
Understanding and Finding Crash-Consistency Bugs
in Parallel File Systems

Jinghan Sun, Chen Wang, Jian Huang, and Marc Snir

University of Illinois at Urbana-Champaign

Contact: Jinghan Sun (js39@illinois.edu)

PFS failures are frequent and expensive

8%

34% 34%

12%

0%

8%

16%

24%

32%

40%

PFS Failure Frequency

Weekly Monthly Never Not Reported

41%

14%

6% 4%

35%

0%

10%

20%

30%

40%

50%

Single Day Failure Cost

<$100K $100K-$500K $500K-$1M

>$1M Not Reported

Source: Hyperion Research 2019

59%

24%
14%

3%
0%

15%

30%

45%

60%

75%

PFS Recovery Time

<1 day 2-3 days 1 week >1 week

41% of PFSes suffer from monthly or weekly failures,
their recovery process is expensive & time consuming

1

Introduction to parallel file systems

Parallel file system
• Data striping
• Separate metadata management
• POSIX-compliant

Parallel I/O library
• Higher level abstractions:

Datasets, groups, collective I/O
APIs

HPC I/O stack is much more complex than the traditional I/O stack

2

A PFS failure example

PFS may experience severe data loss after system-wide power outage

3

A study of crash vulnerabilities on PFSes

Two Filesystems Seven Workloads 34 Vulnerabilities+ =

Atomic Replace
via Rename

Write-ahead
Logging

HDF5
create

delete

rename

resize

update

Data loss

DoS

Inaccessible
dataset

4

0
1
2
3
4
5
6
7
8
9
10

ARVR WAL H5-create H5-delete H5-resize H5-rename H5-write

Number of Vulnerabilities on Different Filesystems

BeeGFS OrangeFS ext4

PFS crash vulnerabilities

The complexity of PFS stack makes it more vulnerable to system crashes

5

Vulnerability: Parallel I/O stack may
corrupt user files if crash happens in
the middle of the computation
(depending on the precise timing of
disk accesses)

Crash vulnerability example

// atomic replace via rename (ARVR)
bool atomic_update(){

int fd = create("file.tmp");
write(fd, new, size);
close(fd);
rename("file.tmp","file.txt");

}

The function tries to update a file content atomically

storage #1 metadata storage #2

BeeGFS with 2 storage and 1 metadata server

6

Crash vulnerability example

// atomic replace via rename (ARVR)
bool atomic_update(){

int fd = creat("file.tmp");
write(fd, new, size);
close(fd);
rename("file.tmp","file.txt");

}

unlink old_chunk

unlink idfile_2

dentries/tmp

dentries/file
rename

append chunk

creat chunk

creat idfile

idfile

dentries/tmp
link

storage #1 metadata storage #2

beegfs-client

Persistence order ≠ Program order!

Two vulnerabilities discovered
at system crash!

7

unlink old_chunk

Crash vulnerability example

unlink old_chunk

unlink idfile_2

dentries/tmp

dentries/file
rename

append chunk

creat chunk

creat idfile

idfile

dentries/tmp
link

storage #1 metadata storage #2

Inconsistency No.1

Cause rename() persisted before append()

Ordering Cross-node dependency

Consequence Data loss

Fixed by fsck? No

op param

op param Persisted operations

Non-persisted operations

8

unlink old_chunk

Crash vulnerability example

unlink idfile_2

dentries/tmp

dentries/file
rename

append chunk

creat chunk

creat idfile

idfile

dentries/tmp
link

storage #1 metadata storage #2

Inconsistency No.2

Cause unlink() persisted before rename()

Ordering Cross-node dependency

Consequence Data loss

Fixed by fsck? No

op param

op param Persisted operations

Non-persisted operations

9

unlink old_chunk unlink old_chunk

Crash vulnerability example

unlink idfile_2

dentries/tmp

dentries/file
rename

append chunk

creat chunk

creat idfile

idfile

dentries/tmp
link

storage #1 metadata storage #2

Inconsistency No.3

Cause unlink() persisted before rename()

Ordering Intra-node dependency

Consequence Data loss

Fixed by fsck? Yes

op param

op param Persisted operations

Non-persisted operations

10

unlink old_chunk unlink old_chunk

crash state

legal state …

workload checker

passed

failedcrash state

……

crash state

filesystem
& app-level
recovery

client-side
traces

server-side
traces

Legal replay

Crash

Record

Test Classification

File system images that satisfy the given consistency modelconsistency
model

1

2

4

3 5

legal state legal state

Report

PFSCheck design

11

Discovering PFS crash vulnerabilities systematically & efficiently

crash state

legal state …

workload checker

passed

failedcrash state

……

crash state

filesystem
& app-level
recovery

client-side
traces

server-side
traces

Legal replay

Crash

Record

Test Classification

File system images that satisfy the given consistency modelconsistency
model

1

legal state legal state

Report

Automated workload generation

• Unified API for I/O libraries

1. Multi-level tracing

• Joint server-side & client-side I/O calls
tracing

• Network packet tracing

• Correlation between server & client
operations

The PFSCheck design

12

crash state

legal state …

workload checker

passed

failedcrash state

……

crash state

filesystem
& app-level
recovery

client-side
traces

server-side
traces

Legal replay

Crash

Record

Test Classification

File system images that satisfy the given consistency modelconsistency
model

1

2 3

legal state legal state

Report

2. Efficient crash state emulation

• Automated crash state generation via
trace permutation

• Perform necessary post-crash recovery

3. Consistency testing

• Workload-specific consistency checker

The PFSCheck design

13

crash state

legal state …

workload checker

passed

failedcrash state

……

crash state

filesystem
& app-level
recovery

client-side
traces

server-side
traces

Legal replay

Crash

Record

Test Classification

File system images that satisfy the given consistency modelconsistency
model

1

2

4

3 5

legal state legal state

Report

4. Legal replay based on given consistency
model

• Crash consistency model specifies the
legitimate crash states of the parallel file
system

5. Crash vulnerability classification

• If a vulnerable crash state is not a legal
state, we attribute it to PFS

• Otherwise, I/O libraries are blamed

The PFSCheck design

14

Conclusion
• Motivation: crash vulnerabilities could be exacerbated on PFSes, due to the

complexity of the parallel I/O stack

• Study:
– the number of crash consistency bugs on BeeGFS and OrangeFS is higher than local filesystem
– the workload can fail in more ways on PFSes
– the consistency relies on persistency reordering across nodes

• Proposed framework: PFS-specific crash consistency checker with a focus on
automation and efficiency

15

Thank you!

Contact: Jinghan Sun (js39@illinois.edu)

16

