
HPCC Staff

PFS may experience severe data loss after system-wide power outage




A study of crash vulnerabilities on PFSes
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PFS crash vulnerabilities
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Vulnerability: Parallel I/O stack may
corrupt user files if crash happens in

the middle of the computation
(depending on the precise timing of
disk accesses)

The complexity of PFS stack makes it more vulnerable to system crashes




Crash vulnerability example

// atomic replace via rename (ARVR) ‘II -
bool atomic_update(){
int fd = create("file.tmp"); GFS

write(fd, new, size); / 1 \
close(fd);
renane("File. tnp", "File. txt");

The function tries to update a file content atomically BeeGFS with 2 storage and 1 metadata server




Crash vulnerability example

idfile

beegfs-client
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idfile

dentries/tmp

bool atomic_update(){
int fd = creat("file.tmp");
write(fd, new, size); —T —
close(fd);
rename("file.tmp","file.txt");
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// atomic replace via rename (ARVR) :
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rename
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Persistence order + Program order!
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unlink

Two vulnerabilities discovered
at system crash!
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Crash vulnerability example

idfile
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Crash vulnerability example

idfile
Inconsistency No.2 idfile
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Consequence Data loss
i - e
Fixed by fsck? No . dentries/tmp

| dentries/file

unlink [EEXekS RN

IR old chunk

—-———
! op Persisted operations I ©1d_chunk

) OP Non-persisted operations storage #1




Crash vulnerability example

idfile

Inconsistency No.3 idfile
. . dentries/tmp

Cause unlink() persisted before rename()
Ordering Intra-node dependency
Consequence Data loss
i - e

Fixed by fsck? Yes I e 2
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PFSCheck design
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Discovering PFS crash vulnerabilities systematically & efficiently




The PFSCheck design
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The PFSCheck design
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The PFSCheck design
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Conclusion

 Motivation: crash vulnerabilities could be exacerbated on PFSes, due to the
complexity of the parallel I/0O stack

e Study:
— the number of crash consistency bugs on BeeGFS and OrangeFS is higher than local filesystem
— the workload can fail in more ways on PFSes
— the consistency relies on persistency reordering across nodes

* Proposed framework: PFS-specific crash consistency checker with a focus on
automation and efficiency




Thank you!

Contact: Jinghan Sun (js39@illinois.edu)




