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Abstract
We revisit the question of the effectiveness of the popular
LRU cache eviction policy versus the FIFO heuristic which
attempts to give an LRU like behavior. Several past works
have considered this question and commonly stipulated that
while FIFO is much easier to implement, the improved hit
ratio of LRU outweighs this. We claim that two main trends
call for a reevaluation: new caches such as front-ends to cloud
storage have very large scales and this makes managing cache
metadata in RAM no longer feasible; and new workloads have
emerged that possess different characteristics.

We model the overall cost of running LRU and FIFO in a
very large scale cache and evaluate this cost using a number
of publicly available traces. Our main evaluation workload is
a new set of traces that we collected from a large public cloud
object storage service and on this new trace FIFO exhibits
better overall cost than LRU. We hope that these observations
reignite the evaluation of cache eviction policies under new
circumstances and that the new traces, that we intend to make
public, serve as a testing ground for such work.

1 Introduction

Caching refers to the practice of putting a relatively fast and
small storage as a front-end to a slower and larger storage. The
cache has the potential to respond to read requests and provide
faster access times - latency and throughput. Historically,
caching refers to putting fast non-volatile memory in front of
persistent storage such as disk. However, this notion can be
generalized to all sorts of combinations, ranging from faster
levels of memory serving as a cache to slower ones (e.g. L2
and L1 cache in front of a DRAM memory), to different
classes of persistent storage (e.g. faster SSDs serving as a
"flash-cache" to slower HDDs) and at times also the same
type of storage but at different locations (e.g. in CDNs, local
nodes serve as a cache to distant back-end nodes or storage).
In this paper we focus on the latter type of caching that has
become more relevant with the rise of the cloud. Namely,

edge caching of remote cloud content. In particular, our study
looks at such a setting for a cloud object storage service. An
object storage service stores large, immutable objects in the
cloud using a RESTful API. Since it services customers over
the web, it typically suffers from poor latency and as such,
holding a front-end edge cache can be very beneficial.

LRU vs. FIFO. The cache eviction policy is the central
component for deciding the content of the cache which in
turn dictates the cache efficiency. As such, evaluating cache
eviction policies has received much attention over the years.
There are numerous cache replacement policies in the lit-
erature, yet to most developers the LRU policy serves as a
synonym for caching. LRU evicts the Least Recently Used
item from the cache, and as such needs to monitor the most
recent access to each item in the cache. A closely related evic-
tion policy is the FIFO algorithm, which like its name (First
In First Out) evicts the oldest item in the cache. This practice
has the obvious drawback that an item that was reused just
recently might still be evicted from the cache if it was inserted
a long time ago. On the other hand, FIFO’s main merit is its
management simplicity: hold all the items in the cache in
a queue and evict the next in line, with no need to update
information about items already in the queue.

As such, comparing the performance of LRU vs. FIFO has
garnered attention from the early days of caching. Naturally,
it was observed that FIFO has the potential to perform sig-
nificantly worse than LRU. FIFO is notorious for having the
"Belady anomality" [1] in which adding more space to the
cache can at times reduce the hit rate of the cache. Several
works went on to claim that from a practical point of view,
LRU is better than FIFO, whether based on experiments [2],
or by defining theoretical models and analyzing the behavior
of LRU vs. FIFO under these models [2–6]. In this paper we
intend to revisit this statement and claim that with a change
of circumstances, LRU can no longer be assumed to be better
than FIFO.



It’s Time to Revisit LRU vs. FIFO. We stipulate that two
main trends have changed the picture in this debate and call
for a reevaluation:

1. A New Scale to Caches - In the early days of caching the
main deployment was memory based, and managing the cache
metadata was carried out entirely in memory (by metadata
we refer to the information required to carry out the eviction
policies). Since the metadata is significantly smaller than the
actual data being cached, this would typically take up only a
small fraction of the cache memory, at the expense of some
of the potential caching space.

However, with the rise of the cloud and the data deluge,
we are now considering caching in persistent storage (even
on spinning disks), that leverage geographical proximity to
achieve speed advantage. Such a cache can hold capacities
that are orders of magnitude higher than traditional caches,
and respectively, the cache metadata associated with such a
capacity can no longer fit in memory and need to spill over to
the persistent media. In such a scenario, FIFO with its very
simple management requirements, has a significant advantage
over other caching strategies.

2. New Workloads - Caching evaluations carried out in the
past have centered around workloads for memory, files and
block storage. But times, they are a’changing, and new work-
loads, such as big data analytics and machine learning, have
different characteristics that may significantly skew old re-
sults. In our study, we evaluate how to build a front-end cache
for a large public cloud object store, a workload that carries a
large scale and a new semantic behavior. Previous empirical
caching studies may no longer hold for this new workload.

This Work. We reevalute the cache effectiveness of the
LRU and FIFO eviction policies on a number of real world
traces. The main trace that we use is a new trace collected
from the IBM Cloud Object Storage service (COS), a trace
that we intend to make public. We collected weekly traces of
99 tenants, accounting for over 850 Million I/O requests and
amounting to 158 TBs of data being accessed.

Our evaluations show that on real world traces, FIFO
achieves hit rates that are very close to those of LRU, yet
require a much smaller overhead for managing the cache. We
then model the overall effectiveness of a cache policy taking
into account cache management operations and observe that
in many cases FIFO outperforms LRU. This is particularly
evident in the new cloud based traces where depending on
the exact configuration, FIFO outperforms LRU on 80% or
more of the weekly traces of the cloud object store. These
results vary depending on the performance gap between the
cache and the backend storage, where the larger the gap is,
the more the cache hit ratio dominates the results. In extreme
cases, LRU typically wins out by a slight margin but in many
realistic settings, FIFO is typically the preferred policy.

We hope that these findings lead to a new discussion around

cache eviction policies, and the new traces serve as a new
testing ground for such works.

2 Large Caches and Cost Model

2.1 The Effect of Large Scale Cache Deployment
on Cache Management

The premise of a cache is that it is faster than the backend
storage. But speed comes at a cost, which is why the backend
usually stores all the data and only a subset resides in the
cache. The goal of a good caching strategy is therefore to
make sure that the "hottest" data items reside in the cache, so
that as many read requests as possible will be served from the
cache (i.e., cache hits) and thus achieve better overall storage
performance. The central component for choosing what data
should reside in the cache is the cache eviction policy which
decides what data to evict from the cache in order to make
room for new data that has just been requested.

This paper puts a spotlight on the overhead of actually
implementing a cache eviction policy. In our discussion we
distinguish between cache data and metadata. While the data
is the actual user data being held in the cache, the metadata
refers to the information stored in order to find data in the
cache and choose the right item to evict from the cache ac-
cording to the specific cache policy. Our observations hinge
on the fact that in very large cloud caches, as discussed in Sec-
tion 1, the amount of metadata becomes too large to be held
solely in memory. The implications of this differ depending
on the cache eviction policy.

Cache Eviction Policies. The most well known cache evic-
tion policies are the LRU, which monitors recency, and the
Least Frequently Used (LFU), which monitors frequency, of
data in order to make intelligent eviction decisions. Most
other algorithms, such as ARC [7], GDSF [8], Hyperbolic [9],
FRD [10], LIRS [11] and W-TinyLFU [12, 13], combine re-
cency and frequency information to make their eviction de-
cisions. Each of these eviction heuristics has its weaknesses
and advantages and their success is very workload depen-
dent. However, all of these algorithms require updates of the
metadata upon a cache hit, which is the crux of our observa-
tion. Once metadata is not held entirely in RAM, it is very
likely that metadata updates would entail relatively expensive
updates to persistent disk.

FIFO is a simple heuristic that attempts to approximate
LRU to the best of its ability. It is unique in that it is hardly
affected when the cache metadata does not fit in memory. In
this work we focus solely on comparing LRU to the FIFO
heuristic and leave comparison to other methods to future
work (see discussion in Section 5). We note that we have
experimented with several different caching algorithms and
found that on the diverse workloads that we run, none of the



algorithms consistently outperform LRU in terms of hit rate.
Thus LRU serves as a good cache eviction policy as any.

The Impact of Large Caches on LRU vs. FIFO. The
FIFO algorithm keeps a queue of objects in the order that
they were inserted into the cache. Upon a cache miss, it evicts
one or more objects from the head and inserts a new object
into the tail of the queue. The list does not change upon a
cache hit. These characteristics of the FIFO are very useful
when not all of the metadata is in memory. Instead, only the
head and tail are kept in memory (the head and tail each con-
sist of more than a single item but rather a variable number of
items that is limited by the available memory). The rest of the
queue is kept in persistent memory, and once in a while the
tail is flushed into the persistent storage or additional items
from the head are read from it.

An implementation of LRU treats cache misses in the same
way as FIFO. But during a cache hit, it needs to modify the
order of the queue and move the hit item into the tail. As-
suming that most of the metadata is on persistent storage, and
since hits can be on items from anywhere in the queue, then
this update requires additional expensive random I/Os to the
persistent storage. The difference between the two algorithms
is illustrated in Figure 1.1

Figure 1: Metadata accesses in FIFO and LRU implementa-
tions. The metadata is divided into three parts: the tail where
new objects are inserted, the main body, and the head from
which objects are evicted. In FIFO, objects inserted into the
tail slowly propagated into the head, while in LRU, objects
may also move from the body or the head or even the tail into
the top of tail of the queue.

Note that there are other considerations such as supporting
concurrent updates to the cache, which have been thoroughly
studied (e.g. the use of the CLOCK [14] eviction policy is val-
ued for its simple concurrency support). FIFO, like CLOCK
has advantages over LRU in this regard as well.

2.2 A Cache Cost Model

Traditional evaluation of cache eviction policies is all about
calculating the hit rate of a given trace. But given the observa-

1One can consider an LRU implementation that does locality based
caching of the persisted metadata and this has a chance to alleviate some of
the overhead. See further discussion in Section 5.

tions about the overheads of metadata management, the user
experience is no longer dictated solely by hit rate. Evaluating
actual user experience (mostly latency) is much trickier than
simply understanding the hit rate. The exact latency of cache
hits or misses may differ significantly between implementa-
tions and systems and even within the same system over time
(e.g., as a factor of concurrency and contention on resources
with other processes). In order to get a general sense of the
user experience that one can expect, we resort to calculating
a cost model of a caching policy. The cost that we chose is a
rough estimation of overall latency in an ideal setting where
IOs are performed sequentially and the latency of the cache
and the remote backend are fixed. The calculation of the cost
is a function of the number of cache misses and cache hits, as
well as the latency of local access and remote access. Denote
the latency of data on the remote backend by `Remote, and the
latency of reading data from the cache by `Cache. The cost of
metadata on local persistent storage is denoted by `CacheMD.
Denote the hit-rate of FIFO and LRU by HRFIFO and HRLRU ,
respectively. Our cost function is formulate as follows:

CostLRU =HRLRU ·
data+metadata︷ ︸︸ ︷

(`Cache + `CacheMD)+(1−HRLRU )·
data︷ ︸︸ ︷

`Remote

CostFIFO = HRFIFO ·
data︷ ︸︸ ︷
`Cache +(1−HRFIFO) ·

data︷ ︸︸ ︷
`Remote

For both LRU and FIFO a cache miss entails reading data
from the remote backend storage and adding an item to the
tail of the queue. The latter is usually in RAM so the cost
is negligible. Each hit entails access to the locally cached
data. For FIFO there is no additional work, but for LRU, as
explained above, an additional update is required to the cache
metadata which is, with high probability, on persistent storage.
In our evaluations (Section 4) we assume that the cache data
and metadata reside on the same media and for simplicity use
`CacheMD = `Cache. We also ignore the overhead associated
with lookup in the cache as this should be the same for both
FIFO and LRU.

2.3 Related Work

Several works have addressed the problem of large caches that
cannot hold their metadata in RAM. They present alternatives
to approximate LRU and are generally far more complex than
FIFO. The TBF design [15] approximates LRU using Two
in-memory Bloom Filters combined with iterating over an in
memory cache index to find eviction candidates. Me-Clock
[16] uses only one bloom filter, but one that supports deletions.
It uses a FIFO queue to traverse eviction candidates (as in
Clock [14]). Our tests indicate that FIFO is competitive with
these methods, yet is far simpler to implement (see further
discussion in Section 5).



Figure 2: Accesses frequencies of different workloads traced
from IBM COS over a one week period
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Figure 3: The objects size distribution in the IBM COS trace
as well as the capacity of different size categories

3 Traces

To evaluate our work, we used a variety of available traces as
well as our newly collected set. We use the Microsoft Cam-
bride traces (MSR) [17, 18], the Fujitsu VM storage traces
(SYSTOR) [19, 20] and traces generated from the tpcc bench-
mark (TPCC) [21]. Finally, we collected traces from the IBM
cloud based object store service (IBM COS) [22]. Aggregated
information about the different traces can be found in Table 1.

The IBM COS trace IBM Cloud Object Store is a public
cloud based object storage service for storing immutable ob-
jects, primarily via a RESTful API. We collected 99 traces
from this service, each comprised of all the data access re-
quests issued over a single week by a single tenant of the
service. The traces include PUT, GET, and DELETE objects
requests and include object sizes along with obfuscated object

Table 1: Summary of the trace collections.

Group Traces Accesses Objects Objects Size
Name # Millions Millions Gigabytes
MSR 3 68 24 905
SYSTOR 3 235 154 4,538
TPCC 8 94 76 636
IBM COS 99 858 149 161,869

names. Each trace includes anywhere from 22 thousand to
187 million object requests. We were able to identify some of
the workloads as SQL queries, Deep Learning workloads, Nat-
ural Language Processing (NLP), Apache Spark data analytic,
and document and media servers. But many of the workloads’
types remain unknown. The access patterns seen in our traces
are very diverse, as depicted in Figure 2 for a selected number
of traces. One can see that some workloads access the data
continuously, while some access the data periodically, and yet
others seem to be relatively ad hoc or random.

The object sizes also show great variance. The overall
distribution of object sizes in shown in Figure 3. We see that
a vast majority of the objects (85%) in the traces are smaller
than a megabyte, Yet these objects only account for 3% of the
of the stored capacity. Note that since object storage traces
reference objects of variable size one should adopt a strategy
for handling such variable sized data within a cache. In our
simulation we break large objects into fixed size 4MB blocks
and treat each one separately at the cache layer. Requests
smaller than 4MB take up their actual length in the cache.
This is aligned with the fact that GET requests to the IBM
COS often include range reads in which only a part of an
object is read.

4 Evaluation Results

Hit Rate Comparison. FIFO attempts to approximate LRU
behavior and the simulation results show that it is doing so
relatively well. Figure 4 presents several representative Miss
Ratio Curves (MRCs) indicating that overall the two methods
closely mirror each other. As expected, LRU is often slightly
better than FIFO in terms of pure hit rate, yet many times
FIFO is similar or even better than LRU. Figure 5 shows that
in about half of the traces LRU achieves a higher hit rate while
the other half is either identical or FIFO is better.

Cost Comparison. As described in Section 2.2, hit rate is
a very central component, but not the only one in assessing
the eviction policy. Once we look at the latency cost function
rather than hit rate, the picture changes dramatically. Figure 6
presents the cost winners for various latency configurations
and in these FIFO comes out as a clear favorite. It should
be noted that the higher the difference between the front-end
cache latency and the remote storage latency, the more LRU



Figure 4: A representative handful of MRCs of the IBM COS traces. The vertical dashed lines, from left to right, indicate cache
sizes of 1%, 10% and 30% of the total size of objects in the trace.

Figure 5: The number of traces in which LRU achieves more
cache hits, equal cache hits, or FIFO has more cache hits,
evaluated over various cache sizes.

is favored in terms of cost. This is because an extremely high
cost for remote access makes hit rate the dominating factor
in the equation. This is why LRU is favored in traditional
caches where the entire cache resides in RAM. In our tests we
used latencies of `Cache = 1ms to the front-end and `Remote =
10ms,50ms,100ms for the remote storage. That being said,
these results are more general since the actual latency does
not matter in the cost evaluation, rather it is the ratio between
the front-end and back-end latencies. Hence the graphs only
mention `Cache and `Remote as numbers with no units, with the
understanding that these represent ratios.

Table 2: Trace breakdown for a cache that is 30% of the total
data size, `Cache = 1 and `Remote = 50.

Group FIFO wins No Winner LRU wins
MSR 1 0 2
SYSTOR 1 0 2
TPCC 4 1 3
IBM COS 78 12 9

Interestingly, when looking at the breakdown of the traces,
we realize that FIFO is not a clear winner in the more tradition
workloads, but is clearly superior for the new IBM COS trace.
This is exemplified in Table 2 which shows a breakdown
according to trace family (for a single setting). Although the
sample size is small, for the MSR, SYSTOR and TPCC traces

there is no clear winner, but for the IBM COS trace there is
a strong bias towards FIFO. We also observed that there is
no correlation between the trace size and a FIFO preference
(there is great variance in the trace sizes in the IBM COS
set). The same ratio of traces preferring FIFO holds for the
smallest or largest traces in the set.

However, looking just at the number of winners for either
LRU or FIFO does not paint the entire picture, since the actual
difference in cost is ignored. Figure 7 gives us a deeper (albeit
complex) look at the actual behavior in the traces. For each
trace it depicts the difference in latency cost between FIFO
and LRU as a function of the actual hit rate. We observe that
the difference in hit rate rarely exceeds 5% and for the vast
majority of the traces is within 1%. The background color
indicates the cost for each trace, and here we see that as the
hit rate grows, so does the preference for using FIFO (since
LRU behave exactly like FIFO on misses, yet is taxed on hits).
Finally, another measure that does take into account the cost
difference is the total cost of all traces in the IBM COS set.
This measure (shown in Figure 8) clearly favors FIFO over
LRU.

5 Discussion

In this paper we advocate to revisit the LRU vs. FIFO ques-
tion in light of new caching opportunities. We argue that on
new traces, and under new media and cache settings, FIFO
is actually a better choice than LRU. This is in contrast to
previous works that actually have "LRU is better than FIFO"
in their title [4, 5]. We hope that our work ignites new stud-
ies of cache eviction policies that tackle the cache metadata
handling in extremely large edge caches.

In light of our work, one should evaluate methods for
approximating LRU with lower memory consumption (e.g.
[15,16]), but keep in mind the very simple FIFO as a base line
rather than a full fledged LRU. Similarly, new approaches for
memory to hit rate trade-offs should be considered. We note
that the CLOCK [14] approximation for LRU seems like a
good candidate heuristic to build on. Another approach could
be to use a smart paging of LRU metadata into RAM and
hope that locality properties in the trace are enough to pro-



(a) Cache latency=1, Remote latency=10 (b) Cache latency=1, Remote latency=50 (c) Cache latency=1, Remote latency=100

Figure 6: The number of traces each policy wins by cost comparison for different cache sizes. "No Winner" is where the cost
difference is smaller than 0.01

(a) Cache size = 1% (b) Cache size = 10% (c) Cache size = 30%

Figure 7: Each dot in the plot represents a trace with the y-axis being the LRU hit rate while the x-axis is the hit rate difference
between LRU and FIFO. The background color indicates the cost difference between the methods. The more green, the more it
favors FIFO and the more red, the more it favors LRU (computed with with `Cache = 1 and `Remote = 50).

Figure 8: The total cost for all the IBM COS traces with
different cache sizes and latency values.

vide sufficient performance. Another interesting direction is
to devise memory efficient approximations of more complex
eviction policies than LRU. Specifically, policies that take
into account frequency as well as recency. Techniques like
TinyLFU [12, 13] are a step in this direction.

Finally, the new traces that we collected from the world of
cloud object storage should serve as a base for testing caching
strategies in this realm. To the best of our knowledge this will
be the first publicly available set of traces for such workloads
and we hope that it leads to new studies about caching or
other areas.
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