Understanding and Finding Crash-Consistency Bugs
in Parallel File Systems

Jinghan Sun, Chen Wang, Jian Huang, and Marc Snir

University of Illlinois at Urbana-Champaign

E I L LI N o I S Contact: Jinghan Sun (js39@illinois.edu)

PFS failures are frequent and expensive

40%

32%

24%

16%

8%

0%

PFS Failure Frequency

34% 34%
: I I

= Weekly mMonthly mNever mNot Reported

12%

75%
60%
45%
30%
15%

0%

PFS Recovery Time

59%

249%

14%
3%
—

m<1day m2-3days m1week m>1week

50%
40%
30%
20%
10%

0%

m <$100K
m>51M

Single Day Failure Cost

41%
35%

14%

B s

= $100K-$500K m $500K-S1M
m Not Reported

41% of PFSes suffer from monthly or weekly failures,
their recovery process is expensive & time consuming

Source: Hyperion Research 2019

1

Introduction to parallel file systems

HPC Applications

. Parallel 1/0 library

e Higher level abstractions:
Datasets, groups, collective I/0

' 1

' | MPI-IO POSIX-10 | APls

i : |

: Parallel FS :

Parallel file system

S —— e——— i Data striping
Local FS » Separate metadata management
v * POSIX-compliant
Disk

HPC I/O stack is much more complex than the traditional I/O stack

A PFS failure example

n TEXAS TECH UNIVERSITY

'@ Information Technology Division

High Performance Computing Center

To All HPCC Customers and Partners,

As we have informed you earlier, the Experimental Sciences Building experienced a major power outage
Sunday, Jan. 3 and another set of outages Tuesday, Jan. 5 that occurred while file systems were being
recovered from the first outage. As a result, there were major losses of important parts of the file systems for
the work, scratch and certain experimental group special Lustre areas.

The HPCC staff have been working continuously since these events on recovery procedures to try to restore
as much as possible of the affected file systems. These procedures are extremely time-consuming, taking
days to complete in some cases. Although about a third of the affected file systems have been recovered,
work continues on this effort and no time estimate is possible at present.

User home areas have been recovered successfully. At present, no user logins are being permitted while
recovery efforts proceed on the remaining Lustre areas. Your understanding and patience are appreciated.

If you have questions, please contact us at hpccsupport@ttu.edu or 806-742-4350. Thanks.

Sincerely,
HPCC Staff

PFS may experience severe data loss after system-wide power outage

A study of crash vulnerabilities on PFSes

Atomic Replace
via Rename
Write-ahead Data loss
UrangeF S Logging -

HDF5
create ”

< II - delete

GFS rename]
Inaccessible
resize dataset

update

Two Filesystems + Seven Workloads 34 Vulnerabilities

PFS crash vulnerabilities

=
o

O P N W & U1 O N 0O O

Number of Vulnerabilities on Different Filesystems

B BeeGFS m OrangeFS mextd

L I

ARVR WAL H5-create H5-delete

H5-resize H5-rename H5-write

Vulnerability: Parallel I/O stack may
corrupt user files if crash happens in

the middle of the computation
(depending on the precise timing of
disk accesses)

The complexity of PFS stack makes it more vulnerable to system crashes

Crash vulnerability example

// atomic replace via rename (ARVR) ‘II -
bool atomic_update(){
int fd = create("file.tmp"); GFS

write(fd, new, size); / 1 \
close(fd);
renane("File. tnp", "File. txt");

The function tries to update a file content atomically BeeGFS with 2 storage and 1 metadata server

Crash vulnerability example

idfile

beegfs-client
I
idfile

dentries/tmp

bool atomic_update(){
int fd = creat("file.tmp");
write(fd, new, size); —T —
close(fd);
rename("file.tmp","file.txt");

|
I
I
// atomic replace via rename (ARVR) :
I
|

dentries/tmp
rename

dentries/file

unlink [EEXekS RN

Persistence order + Program order!
IR old chunk

unlink

Two vulnerabilities discovered
at system crash!

I

Crash vulnerability example

idfile

Inconsistency No.1 idfile
; dentries/tmp

Cause rename() persisted before append()
Ordering Cross-node dependency
Consequence Data loss
. dentries/t

Fixed by fsck? No rename SIEESSA
dentries/file

idfile 2

= = = -

P . . I I old_chunk
- Persisted operations - — -

op BELELL - —— =

) OP Non-persisted operations storage #1

Crash vulnerability example

idfile
Inconsistency No.2 idfile
. . dentries/tmp
Cause unlink() persisted before rename()
Ordering Cross-node dependency
Consequence Data loss
i - e
Fixed by fsck? No . dentries/tmp

| dentries/file

unlink [EEXekS RN

IR old chunk

—-———
! op Persisted operations I ©1d_chunk

) OP Non-persisted operations storage #1

Crash vulnerability example

idfile

Inconsistency No.3 idfile
. . dentries/tmp

Cause unlink() persisted before rename()
Ordering Intra-node dependency
Consequence Data loss
i - e

Fixed by fsck? Yes I e 2

| dentries/file

unlink [EEXekS RN

L unlink ISRIEE : old_chunk

: op Persisted operations
Ll Non-persisted operations storage #1

I

PFSCheck design

— e - - -~
I workload | 1 filesystem 11 checker !

L==1—="* | &applevel I - == ——"
(1)
Record

| recovery
. ,a———J——--s\

rver-si
server-side crash state K
traces i
crash state |
1
1

failed

I
|
1
1
|
1
|
1
1
1
\

client-side
traces

~

(T T T T e e —mmm -
1

1
legal state] legal state J legal state }

N L4

| consistency | File system images that satisfy the given consistency model

Discovering PFS crash vulnerabilities systematically & efficiently

The PFSCheck design

Automated workload generation il i g |
workload | filesystem 11 checker
t==—=< | &applevel I === ——=1
. . . l
e Unified API for 1/0O libraries Record 2

server-side
traces

1. Multi-level tracing

Classification

Report “

e Joint server-side & client-side I/O calls

tracing client-side
traces
N o o e e e e e e e e e e e
* Network packet tracing f '
Legal replay pgell legal state | legal state [| legal state |
| consistency | File system images that satisfy the given consistency model

e Correlation between server & client I

| — model _ _

operations

The PFSCheck design

2. Efficient crash state emulation Fomo T flesystem 11T Shoorer !
it Tl | &app-level | === —=1
'
* Automated crash state generation via Record

trace permutation server-side

traces

Report “

* Perform necessary post-crash recovery Classification

3. Consistency testing client-side

traces

B _ - ittt |
Workload-specific consistency checker Legal replay pd] 3; lcgal state |
I_ c_on_sisterTcy_ I File system images that satisfy the given consistency model
| — model _ !

The PFSCheck design

r—_—_ = m———"—e—e— e mm o= = .

4. Legal replay based on given consistency " workioad ! 1 ;ilesyslteml !
-1 | & app-leve i
e Crash consistency model specifies the server-side

traces
legitimate crash states of the parallel file
system

client-side
traces

5. Crash vulnerability classification

state, we attribute it to PFS = Sonsistency” |
| - -model _ _

File system images that satisfy the given consistency model

. - [4) | Sttt .
* |If a vulnerable crash state is not a legal Legal replay L W coal state Jpm
|

o QOtherwise, I/0 libraries are blamed

I

Conclusion

 Motivation: crash vulnerabilities could be exacerbated on PFSes, due to the
complexity of the parallel I/0O stack

e Study:
— the number of crash consistency bugs on BeeGFS and OrangeFS is higher than local filesystem
— the workload can fail in more ways on PFSes
— the consistency relies on persistency reordering across nodes

* Proposed framework: PFS-specific crash consistency checker with a focus on
automation and efficiency

Thank you!

Contact: Jinghan Sun (js39@illinois.edu)

