
1. Introducing CFEngine

As technology becomes more sophisticated,
the cost of introducing variations declines.

—Alvin Toffler, Future Shock, 1970

CFEngine 3 is a third-generation infrastructure automation framework, with self-
healing capabilities and a desired-state, model-oriented approach. It is licensed under
the GPL version 3, in an open source Community edition, and there is a commercially
licensed Enterprise edition with extended verification, reporting and scalability fea-
tures. CFEngine is suitable for managing systems composed of everything from a single
host to hundreds of thousands of hosts, because it is designed to bring consistency
and knowledge of implementation. That applies to the smallest of systems where the
temptation is to make changes ad hoc, and to the largest, where it would be impossible
to implement without machine assistance. CFEngine scales because it has a fundamen-
tally decentralized and knowledge-oriented design. We say that CFEngine manages
hosts “from within,” because each host takes responsibility for its own state by running
the CFEngine agent.

To scale systems, without losing control, you need not only efficiency but a strong
knowledge of the system, which engages human understanding and participation. As
of this writing, the smallest installations of CFEngine are on mobile phones, and the
largest installations we know of regulate around 200,000 machines under a common
administration. CFEngine can manage a great many aspects of system configuration
and maintenance, including:

❖	 Application management
❖	 Storage management
❖	 Service management
❖	 Operating system management

It does this, from the bottom up, through the use of a powerful configuration engine
(hence the name), steered by policy written in a Domain Specific Language for specify-
ing self-healing change operations. Some capabilities include

❖	 Installing and maintaining software
❖	 Setting up and maintaining IT services
❖	 Editing system configuration files and other files
❖	 Creating symbolic links and aliases
❖	 Checking and correcting file permissions, ownership and security attributes
❖	 Deleting unwanted files and rotating logs (garbage collection)
❖	 Compressing selected files

2 /  Introducing CFEngine

❖	 Distributing files within a network
❖	 Automatically mounting remote file systems
❖	 Verifying the presence and integrity of important files and file systems
❖	 Executing commands and scripts
❖	 Applying security-related patches and similar system corrections
❖	 Managing system server processes

By combining primitives like these into a self-maintaining model, we can build up
greater predictability about our systems, and take the step towards mission-critical
infrastructure.

CFEngine’s purpose is to implement such a knowledge-based infrastructure through
configuration management. In practical terms, this means that CFEngine greatly
simplifies the tasks of system configuration and maintenance. For example, to custom-
ize a particular system, it is no longer necessary to write a program that performs each
required action in a procedural language like Perl or your favorite shell. Instead, you
write a much simpler policy description that documents how you want your hosts to
be configured. The CFEngine software determines what needs to be done in terms of
implementation and/or remediation from this specification. Such policy descriptions
are also used to ensure that the system remains configured as the system administrator
wishes over time.

Here is a brief example of such a policy description, which we have annotated:

Sample Policy Example 1: Introducing CFEngine configuration
bundle agent copy_and_cleanup
{
	 vars:
		 “tmpdirs” slist => { “tmp”, “scratch1”, “scratch2” }; 	Define a list variable.

	 files:	 File specifications.
		 “/usr/local/bin”
		 comment => “Permission governance on locally compiled software”,
		 perms => mog(“755”, “root”, “bin”), 	 File ownership and permission settings.
		 depth_search => recurse(“inf”); 	 Fix this and all its subdirectories.

		 “/$(tmpdirs)”	 Clean up temporary directories.
				 $(tmpdirs) will loop over all the values declared above.
		 comment => “Policy for preventing crippling disk fill”,
		 delete => tidy,	 Delete everything in the directory.
		 file_select => days_old(“7”), 	 Select things that are 7 days or older.
		 depth_search => recurse(“inf”);

		 solaris::	 The following applies only to Solaris systems.
		 “/etc/pam.d” => “security@example.com”,
		 comment => “PAM settings are set globally by security team”,
		 copy_from => remote_cp(“/config/pam/solaris”, “pammaster”),
				 Copy files to the local system from the “pammaster” server.
		 depth_search => recurse(“inf”);

		 linux:: 	 The following applies only to Linux systems.
		 “/etc/pam.d/common-auth” => “security@example.com”,
		 comment => “PAM settings are set globally by security team”,
		 copy_from => remote_cp(“/config/pam/common-auth”, “pammaster”);

}

Introducing CFEngine  / 3

The first files promise specifies that all of the files in the directory /usr/local/bin should
be owned by user root and group bin and have the file mode 755. When CFEngine
runs with this configuration description it will correct any ownership and/or permis-
sions which deviate from these specifications. Thus, this promise serves to express a
policy about the proper ownerships and permissions for the executables in the local
binaries directory.

The copy_from promises prescribe different configurations for Linux and Solaris
systems. On Solaris systems, files in /etc/pam.d will be updated with those in the direc-
tory /config/pam/solaris on a master server when the latter are newer. On Linux systems,
only the file /etc/pam.d/common-auth is updated from the PAM master configuration.
Note, however, that both of these specifications implement the same underlying system
configuration maintenance policy: update the relevant PAM configuration files from
the master server if necessary.

The delete promise illustrates the use of implicit looping in CFEngine. The single
directive in the example applies to each of the directories in the tmpdirs list. For each
directory, CFEngine will delete all items in the directory or any of its subdirectories
which have not been accessed in seven days (including ones where the filename begins
with a period). Like the other directives in this sample configuration file, this stanza
implements a policy: items in temporary directories which have not been used within a
week will be deleted.

All CFEngine configuration descriptions are variations on these and similar themes,
albeit more elaborate ones. Before turning to more details about the technical aspects
of using CFEngine, a brief consideration of the most important underlying and guiding
theoretical concepts is in order.

1.1 Fundamental Concepts
As we’ve stated, CFEngine operates on hosts in order to bring their configurations in
line with their specified promises. Here are formal definitions of what we mean by
these key terms:

Definition 1: Host. Generally, a host is a single computer that runs an operat-
ing system like Unix, Linux or Windows. We will sometimes talk about machines
too, and a host can also be a virtual machine supported by an environment such as
VMware or Xen/Linux.

Definition 2: Policy and promises. Policy is a specification of what we want
a host to be like, i.e., its desired state. Rather than being any sort of computer
program, a policy is essentially a piece of documentation that describes techni-
cal details and characteristics. Each statement in CFEngine is called a promise
because, once documented, the agent will try to keep it as a promise for as long as
it is defined, not just once during a build process. A CFEngine policy is a collection
of promises.

Definition 3: Configuration. The configuration of a host is the actual state of
its resources, e.g., the permissions and contents of files, the inventory of software
installed, and the like. It is the state of affairs on a particular host at a given time.

What are we aiming for with CFEngine? The answer is policy-conformant configuration.
If we can promise the desired state, we can claim a host will behave predictably. We

4 /  Introducing CFEngine

want to formulate a specification for one or more hosts describing their characteristics
and how they all interact (perhaps to solve a business problem); then we want to leave
the details, implementation and maintenance to a robot agent: cf-agent.

Humans are good at understanding input and thinking up solutions but not very
reliable at implementation: doing. Machines and software agents are good at carrying
out tasks reliably, but are not good at understanding or finding actual solutions. With
CFEngine, you let the distinct parts of your human-computer organization concentrate
on what they are each good at doing. This is a manifesto for re-humanizing IT manage-
ment, so that machines work for humans, not the other way around.

1.1.1 Promises and Repairs
A CFEngine policy can be thought of as a list of promises which the system itself
makes to you, or an imaginary auditor, about its configuration state. Don’t think of
CFEngine’s language as a programming language, but rather as a documentation
language. Most promises involve the possibility of change to the system, if the desired
state is not initially met. The ability to change allows the agent to fulfill its promises
continuously over time. We call such changes actions or operations. As you probably
already guessed, the auditor in this scenario is part of CFEngine itself. Cf-agent is also
the mechanic or surgeon that performs the operations on the system, if it does not meet
its promises.

By describing its operation in this manner, we can think of configuration management
as a service that is provided, a service that is intimately connected with monitoring and
maintenance, and which can be “bought” on demand without necessarily subordinat-
ing a system to a central authority.

Definition 4: Operation. A unit of change is called an operation. CFEngine
deals with changes to a system implicitly: operations are embedded into the basic
sentences only by the implication of keeping a promise about system state.

For example, here is a promise about the attributes of a file:
files:
 “/etc/passwd”
 perms => mog(“a+r,go-w”,”root”,”root”;

There are implicit operations (actions) in this declaration: specifically, the operations
that will change the attributes if/when they do not conform to this specification.

Definition 5: Outcome. The outcome of a promise is how we can assess its state
after CFEngine has attempted to verify it. The outcome of any promise can be one
of three possibilities:

• Promise kept (was and is ok)
• Promise not kept (not ok)
• Promise repaired (was not but now ok)

CFEngine 3 uses these categories very consistently when reporting on the state of the
system. Clearly, having a promise kept is closely related to the concept of system compli-
ance, measured in relation to a specification. Thus it is very easy to create compliance
frameworks written as CFEngine promises.

Introducing CFEngine  / 5

1.1.2 Convergence
A key property of CFEngine is convergence. This is an important characteristic that
distinguishes it from general computer languages. It is a property that helps to prevent
systems from diverging: running away in an uncontrollable fashion.

Definition 6: Convergence. An operation is convergent if it always brings the
configuration of a host closer to its promised state, and has no effect if the host is
already in that state. We can summarize this in functional terms by the following
meta-rules:

	 CFEngine(any state) -> desired state

	 CFEngine(desired state) -> desired state

We shall sometimes call a “desired state” a “healthy state,” using the metaphor that
a badly configured host is suffering from a kind of sickness.

Here is an example used during the editing of an ASCII file:
 “/path/myfile”.
 edit_line => append_if_no_line(“Important configuration line”);

This operation tells CFEngine to append the given text to the end of a file, only if it
is not already there. The policy-conformant configuration is therefore that the line is
present, and once that is achieved nothing more will be done. We say that the operation
append_if_no_line is convergent.

Don’t underestimate the value of convergence. It provides you with stability and thus
predictable knowledge about your system. Because CFEngine’s language interface
strongly discourages you from doing anything non-convergent, it also helps to prevent
mistakes. The price is that you will have to learn to think in a convergent way—and
that is new for most people who come to CFEngine for the first time.

1.1.3 Classes, Contexts and Declarations: From One to Many Hosts
One of the features that makes CFEngine policies readable is the ability to hide away
all of the complex decision-making that needs to be performed by the agent. To realize
this ambition, CFEngine uses a declarative language to express policy.

A declarative language is not like a flow-chart; it is more like an inventory of intent. In
an imperative language, one focuses on the procedure. In a declarative language, one
focuses on the intention, or the presumed result.

One example of this is the use of classes, or context expressions, in CFEngine. Classes
and contexts are a way of making decisions, without writing many “if-then-else”
clauses. A class is an identifier which has the value “true” when a particular test is
true. It is a kind of Boolean variable; if you like, it caches the result of an “if” test
whose value was discovered by probing the system. A class is used to limit the scope of
CFEngine actions to the appropriate system(s) and/or under the appropriate conditions,
i.e., to say when and where promises should be kept.

The benefit of classes is that all of the testing can be hidden away in the bowels of
CFEngine, and only the results need be visible if or when they are needed.

Definition 7: Classes. A class is a way of slicing up and mapping out the com-
plex environment of one or more hosts into regions that can then be referred to by a
symbol or name. They describe scope: where something is to be constrained.

6 /  Introducing CFEngine

For example, the class debian is true if and only if cf-agent is running on a host that
has Debian GNU/Linux as its operating system.

1.1.4 Voluntary Cooperation
Another fundamental property of CFEngine components is that every host retains its
individual autonomy. A host can always opt out of CFEngine-based governance if its
administrator wants to. This principle leads to a fundamental design and implementa-
tion decision:

Definition 8: Autonomy. No CFEngine component is capable of receiving infor-
mation that it has not explicitly asked for itself.

It is important to understand what this means. It does not mean that centralized con-
trol of hosts cannot be achieved. Centralized control is the way that most users choose
to use CFEngine. Indeed, all you have to do to achieve centralized control is to make a
policy decision for all your hosts to fetch policy specifications from a central authority.

Autonomy does mean that if your environment has some small groups or sub-cultures
with special needs, it is possible for them to retain their special identity. No one
claiming to be their own self-appointed authority can ride roughshod over their local
decisions.

Where does policy come from then? Each host works from a policy specification that
CFEngine expects to find in a local directory (usually /var/cfengine/inputs on a Unix-like
host). If you want your host to be controlled from some central manager or authority,
then your policy must contain bootstrapping specifications that say: “It is my deci-
sion that I should download and follow the policy specification located at the central
manager.”

Each host can turn this policy decision off at any time. This is a key part of the CFEn-
gine security model.

1.1.5 Scalability
CFEngine is designed to be scalable at a low cost. Its scalability is at least as good as
any other system, because it allows for maximal distribution of workload. Moreover,
because it is very lightweight and has few dependencies, very little hardware or software
is required to grow a system to thousands of hosts.

Definition 9: Scalable distributed action. Each host is responsible for carrying
out checks and maintenance on/for itself, based on its local copy of policy.

Being designed for scaling does not mean that you are immune from making bad deci-
sions. For example, network services can always be a bottleneck if you ask 10,000 hosts
to fetch something from one place at the same time.

The fact that each CFEngine agent keeps a local copy of policy (regardless of whether
it was written locally or inherited from a central authority) means that CFEngine will
continue to function even if network communications are down.

Introducing CFEngine  / 7

1.2 CFEngine Components
The CFEngine software consists of a number of components: separate programs that
work together (see Figure 1.1).

The components of CFEngine are:

❖	 cf-agent: Interprets policy promises and implements them in a convergent
manner. The agent can use data generated by the statistical monitoring engine
cf-monitord and it can fetch data from cf-serverd running on local or remote
hosts.

❖	 cf-execd: Executes cf-agent and logs its output (optionally sending a summary
via email). It can be run in daemon (stand-alone) mode, or it can be run from
cron on a Unix-like system.

❖	 cf-serverd: Monitors the CFEngine port: serves file data and starts cf-agent on
receipt of a connection from cf-runagent. Note that no data can be passed to this
daemon.

❖	 cf-runagent: Contacts remote hosts and requests that they run cf-agent.
❖	 cf-monitord: Collects statistics about resource usage on each host for monitor-

ing and for anomaly detection purposes. The information is made available to
the agent in the form of CFEngine classes so that the agent can check for and
respond to anomalies dynamically.

❖	 cf-key: Generates public-private key pairs on a host. You normally run this pro-
gram only once, as part of the CFEngine software installation process.

❖	 cf-report: Dumps the cf-agent database contents in various formats, should you
become interested in its internal memory.

Figure 1.1 illustrates the relationships among CFEngine components on different hosts.
On a given system, cf-agent may be started by the cf-execd daemon; the latter also
handles logging during cf-agent runs. In addition, operations such as file copying
between hosts are initiated by cf-agent on the local system, and they rely on the cf-
serverd daemon on the remote system to obtain remote data.

Figure 1.1: CFEngine Components and the Connections Between Them

8 /  Introducing CFEngine

1.3 Getting Started
In this section, we’ll get CFEngine installed and running. You should get the CFEngine
components working with a trivial policy before trying to understand the details of
the language, just to get the engine ticking over. Later, when you have understood its
operation, you can build up your policy step by step.

1.3.1 Setting Up Your First CFEngine Host
You should start from a blank system. If you have been using CFEngine Community
Edition and you have already developed a policy; set aside this policy during the instal-
lation process. You will be able to integrate it back later.

For performing these exercises, you can get a free license for CFEngine Enterprise, for
managing up to 25 hosts, from http://cfengine.com/25free.

The Enterprise edition is provided in two packages: the main software package must be
installed on every host (including the policy-server or hub). The expansion package is
only installed on the policy hub. You should install and set up the hub first.

Verify that the machine’s network connection is working. On the hub, verify that
the package manager for your system is working (e.g., apt-get update) and install the
package.

		 cfengine-3.xxx.[rpm | deb | etc]

Red Hat or SuSE families:

		 host# rpm -ihv packages

Debian family:

		 host# dpkg --install packages

On the hub, a public key has now been created in /var/cfengine/ppkeys/localhost.pub as
part of the package installation. As a commercial customer, you should send this public
key to CFEngine Support as an attachment in the ticket system to obtain a license file
license.dat. You do not need to do this for using the 25free license, as it is automatically
enabled.

Save the returned license file to /var/cfengine/masterfiles/license.dat on the hub before
continuing.

Decide on the hostname and IP address of your hub (policy server); here we assume
“10.10.10.1” is the address.

	 hub # /var/cfengine/bin/cf-agent --bootstrap --policy-server 10.10.10.1

Use the same command on all hosts, i.e., do not bootstrap the policy server with a
localhost address. If you mistype the address of the hub, we recommend doing the
following steps to re-bootstrap.
	 hub # /var/cfengine/bin/cf-agent --bootstrap --policy-server 10.10.10.1
	 hub # killall cf-execd cf-serverd cf-monitord cf-hub
	 hub # rm -rf /var/cfengine/inputs/*
	 hub # rm -f /var/cfengine/policy_server.dat
	 hub # /var/cfengine/bin/cf-agent --bootstrap --policy-server 10.10.10.1

Introducing CFEngine  / 9

CFEngine will output diagnostic information upon bootstrap. Error messages will be
displayed if bootstrapping failed: pursue these to get an indication of what went wrong
and correct accordingly. If all is well you should see the following in the output:
		 -> Bootstrap to 10.10.10.1 completed successfully

CFEngine should now be up and running on your system. It will copy its default policy
files into /var/cfengine/masterfiles on the hub (policy server). When the clients are boot-
strapped, they will contact the hub and copy them to their inputs directories. Because
the policy server is a client of itself, those files will also be copied to /var/cfengine/inputs/
on the policy server.

1.3.2 Simple Policy Test
You continue by editing policy for hosts in the root file promises.cf in the masterfiles
directory on the policy server.

Before doing this, let’s just make sure that the software is working by executing a
manually created, self-contained “hello world” promise. Create a file with the following
content called, say, test.cf in your current directory.

Policy Example 2: Trivial policy for initial testing
body common control
{
bundlesequence => { “test” };
}
bundle agent test
{
reports:
	 cfengine_3::
		 “Danger, Will Robinson!”;
}

Now try, as root, the command:
/var/cfengine/bin/cf-agent -f ./test.cf

You should see:
R: Danger, Will Robinson!

This is all you need to test CFEngine. The policy is a simple one: it simply promises to
print out a message on any host running any version of cfengine_3. Test this now by
running the agent. The agent will look for the promises.cf file by default, i.e., if you don’t
use the -f option on the command line.

You will not normally need to activate cf-agent manually. The background service
cf-execd automatically schedules cf-agent to wake up and run every five minutes.
However, you are always free to do so, without causing harm to the system. This is very
useful for testing new policies during development.

Congratulations, you have now successfully used CFEngine.

Keep this in mind: Everything you do in CFEngine 3 is about making and keeping
promises.

10 /  Introducing CFEngine

1.3.3 What’s Next?
Starting from this simple policy being enforced on a single host, you can build up your
CFEngine implementation, expanding it both to include more hosts and to place more
aspects of system configuration and maintenance under CFEngine control. We will
consider these two activities separately in the chapters that follow.

1.4 CFEngine Architecture
CFEngine does not have one and only one possible architecture. You are free to build
any kind of architecture you like. Most users follow the same basic patterns, however,
and build small enclaves of governance around “central” hubs. They may or may not
then federate these hubs, or try to build a single framework for everything.

By standardizing around the idea of hubs, we can simplify the deployment of infra-
structure, and we expect certain components to be in place:

❖ 	There is a single place where policy is written (usually around a version control
system).

❖ 	There is a place where policy is tested.
❖ 	There is a place where new policies are dropped to be deployed to production.

In the default CFEngine model, policy is written around some kind of version control
repository that is outside of your production system. You should never change the
promises that are in “live” production without offline review. To do so would be to
connect the possibility of human error directly to your production environment.

Subversion or git are fine possibilities for version control. Version control repositories
provide access control to change policy too, so you can authorize only certain people to
make changes.

To write a new policy, you edit a copy of the master policy and test if using the
cf-promises syntax checker. Typing cf-promises –inform will also give you help in
identifying possible errors that go beyond mere syntax, e.g., conflicting promises.

Once a policy is approved for deployment, you would drop it into the policy distribu-
tion point on the policy server:
	 /var/cfengine/masterfiles

This then gets copied by CFEngine itself to the policy cache
	 /var/cfengine/inputs

on each client, where the policy is kept until any update can be detected at the distri-
bution point. CFEngine maintains binaries in /var/cfengine/bin and policy under /var/
cfengine/inputs, and this makes it as robust as possible against network failures.

