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PFS failures are frequent and expensive
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41% of PFSes suffer from monthly or weekly failures,
their recovery process is expensive & time consuming
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Introduction to parallel file systems

Parallel file system
• Data striping
• Separate metadata management
• POSIX-compliant

Parallel I/O library
• Higher level abstractions:

Datasets, groups, collective I/O
APIs

HPC I/O stack is much more complex than the traditional I/O stack
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A PFS failure example

PFS may experience severe data loss after system-wide power outage
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A study of crash vulnerabilities on PFSes
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PFS crash vulnerabilities

The complexity of PFS stack makes it more vulnerable to system crashes
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Vulnerability: Parallel I/O stack may 
corrupt user files if crash happens in 
the middle of the computation 
(depending on the precise timing of 
disk accesses) 



Crash vulnerability example

// atomic replace via rename (ARVR)
bool atomic_update(){

int fd = create("file.tmp");
write(fd, new, size); 
close(fd); 
rename("file.tmp","file.txt");

}

The function tries to update a file content atomically

storage #1 metadata storage #2

BeeGFS with 2 storage and 1 metadata server
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Crash vulnerability example

// atomic replace via rename (ARVR)
bool atomic_update(){

int fd = creat("file.tmp");
write(fd, new, size); 
close(fd); 
rename("file.tmp","file.txt");

}

unlink old_chunk

unlink idfile_2

dentries/tmp

dentries/file
rename

append chunk

creat chunk

creat idfile

idfile

dentries/tmp
link

storage #1 metadata storage #2

beegfs-client

Persistence order ≠ Program order!

Two vulnerabilities discovered
at system crash!
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Crash vulnerability example

unlink old_chunk

unlink idfile_2

dentries/tmp

dentries/file
rename

append chunk

creat chunk

creat idfile

idfile

dentries/tmp
link

storage #1 metadata storage #2

Inconsistency No.1

Cause rename() persisted before append()

Ordering Cross-node dependency

Consequence Data loss

Fixed by fsck? No

op param

op param Persisted operations

Non-persisted operations
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Crash vulnerability example

unlink idfile_2

dentries/tmp

dentries/file
rename

append chunk

creat chunk

creat idfile

idfile

dentries/tmp
link

storage #1 metadata storage #2

Inconsistency No.2

Cause unlink() persisted before rename()

Ordering Cross-node dependency

Consequence Data loss

Fixed by fsck? No

op param

op param Persisted operations

Non-persisted operations
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Crash vulnerability example

unlink idfile_2

dentries/tmp

dentries/file
rename

append chunk

creat chunk

creat idfile

idfile

dentries/tmp
link

storage #1 metadata storage #2

Inconsistency No.3

Cause unlink() persisted before rename()

Ordering Intra-node dependency

Consequence Data loss

Fixed by fsck? Yes

op param

op param Persisted operations

Non-persisted operations
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crash state
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Discovering PFS crash vulnerabilities systematically & efficiently
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Automated workload generation

• Unified API for I/O libraries

1. Multi-level tracing

• Joint server-side & client-side I/O calls
tracing

• Network packet tracing

• Correlation between server & client
operations

The PFSCheck design
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2. Efficient crash state emulation

• Automated crash state generation via
trace permutation

• Perform necessary post-crash recovery

3. Consistency testing

• Workload-specific consistency checker

The PFSCheck design
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4. Legal replay based on given consistency
model

• Crash consistency model specifies the
legitimate crash states of the parallel file
system

5. Crash vulnerability classification

• If a vulnerable crash state is not a legal
state, we attribute it to PFS

• Otherwise, I/O libraries are blamed

The PFSCheck design
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Conclusion
• Motivation: crash vulnerabilities could be exacerbated on PFSes, due to the

complexity of the parallel I/O stack

• Study:
– the number of crash consistency bugs on BeeGFS and OrangeFS is higher than local filesystem
– the workload can fail in more ways on PFSes
– the consistency relies on persistency reordering across nodes

• Proposed framework: PFS-specific crash consistency checker with a focus on
automation and efficiency
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Thank you!

Contact: Jinghan Sun (js39@illinois.edu)
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