
A N T H O N Y H O W E

shoot the
messenger
S O M E T E C H N I Q U E S
F O R S P A M C O N T R O L

Anthony is a Canadian software developer and
sometime system administrator working in the
south of France.

achowe@snert.com

This article is based on a SAGE Mailing List dis-
cussion entitled “Intrusive vs. Non-Intrusive Spam
Control.”

E V E R Y O N E H A S T H E I R F A V O R I T E
silver bullet for filtering unsolicited bulk
email, junk mail, and spam. Unfortunately,
those bullets are not perfect and can some-
times end up in your foot.

Each spam control technique has a variety of issues
associated with it (as I found after having imple-
mented nine different Sendmail mail filters
[http://www.milter.info/], called “milters” in Send-
mail-speak). I used them with varying degrees of suc-
cess for a small ISP in the south of France. I will dis-
cuss the techniques I’ve tried or know about, but the
following summary is by no means comprehensive.

SMTP in a Nutshell

The Simple Mail Transfer Protocol (SMTP), RFC
2821, operates based on trust (which is the cause of
most of our grief) and cannot be easily replaced with
something better for the foreseeable future. The IETF
and their Anti-Spam Research Group (ASRG, http://
asrg.sp.am/) agree on that much (as their mailing lists
reveal after dedicated searching).

Briefly, an SMTP session follows these steps: connec-
tion, HELO, MAIL, RCPT, DATA, content, QUIT. Of
those seven steps, only the IP address of the client
connection and each valid RCPT address specified
can be relied upon. Even then, the connecting IP
might be questionable; because it’s possibly in a
dynamic IP address pool, the reverse DNS of the IP is
often poorly configured or nonexistent, and now the
whois information about IP and domain assignment
might be restricted because of privacy concerns (RFC
3912).

As for the other steps, the HELO, MAIL, and message
content can be misrepresented or faked. Even QUIT
cannot be completely relied upon, since a lot of badly
written mail software simply drops the connection
when they are done, instead of sending the QUIT
command.

Most spam filtering techniques fall into two classes:
those that act on the client connection’s IP address
and envelope information (pre-DATA) and those that
act on the message content (post-DATA). The reason I
mention this is that once the DATA command is
accepted by the receiving server, it is generally com-
mitted to reading the entire message until the client
indicates it has finished. This, of course, consumes
bandwidth and system resources, so some filtering
techniques try to make a decision before accepting
DATA in order to avoid/reduce more expensive forms
of filtering after acceptance.

12 ; L O G I N : V O L . 3 0 , N O . 3

; LO G I N : J U N E 2 0 0 5 S H O OT TH E M E S S E N G E R 13

Challenge/Response

This technique looks at the sender of a message and, if
he is unknown to the recipient, accepts and quaran-
tines the message. The server then sends some sort of
challenge back to the sender (who must reply, and
reply correctly if it’s an are-you-human test) before the
server allows the quarantined message to be delivered
to the recipient. A successful result is typically cached
or stored indefinitely.

C/R seems to be the least welcomed of all the possible
methods to filter spam. A fair amount of spam and par-
ticularly viruses fake the mail address of a real person.
So one of two things happens: if the sender is known
to the recipient, the message gets through without
being caught; if the sender is not known, then odds are
the challenge message is sent to a perfect stranger, thus
creating even more spam. After a while, this gets to be
really annoying for the stranger whose address has
been abused. The SpamHaus DNS blacklist considers
C/R systems to be just as bad as spam and will blacklist
machines using C/R.

DNS Blacklists

Blacklists in one form or another have been used for
filtering for a long time, but site-specific lists can be
time-consuming to maintain. DNS blacklists make the
process simpler by centralizing lists and exploiting
DNS caching. The IP addresses of known sources of
junk mail are placed on specialized DNS servers. A
mail server then queries one or more of those blacklists
to see whether the connecting client IP is a known
spam source; if so, the connection is dropped or
rejected.

Blacklists can be problematic. They first have to receive
and identify junk mail or reports of such before they
can list the IP address. They must be reliable, respon-
sive, and responsible: you have to count on their infor-
mation being reasonably accurate, the blacklist service
should respond to valid de-list requests almost as fast
as they list an IP address, and they must be consistent
in their listing and de-listing policy.

Consider an ISP that, while altering the mail server
configuration, makes a mistake that goes unnoticed. It
is soon discovered to be an open mail relay, which is
quickly listed with ORDB (http://www.ordb.org/). The
ISP subsequently fixes the mistake and requests to be
tested and de-listed as a “spammer.” Those requests
should be acted upon in a timely, preferably auto-
mated, manner. This scenario actually happened at my
workplace once, but what was worse was that we con-
sulted ORDB ourselves to reject outside sources, only
to find that we had been listed and had started reject-

ing our own mail! ORDB is generally pretty accurate
but is slow to respond to de-list requests and, as a
result of a difference in time zones, we were listed as
spammers for an entire business day.

Consider what happens now with spam and viruses
originating from the dynamic IP pools often used with
broadband. One user will have a virus-infected
machine (or maybe a “zombie” computer) which sends
out a stream of rubbish that results in that IP address
being blacklisted. The next day a completely different
user connects and is assigned that blacklisted dynamic
IP; of course, the new user does not understand why
he cannot send any mail. If a DNS blacklist is slow to
respond or sets time-to-live values on blacklist entries
too long, that IP address can remain blocked for 24
hours or more.

I’ve tried a variety of DNS blacklists, and the one I rec-
ommend is SpamHaus (http://www.spamhaus.org/).
ORDB is good too, until it’s your machine that’s in the
blacklist. There are many other blacklists (http://www
.sdsc.edu/~jeff/spam/cbc.html), and care must be taken
in choosing which to use.

Electronic Postage (Hash Cash)

Hash cash (http://hashcash.org/) is a form of electronic
postage by which the sender pays postage in CPU time
by performing an intensive computation that is easy
for the recipient to validate. A trivial example would be
that the sender computes the square root of a large
number Y and sends the result and the number to the
recipient. The recipients can validate the computation
by multiplying the given answer with itself to see if it
does indeed yield Y. Hash cash uses some properties of
cryptographic hash functions to achieve the same
result. The sender mints a stamp consisting of version
number, timestamp, recipient, random data, and how
many bits of partial-collision the stamp is claimed to
have. Each message contains one hash cash header per
recipient.

The idea behind this technique is that the time neces-
sary to compute 1 or 10 hashes for a real person send-
ing mail is insignificant, whereas the time a spammer
would require to compute a hash for each recipient,
when you consider that they spam thousands or mil-
lions of people, would significantly slow down their
ability to send junk mail and thus increase their costs.

This is a very nice technique. The drawbacks are its
status as a post-DATA verification method, and that
both the sender and the receiver have to install soft-
ware to mint and verify stamps. Therefore, this tech-
nique would require wide adoption before it could be
used purely on its own to accept/reject messages. How-
ever, when combined with other content-filter tools

14 ; L O G I N : V O L . 3 0 , N O . 3

such as SpamAssassin, it can contribute a favorable
score toward the acceptance of a message.

Content Filtering

There are several techniques all related to content fil-
tering, where the entire message is received and fil-
tered according to a set of pattern rules, Bayesian sta-
tistical analysis, and/or other techniques or external
services to verify that a message is good or bad.

One content-filtering technique related to blacklists
looks at all the URL domains contained within a mes-
sage and looks up those domains in a DNS blacklist
containing domains appearing in spam messages
(http://www.surbl.org/). If a URL in the message con-
tains a blacklisted domain, it’s rejected or given a bad
score, depending on the filter making the request.

Another technique has the mail server compute a
checksum or signature for each message received,
then queries it with services that collect signatures for
all the spam that their honeypots and users report.
Vipul’s Razor (http://razor.sourceforge.net/) and DCC
(http://www.rhyolite.com/anti-spam/dcc/) are two
such services.

Bayesian analysis, as described by Paul Graham’s
“Plan for Spam” paper (http://www.paulgraham
.com/spam.html) and his “Better Bayesian Filtering”
(http://www.paulgraham.com/better.html), counts the
occurrences of all the words and short sequences
found in a large sample of good mail (ham) and an
equally large sample of bad mail (spam). The proba-
bilities of each of those words occurring in a spam
message are computed. When a new message arrives,
the words contained therein are looked up in the
probability tables and the top 10 or so of the most sig-
nificant are used to compute the combined probabil-
ity that the message is spam or ham.

Bayesian analysis works extremely well once it’s
trained with very user-specific messages. For exam-
ple, Mozilla and Thunderbird mail clients use
Bayesian identification to delete or redirect mail to a
junk folder, and they can be very accurate. But the
training has to be continued as spam messages evolve,
and “there be the rub.” For an individual using a mail
client such as Mozilla Thunderbird, it’s just a simple
matter of toggling an icon on incorrectly classified
mail, but if you apply a global Bayesian analysis on an
ISP mail server, which is possible, it can require regu-
lar maintenance, because the global statistics are not
as finely tuned as they would be for an individual.

Another issue with signature and Bayesisn methods is
that spammers have reacted by adding benign ran-
dom words at the top or end of their messages in an
effort to throw off the probabilities. Also a lot of spam

has gotten shorter in an effort to provide as little con-
tent as possible from which to compute a probability
and/or to throw off some pattern-based filters.

SpamAssassin (http://www.spamassassin.org/) is one
of the notable mail analysis tools. Perl-based, it’s a
kitchen sink of spam filtering techniques, combining
regular expression pattern rules, Bayesian, Razor,
DCC, a variety of DNS blacklists (IP, domain, URL),
hash cash, and I’m sure some other stuff I’ve not
noticed. Using the combined techniques, it computes
a score for each message, which must not exceed a
site-specific threshold so as not to be classified as
spam. This score can then be used by something like
milter-spamc to accept, tag, redirect, reject, or discard
a message.

Where I worked, we had a lot of success with Spa-
mAssassin, but it does have its problems—most
notably, it’s a pig of a Perl process. The process size
was about 27MB. I heard of another site that uses
SpamAssassin, and their process size was about
107MB. As I recall, SpamAssassin is not threaded,
because of Perl; therefore it forks when its message
queue gets too long. If you have a large and active
group of users (we have about 2,000), SpamAssassin
can bring your mail server to a crawl when too many
messages arrive in a small interval, such as with a
spam or virus attack. This is one of the reasons why
many sites use some form of pre-DATA filtering in
combination with content filtering, to filter the easy
stuff first. I’ve also heard of another C-based filter
called Dspam that can outperform SpamAssassin, so
I’m told, though I’ve not had a chance to look into it
yet.

As mentioned above concerning Bayes training, I’ve
learned from personal experience that SpamAssassin
can also require a fair amount of hand-holding. The
time might be justified if you are defending a large
user base, but it appears to require just as much effort
for a small number of users. SpamAssassin can re-
train/autolearn itself when messages are well above or
below the threshold, but when using the Bayes facility
sitewide, it’s a good idea to configure SpamAssassin to
defer rebuilding the Bayes statistical tables on each
message to a nightly cronjob, since those tables can
be very large (300MB).

Date Conformance and Coherency

The milter-date filter is another very specific form of
content filtering I’ve implemented. A mail message
contains several instances of date-and-time informa-
tion, such as when the message was originally writ-
ten, possibly when it was resent, and when each mail
server en route handled the message. Spam messages
often have incorrect timestamps, appear to be too old

; LO G I N : J U N E 2 0 0 5 S H O OT TH E M E S S E N G E R 15

or too far in the future, and/or demonstrate an incon-
sistent timeline. The milter-date filter verifies that the
date-and-time information within a message is format-
ted according to RFC 2822, that a message is delivered
within a configurable time frame, and that the transit
of a message across mail servers reflects a consistent
timeline. (Note that SpamAssassin has some date-and-
time verification too, though I’m not certain how
specific they get.)

One problem with this method is that, surprisingly, too
many people have workstations that are set with the
wrong time zone, clocks off by a whole year, or similar
nonsense. In the two weeks we used this milter, I saw
about a dozen or so French users with their Windows
workstations set to the Pacific time zone from the day
they installed Windows. They just accepted the
Microsoft defaults without paying attention. Also, too
few servers use Network Time Protocol to keep their
clock reasonably accurate, and only in Windows XP
has NTP been added as part of the OS. One milter-date
user reported that some of Cisco’s mail servers were off
at one stage and it took two weeks or so to convince a
sysadmin of this fact.

Content-Transfer-Encoding Conformance
and Coherency

Mail messages have a standard structure and format
that is covered by RFC 2822 and enhanced by RFC
2045 and related documents concerning Multipurpose
Internet Mail Extensions (MIME). A user’s mail soft-
ware is supposed to adhere to these documents for the
formatting and transmission of mail as 7-bit, 8-bit, or
binary data. A lot of spam, in particular that written in
foreign languages, fails to adhere to these standards,
containing unusual, often unprintable, 8-bit character
codes in messages that are only supposed to contain 7-
bit data for safe and correct transmission between mail
servers. Many mail exchanges are very forgiving or
careless in what they accept, and so this form of spam
gets through. The milter-7bit is another milter I wrote
(originally inspired by a mass-mailing worm) to
address this class of spam. It ensures that the content
of a mail message adheres to the expected or declared
Content-Transfer-Encoding as described by the related
RFC documents.

This technique is effective, but on its own only catches
about 3–5% of spam. The most notable problem with it
is that there are many mail-oriented services that fail to
correctly specify or encode their mail for transport. For
example, a French user might specify her real name
with accented letters, but her mail client fails to use
MIME word encoding in the From: header to properly
specify the name. Also, some legitimate sites such as
ebay.com and lhotellerie.fr send email with an explicit

Content-Transfer-Encoding: header set to 7-bit, yet
include 8-bit values!

Greylisting

Greylisting is a technique that uses the behavior of a
normal mail server to delay the acceptance of mail
temporarily. When a sending mail server initially con-
tacts a mail exchange to deliver a message, a tuple con-
sisting of an IP, HELO, MAIL, and/or RCPT details is
recorded and the mail exchange signals the sending
mail server that the message is temporarily rejected. A
normal mail server will place temporarily rejected mes-
sages into a retry queue and, after an appropriate delay,
attempt to resend the message to the mail exchange.
The mail exchange, upon seeing the retry from the
same tuple as previously recorded, accepts the mes-
sage. The underlying principle here is that spammers
use “mail cannons” to send as much mail as fast as
they can and so will not implement a retry queue, as
this is too time-consuming when sending millions of
messages.

Greylisting is a nice passive technique, and proponents
of the technique claim a 90% or better success rate.
However, while I’ve not conducted any statistical
analysis on it, from personal observation at my place of
work I’d say those success rates are exaggerated or site-
specific. And greylisting is not without its problems.

Many of our users work with the money markets
and/or they treat email like FTP and instant messaging
all in one. They cannot accept or understand that mail
might be delayed (just try to explain RFC 2821 limits
and delivery timeouts to a French user). Once the first
message succeeds, though, the result should be cached
for a week or two at the very least, and reset with con-
tinued correspondence, else you get an earful of grief
on a regular basis.

There are also some very poorly configured mail serv-
ers, I’m guessing the pointy-clicky variety, designed
and/or administered by people who have no clue about
how to get a clue. The four most common issues are:
(1) “Hey, I have a whizbang machine with all these
CPU cycles to burn, I’ll set my queue retry time to 10
seconds”; (2) “If it doesn’t get through on the first try,
or the second shortly thereafter, I’ll wait 12 or 24 hours
before retrying”; (3) “I won’t retry at all” (some servers
with eBay, Amazon, skynet.be, and Southwest Airlines,
to name a few: see http://cvs.puremagic.com/viewcvs
/greylisting/schema/whitelist_ip.txt); (4) finally, some
mail systems are designed to act as a pool—I think
gmail.com does this—in that any one of several
machines may process the mail queue, and so mes-
sages come from different IP addresses.

16 ; L O G I N : V O L . 3 0 , N O . 3

Greylisting also has the problem of penalizing legiti-
mate mailing list providers until message receivers
whitelist the mailing list.

Message Limits

Message limit accounting is a facility to control the
number of messages that traverse a mail exchange
according to domain, sender, and/or recipient. It could
be used on the outbound side, like Hotmail’s daily
message limits, to limit local users’ consumption (par-
ticularly if they appear to be infected by a mass-mailing
worm); it could be used inbound as an alternative to
greylisting; or it could be enabled and disabled as
needed during periods of peak mail activity, such as
during a virus outbreak or spam holiday season.

I found message limits to be fine for a specific purpose;
to be effective as a filtering method, however, they
would require more dynamic real-time tracking of
which senders are sending from where. For example, I
should be able to detect if anthony@example.com
attempts to send email from five different IP addresses
within the space of 10 minutes, or if the same HELO
argument is given for several different connecting
clients, or if the same message content arrives from
several different IPs.

Callback

A mail exchange that is processing an inbound SMTP
transaction looks up, via the domain name system, the
mail server responsible for the sender’s mail. The mail
exchange then opens an SMTP connection back to the
sender’s mail server and emulates an error return mes-
sage to the sender without actually completing the
transaction (i.e., never issues the DATA command).
The mail server being queried normally accepts or
rejects the sender’s mail address in the early stages of
the transaction. The idea here is that spammers use a
variety of false and often invalid sender addresses in
the SMTP transaction, such as false or nonexistent
domains, randomly generated user names from well-
known domains, facade mail systems that don’t accept
any mail, throw-away mailboxes that fill up with errors
and replies to unsubscribe, etc.

In order for the callback to work properly, the null
address must be accepted (i.e., <>) as required by RFC
2821. Many sites think they are being clever in block-
ing the null address to avoid spam. Often these sites
fail to use more than one filtering technique and look
for quick alternatives. Also, many fail to understand
why the null address is a requirement in the RFCs. I
have successfully educated most sites when this hap-
pens, but some others are just too enamored with their
lack of prowess to admit they are wrong.

There are also those who completely disagree with this
technique. They see it as some form of dictionary
attack or an abuse of their mail server’s resources
(CPU, memory, bandwidth) to have to answer this
form of automated C/R (even though the end user
will never see a challenge message). One of the argu-
ments against this form of filtering is the claim that
spammers are impersonating real email addresses with
ever-increasing frequency, so validating the sender’s
address will have diminishing returns over time and
become ineffective.

Call-Ahead

The milter-ahead is a milter that implements a “call-
forward” technique, which is similar to a “callback”
but intended for use by mail gateways that want to ver-
ify, before the gateway accepts the message, that the
recipient of a message exists on an authoritative mail
store. Think of it as a poor man’s LDAP. Many mail sys-
tems split the functions of mail transfer and that of
storage and retrieval over two or more systems.

Historically, a mail gateway would always blindly
accept and forward mail to their mail store, but spam-
mers will often send mail to a domain using a dictio-
nary of user names, resulting in many error message
returns, which can sometimes saturate the mail gate-
way. Often this situation is compounded by the mail
gateway queuing those useless error messages for days
as they attempt to send them back to spammers who
used throw-away domains or mail servers that are now
off, eventually resulting in hundreds of double-bounce
errors being sent to the mail gateway’s postmaster
mailbox.

Sequencing Delays

Sendmail 8.13 has a wonderfully simple feature, “greet
pause,” that catches its fair share of junk mail. When a
client connection is established, the SMTP server will
send back a welcome message to the client indicating
its readiness. The greet-pause feature imposes a site-
specified delay before it sends the welcome message.
During that time, if the connecting client sends any
data across the connection before it has read the
delayed welcome response, Sendmail drops the con-
nection. The concept assumes that all well-behaved
mail clients must wait until after an EHLO command
to determine whether the server supports pipelining.
It’s assumed that a lot of spam software, in an effort to
be quicker and more efficient, pipeline the whole
SMTP transaction from the moment the connection is
established and never read a response from the server,
essentially ignoring any and all errors.

; LO G I N : J U N E 2 0 0 5 S H O OT TH E M E S S E N G E R 17

While this method doesn’t catch all spam, it catches a
decent amount in the earlier stages of the SMTP trans-
action. I’ve often wondered why Sendmail hasn’t
extended the concept a little further to include the
other SMTP commands. At the very least it could be
applied to the EHLO command; if the mail client uses
the older HELO command, then all the SMTP com-
mands could be delayed one or two seconds before
returning a response. Slowing down each step of the
transaction increases the spammers’ costs and reduces
their efficiency.

Authorized Mail Sources

There have been several proposals put forward within
the ASRG and by independents to specify a means by
which a mail exchange can know whether an incoming
message comes from a known and authorized source of
mail. The idea here is an ISP or business declares the IP
addresses of the machines that are responsible for
sending outbound mail, then mail from other sources
within their IP block can be considered suspect. Solu-
tions like SPF (http://spf.pobox.com/), MTAmark,
Yahoo’s DomainKeys, and Microsoft’s Caller ID (which
merged with SPF to create Sender ID) are all variants
on a theme.

SPF (classic) and subsequently Sender ID are probably
the best known of these proposals. SPF uses specially
formatted DNS TXT records to document sources of
mail. It’s a nice, simple, and elegant solution that any
domain owner can manage. However, it has two signif-
icant drawbacks. First, all senders must send mail from
their domain’s SMTP servers, probably using SMTP
authentication, which can be tricky to implement or
get users to migrate to. But, more important, it breaks
any form of relay or mail forwarding where the enve-
lope sender is preserved (not sure if this applies to the
Sender ID format). The SPF folks, of course, propose a
solution for this: switch from mail forwarding to re-
mailing and use something like the Sender Rewriting
Scheme, VERP, VARA, etc., to rewrite the sender
address. But there is a catch: these rewriting schemes
can significantly increase the length of the user portion
of an email address and thus break RFC 2821 maxi-
mum limits on the length of the user portion and/or
overall address length. Therefore, any filtering tech-
niques that enforce strict conformance to RFC 2821
will see a marked increase in false positives.

MTAmark is similar in nature to SPF but uses reverse
DNS instead; it claims it won’t break existing mail-for-
warding semantics. While I haven’t read this Internet
draft completely, the one worry I have is that it uses
reverse DNS. A domain owner does not have direct
control of his IP assignment and must get his IP

provider to maintain the in-addr.arpa zone for him.
Some might see this as an advantage, by introducing
some third-party validation. Also, some IP address
assignments are resold several times over, yet the origi-
nal IP provider may still control the reverse assign-
ment. Therefore, for any legitimate business to modify
their reverse DNS, they may have to go up a chain of
several levels to get anything done to their in-addr.arpa
entries. The other issue with in-addr.arpa is that some
IP providers may not pay any attention to the merits of
the request, but blindly make the changes.

I know little about DomainKeys other than to say it’s
patented by Yahoo and involves some form of
encrypted signature added to the message headers.
This means, of course, that the method is post-DATA
and the mail server must accept and read the entire
message before it can verify DomainKeys.

It should also be noted that authorized mail source
schemes are more directed at “phishing” and “joe job”
scams, where the sender of an email message is faked.
By knowing the valid sources of mail, you can reject or
discredit email. For example, consider a connecting
client from aol.com IP space and a sender address of
joe@aol.com. With something like SPF you can tell
that the IP is not an official source of aol.com mail.
These methods can help with spam to a degree, but
that was not their original intent. The SPF Web FAQ
has an interesting and lengthy section about how SPF
can help with spam.

Reputation Filtering

Reputation filtering concerns a mail exchange that can
query one or more third-party services for a score
based on facts, trends, or reputation of a connecting
mail server’s IP address and/or the sender’s domain.
DNS blacklists are a basic form of this, but they pro-
vide only simple black/white answers. With reputation
filtering, some form of history is gathered concerning
the sources of mail and a score or grade is returned,
providing more shades of gray.

Meng Weng Wong, of SPF fame, sees reputation and
accreditation filtering as being necessary to any
authorized mail source scheme, because spammers will
publish SPF records, too (many already do). SPF and
its derivatives are driving spammers to use their own
domains, but they can still jump around the Net or dis-
card their domains at will. But with reputation and
accreditation (http://spf.pobox.com/aspen.html), you
have a third party that monitors where mail is from
and from whom. They can look at objective factors
such as longevity, stability, and identifiability. Several of
these services already exist, such as Cloud Mark, Out-
bound Index, and Return Path.

18 ; L O G I N : V O L . 3 0 , N O . 3

False Positives and Negatives

In my coverage of some of the filtering techniques in
use today, I’ve intentionally said little about false posi-
tive (legitimate mail wrongly identified) and false neg-
atives (the failure to identify mail as junk) for the sim-
ple reason that I have not collected any statistical data
or read any detailed analysis of the techniques. Most of
what I’ve covered here has come from personal experi-
ence, study of the techniques, and user feedback
related to my milter software.

Whatever methods you end up using, be sure to read
up further on the pros and cons, because there has
been a lot more said about each of the methods men-
tioned here than I can possibly convey.

Please Don’t Shoot Me

The only thing I can add to all this is, Use more than
one method of filtering. Remember, a silver bullet
works against werewolves, not against vampires,
ghosts, demons, or spam.

