
Hands-off
testing for networked 

filesystems
Daria Phoebe Brashear

AuriStor, Inc



Introduction

• Distributed Filesystems
• What AuriStor is and how it works

• Continuous integration systems
• Buildbot, TAP, creating and running tests

• Testing from the wrong side of the kernel abstraction
• Lessons and future work



Distributed network filesystems

No matter where you go, there you(r files) are
• Carnegie Mellon’s Andrew File System (1983)

• Required patching the kernel
• VFS concept introduced later, with NFS

• Sun’s NFS (1984)
• Introduced SunRPC, later adopted/co-opted by Andrew File System

• AppleShare
• SMB
• CIFS
• ZFS



About AuriStor

• Founded in 2007
• From the lineage of OpenAFS (and IBM/Transarc AFS)
• Commercially developed and supported

• Cross-platform (Windows, macOS, Linux, Solaris, web) 
• Highly scalable
• Highly available
• Secure transport
• Granular self-administered access controls
• Unified namespace (same path everywhere)

• In short, your files, but everywhere



AuriStor (and AFS) architecture



Plugging into the VFS



AuriStor and the VFS



Continuous integration systems

• Attached to your version control system
• Pulls in changes
• Pushes back results

• Basic cases
• Compiling each change for all supported platforms

• Complex cases
• Regression tests
• Unit tests

• Different options depending on your needs 
• Self-hosted, cloud or hybrid?



Buildbot architecture



Buildbot web status



Buildbot with Gerrit



Running tests

• A test harness will make life easier
• Test Anything Protocol 

• Simple, text based protocol (from Perl, circa 1987)
• Offers a very simple dependency model
• Originally in Perl but other integrations exist (C-TAP-Harness)



Testing with TAP



Testing with TAP



Building out a test suite

• Start small 
• API tests
• Simple tests first
• Group related functionality

• Grow gradually
• RPC client/server tests



Building up a test suite

• Test everything
• A version which spins up, locally, the entire system and manipulates it

• Test EVERYTHING
• A client which runs in userspace can be used to test much of the client code

• TEST EVERYTHING
• Virtualization can be used to test kernelspace client code, and multiple server 

nodes
• TEST EVERYTHING!!

• Not every platform is easily virtualizable in a way which can be harnessed!



Virtualizing tests

• Docker
• Basic multi-server functionality tests
• Uses prebuilt OS container
• Cross-system compat tests with OpenAFS with prebuilt OpenAFS container

• KVM
• A client which runs in userspace can be used to test much of the client code, 

but you want to test the kernelspace code too!



Virtualizing tests

• Nested virtualization
• Virtualization can be used to test kernelspace client code, and multiple server 

nodes



Emulating the VFS

• FUSE (Filesystem in Userspace) library and associated kernel module
• Provides a VFS abtraction stub, calls out to userspace to do work
• Calls the same vnode operation backend code the kernel does, BUT
• Uses different memory allocation and pools
• Doesn’t use VFS linkage code
• Doesn’t use same locking or resource management
• Doesn’t use an in-kernel path for file caching



Testing the VFS

• Virtualization with KVM
• Allows same-platform builds to be tested on the host
• But it only works if you can virtualize the target with KVM

• Direct testing on virtual iron
• Works with any platform capable of being virtualized

• Typically X86/X64 (Linux, BSDs, Solaris, macOS)
• VM snapshots as reset points



A typical run

• Triggered nightly 
• Tests take long enough to run that every patchset would take too long

• Full build
• git checkout from current tip of main branch
• Generate autoconf artifacts
• ./configure –with…
• Full build
• make check



Seeing old build logs



Drilling down



Seeing the results



What we’ve learned

• Adding regression tests helps
• Pay attention to nightly builds
• Retain logs where possible
• Snapshot known-working configurations



Future work

• Triggered builds of Docker or KVM images
• Currently Docker images always prebuilt, KVM always ad-hoc

• Docker to run services, KVM or local to test kernel extensions
• Prebuilt binary images for docker to avoid building for 2 systems

• Watchdog systems (via APIs or cloud service)



Hands-off
testing for networked 

filesystems
Thanks for listening!

Questions?
dariaphoebe@auristor.com


