
	14    ;login:  VOL. 36, NO. 3

Cloud file systems must address challenges that are not addressed by traditional
network or distributed file systems. These challenges mostly revolve around
isolation, identity, and privacy, but also include features such as adaptability to
frequent changes in demand for capacity or capability. In this article, I’ll elaborate
on some of these challenges and describe how one project, CloudFS, attempts to
address them.

Cloud Problems

To understand the requirements for a cloud file system, one must consider the
special properties of cloud computing. While everyone who writes about the
subject has their own list of properties that define “the cloud” or make it special,
one property of particular relevance is that a cloud is shared. When you use
resources in a cloud, especially a public cloud, you share the underlying physical
resources with others whose intentions and resource needs are totally unknown
to you. Typically, this sharing is between accounts rather than actual users; each
tenant holding an account with a cloud provider might actually be a complex
enterprise representing their own large and ever-changing set of end users. In
a public cloud, such as those at Amazon or Rackspace, tenants are likely to be
companies. In a private cloud, tenants might be departments or projects. In all
of these cases, though, the important thing is that tenants don’t trust each other.
They might not even trust the cloud provider very much. In many situations—
especially those involving medical or financial information—they’re not even legally
allowed to extend such trust to others. This extreme lack of trust implies that a
cloud file system must ensure that tenants are isolated from one another to a far
greater degree than would be the case using a traditional distributed file system.

Processors and disks aren’t the only resources that are shared in the cloud.
Another often-overlooked resource that can also be the subject of conflict is
identity. Every online identity lives in a certain space within which it has some
specific meaning. Once, each physical machine had its own identity space because
each ID conferred only access to local resources. Many have returned to that
model within their virtual machines today, because machine virtualization
provides a similar level of isolation. In fact, it’s entirely possible to run a traditional
distributed file system across multiple nodes allocated within a cloud, relying on
the cloud’s existing machine- and network-level isolation to protect storage as well.
Unfortunately, this approach is insufficient when the file system must be deployed
as a shared service. A cloud provider might favor such a deployment to capitalize

Building a Cloud File System
J E F F D A R C Y

Jeff Darcy has been working

on network and distributed

storage since that meant

DECnet and NFS version 2

in the early ’90s. Since then he has been a

key developer on the MPFS project at EMC,

product architect at Revivio, and well-known

blogger on various related topics. He is

currently the founder and technical leader of

the CloudFS project at Red Hat.

jeff@pl.atyp.us

	 ;login:  JUNE 2011   Building a Cloud File System    15

on the resource-utilization efficiency that comes from sharing resources between
tenants with non-correlated peak demands (which is a core value proposition of
cloud computing generally) and/or to provide an “added attraction” in a public
cloud. The problem with identity in such a shared deployment is that it introduces
a possibility of conflict involving reuse of the same ID by different tenants (Figure
1). If tenants are responsible for assigning IDs themselves, then two tenants can
assign the same ID to different users—either intentionally or maliciously, whether
IDs are numbers or strings—and present that ID to the shared service. As a result,
client-provided IDs are insufficient as a basis for authentication or authorization
in such a service.

Figure 1: Illustration of a UID conflict between tenants. Anna’s Axles and Bob’s Bakery are
unrelated tenants, but their users Chris and Ellen share the same UID.

One common approach to this problem in traditional environments is to say
that machines in a network cannot simply assign their own user IDs. Instead,
identity management is “outsourced” to something like Kerberos, establishing
a new, centrally administered ID space which can be shared between clients
and servers. How might this be applied to the cloud? Consider the scale of such
a service at a large public cloud provider. There might be thousands of tenants,
each with thousands or even millions of users. How many new user registrations
per day would that be? How many ID-mapping operations per minute? Even if
such a system could be implemented cost-effectively, tenants would resist any
requirement to register their own users with the provider’s identity service. They
would object for privacy reasons, and also for operational-complexity reasons.
This is especially true if they’re already running their own identity management
systems internally and would thus be forced to support two such systems side by
side. Centralized identity management is as inapplicable in the cloud as client-side
identity management.

If both of these options are precluded, what’s left? The answer is the same as it has
been for domain names, or for email addresses which depend on them—delegation.
If a flat ID space won’t work, use a hierarchical one and delegate smaller pieces
to lower-level authorities—in this case tenants. Identity in the cloud has to be
contextual, not just “user X” but “user X within tenant Y” as distinct from “user
X within tenant Z” or any similar combination. Tenants would have complete
freedom to manage their own identity space on their own machines, just as they do
when using only their own services and just as they do with subdomains even in a
shared higher-level domain. The only burden on the provider would be to maintain
any stored end-user identities, such as the UID and GID associated with a file, so
that it can be sent back later. It is not responsible for allocating these identities or
for discovering them beyond the “which tenant” level.

FuzzyCloudCo
(provider)

Anna's Axles
(tenant)

Bob's Bakery
(tenant)

100=Chris
(user)

101=Dave
(user)

100=Ellen
(user)

200=Fred
(user)

Conflict!

	16    ;login:  VOL. 36, NO. 3

Resource sharing might be the most important problem with which a cloud
file system must contend, but it’s far from the only one. Adaptability is another
important feature for any cloud service, and providing that adaptability usually
involves some kind of virtualization. For example, hypervisors allow many virtual
machines to exist within one physical machine. In a similar way, a tenant’s virtual
file system might be carved out of a much larger physical file system spread across
many machines and shared among many tenants. Just as the virtual machine’s
processor count or memory size can be changed at a moment’s notice, so can the
virtual file system’s size and performance profile and redundancy characteristics.
Besides being convenient, this preserves the basic cloud value proposition of “pay
as you go” access to efficiently allocated hardware.

There, in a nutshell, are the problems a cloud file system must address: shared
resources introducing issues of privacy and isolation, hierarchical identity, and
adaptability to changing user needs. CloudFS, which will be discussed in the
following section, represents one attempt to address these issues.

File System Virtualization

As mentioned earlier, it could be argued that current distributed file systems
adequately solve the problems they were designed to solve. Examples such as
GlusterFS [2], PVFS [3], and Ceph [4] allow the capacity and performance of
multiple servers to be harnessed within a single file system. They handle things
like distributing files across servers, striping data within files, replicating files,
adding and removing servers, rebalancing and repairing, etc. Most importantly, they
provide a POSIX file system API to all of this functionality, or “POSIX enough” to
keep operating systems and most users happy. What some of them also provide is
a convenient way to “mix and match” or even add functionality without having to
rewrite what’s already there. In GlusterFS, for example, most functionality—e.g.,
replication, striping, client and server protocols—exists in the form of “translators”
which convert a higher-level file system request into one or more lower-level
requests using the same API. These translators allow many local file systems on
many servers to be combined and then recombined, providing layers of increasing
functionality until they all combine into one translator providing one unified view
on a client machine. This structure is illustrated in Figure 2.

Figure 2: Translator structure in a typical GlusterFS deployment. Translators convert I/O
requests from “above” into one or more “below” using the same API.

Mount
(FUSE)

Cache

Distribute

Replicate

Client A Client B Client C Client D

Replicate

Server A
/export

Server B
/foo

Server C
/bar

Server D
/x/y/z

	 ;login:  JUNE 2011   Building a Cloud File System    17

What we see in Figure 2 is several local file systems on several servers (“bricks”
in GlusterFS terminology) being exported to clients, which first combine them
into replica groups and then distribute files across those groups. Next, a cache
translator is added; this is an example of a translator with a 1:1 mapping between
input and output requests. Finally, the combined result is presented as a single
mountable file system. Because they use a common interface, translators can
readily be stacked in different orders and even be moved from one side of the client/
server divide to the other. For example, the caching in the structure in Figure 2
could easily be done first instead of last, on the server side instead of the client.

When one seeks to add new functionality which is itself quite complex, as is the
case with CloudFS, this kind of modularity and flexibility can speed development
considerably. Because CloudFS is based on GlusterFS, this makes it relatively easy
to provide a “virtual” file system for each tenant across a common set of “bricks”
without having to build a whole new file system from scratch or modify the
internals of a working and widely accepted file system.

In GlusterFS, a client’s view is effectively the union of its component bricks.
CloudFS takes this same set of bricks and turns each tenant’s view into the union
of per-tenant subdirectories on those bricks. If the whole file system is considered
as a matrix of bricks along the X axis and tenants along the Y axis, then a server
is managing a vertical slice and a tenant sees a horizontal one. This provides a
complete and reasonably straightforward separation of each tenant’s namespace
(directories and files) from any other tenant’s. This requires the addition of extra
translators, as shown in Figure 3.

Figure 3: GlusterFS translator structure when using CloudFS. The translators with the bold
outlines are provided by CloudFS.

The extra translators are added to the system by scripts which automatically
rewrite both server-side and client-side configuration files according to the
contents of a tenant list, including credentials for each tenant. (Actually, the
credentials are identifiers for tenant-specific keys or certificates, to avoid having
that sensitive information show up directly in the server or client configurations.)
On the server side, the single translator stack for a brick is replaced by several per-

Cloud
Tenant=Joe

...

POSIX
/export/joe

Cloud
Tenant=Fred

...

POSIX
/export/fred

Cloud
Tenant=Joe

...

POSIX
/foo/joe

Cloud
Tenant=Fred

...

POSIX
/foo/fred

Login
Tenant=Joe

Login
Tenant=Joe

Login
Tenant=Fred

Login
Tenant=Fred

Joe's Mount Fred's Mount

Server A Server B

	18    ;login:  VOL. 36, NO. 3

tenant stacks. Each per-tenant stack leads down from a “cloud” translator, which
provides authentication services down to a “posix” (local file system) translator,
which is configured to use a per-tenant subdirectory of the original brick. On the
client side, a “login” translator is added to do the client’s side of the authentication
handshake. The net effect of all this is to construct a tenant’s horizontal slice of the
aforementioned matrix for each client mounting with that tenant’s configuration
and credentials. In fact, each tenant might see a different horizontal slice across
a different set of servers and replicate or distribute differently within its slice,
providing some of the adaptability mentioned earlier.

Identity Mapping

So far we’ve succeeded in virtualizing each tenant’s namespace. What about
their identity space? A user’s effective identity on a CloudFS server is actually
the combination of their tenant identity (established when the tenant connected)
and the tenant-provided UID. This identity can be stored directly in an inode
or embedded in an extended attribute (e.g., for access control lists), or it can
be associated with a request—and likewise for GIDs. To the maximum extent
possible, the actual use of these values to enforce access control should be done
by the kernel rather than by duplicated code in user space, but the kernel only
understands a single ID space shared by all tenants. We therefore need to map a
tenant ID plus a tenant-specific UID into a unique server UID for storage, and then
map in the opposite direction upon retrieval. Fortunately, this mapping does not
need to be coordinated across servers. Each server can safely use its own separate
mapping table, populated automatically whenever it sees a new tenant/UID pair,
so long as the mapping process is reversible locally. This is done by the “cloud”
translator which sits at the top of each per-tenant translator stack on the server.
All instances of this translator on a server share the same mapping tables, to avoid
creating duplicate mappings, but otherwise (e.g., with respect to authentication)
they’re separate.

Privacy and Encryption

The remaining focus of CloudFS is ensuring tenant privacy, and the main tool we
use for this is encryption. In fact, CloudFS needs to do two kinds of encryption:
for data “in flight” on the network and for data “at rest” on disk. Techniques and
tools such as TLS for doing in-flight encryption are fairly well understood, and
CloudFS applies them in fairly straightforward ways, so here we’ll focus on at-rest
encryption.

For cloud storage of any kind, it’s important for any tenant to consider whether
they trust the cloud provider with their data (or with which data). “Trust” is a
funny word, though, since it can apply to intentions, skills, or diligence. It’s entirely
possible to trust a cloud provider’s intentions and skills which allow them to
secure disks that are physically under their control, but not trust their diligence
when those disks leave their control—e.g., when those disks are removed from
service and sold. Stories about disks being sold online while still holding medical,
financial, or even defense-related data are legion, and cloud providers go through
a lot of disks. If you trust your cloud provider in all three of these ways, or simply
don’t care whether that data becomes public, then there’s no need for at-rest
encryption. In all other cases, though, at-rest encryption is necessary. CloudFS
takes an even harder line: if the provider has keys for your data (and a surprising

	 ;login:  JUNE 2011   Building a Cloud File System   19

number of cloud-storage solutions require this), then they might as well have the
data itself, so all at-rest encryption has to be done entirely by tenants using keys
that only they possess.

Unfortunately, tenant- or client-side encryption presents its share of problems.
Chief among these is the problem of partial-block writes. For encryption methods
with the property that every byte within a (cipher) block affects the output, a
read-modify-write sequence is necessary to incorporate the unwritten bytes.
For other methods, the need to avoid re-using initialization vectors would
require the same sort of sequence to re-encrypt the unwritten bytes (plus some
mechanism to manage the ever-changing vectors). Adding authentication codes
to prevent tampering involves many of the same problems. In all of these cases,
some form of concurrency control is necessary to make the read-modify-write
atomic even in the face of concurrent updates. Truly conflicting writes without
higher-level locking can still clobber each other’s data, just as they always have;
this mechanism only prevents corruption that could otherwise be caused by the
encryption process itself.

Currently, CloudFS handles this need with a combination of queuing and leasing.
When a client needs to do a write that involves partial blocks, it first sends a
request to the server to obtain a lease and retrieve the unaligned head/tail pieces.
This lease is relinquished when the matching write occurs. Any conflicting
writes received while the lease is valid will be queued behind the lease holder and
resumed when the lease is either relinquished normally or revoked due to passage
of time. Because there’s no synchronous locking involved, the overhead for this
approach is only the extra round trip for the initial lease acquisition—and even
then, only when a write is unaligned.

Results

To validate the approaches described above, some simple tests were performed on
machines available to the author through his employer. These consisted of nine
machines which represent the low end of the node-count spectrum for CloudFS
but also the high end of the per-node-capability range (each 24 cores, 48 GB of
memory, 63 disks with hardware RAID, and 10 Gb/s Ethernet). Tests were done
on Linux kernel 2.6.32-125.el6, including NFSv4 on a single server and with
GlusterFS 3.1.2 on three servers. It should be noted that these are preliminary
results for code still under active development. Results for higher node counts and
more stable software versions will be published on the CloudFS project site [1] as
they become available.

To test the effect of CloudFS’s at-rest encryption on aggregate bandwidth, 1 MB
writes were tested using iozone, with 12 threads per client machine. The results
are shown in Chart 1. The first conclusion that might be reached from this result
is that the underlying GlusterFS infrastructure is sound, outperforming NFS even
on a per-server basis and easily using additional servers to scale beyond what the
single NFS server could ever achieve. The second conclusion is that the encryption
does exact a heavy toll on performance. However, the linear slope indicates that
this is almost certainly a pure client-side bottleneck. To the extent that this is
likely to be the result of insufficient parallelism within the encryption translator,
this should be easily fixable. In the meantime, while performance is relatively poor,
it is still adequate for many users in the cloud and scales well as clients are added.

	20    ;login:  VOL. 36, NO. 3

Chart 1: CloudFS encryption performance compared to NFSv4 and GlusterFS

To test the overhead of CloudFS’s multi-tenant features, a different, more
synchronous and metadata-intensive test was called for. In this case we used
fs_mark to create many thousands of small files, again using 12 threads per client.
The results are shown in Chart 2. This time, the performance is very nearly the
same as for plain GlusterFS, and even better for much of the tested range. This
is thought to be the result of lower contention on the servers, but bears further
investigation.

Chart 2: CloudFS multi-tenancy performance compared to NFSv4 and GlusterFS

Conclusions and Future Directions

The premises of CloudFS are that existing distributed-file system solutions
already provide performance and scalability for cloud storage use and that

	 ;login:  JUNE 2011   Building a Cloud File System    21

additional features needed to make such use safe can be added in a modular
fashion without excessive sacrifice in speed. Preliminary testing seems to bear out
the first point quite well. With regard to the second point, the picture is less clear.
A 25% performance degradation at n=6 is a matter for serious concern even if the
starting point is good; a 75% degradation at n=1 is probably unacceptable to many
users. On the other hand, the modular approach taken by CloudFS means that
users who do not require this level of protection need not pay the price, and the data
also suggests that the price can be lowered significantly with little effort.

In addition to ongoing work on the features mentioned here and the implicit goal
of making configuration/maintenance ever easier, work has already begun on
several other features also of value in a cloud environment. Chief among these
are in-flight encryption, easier addition/removal of servers, and asynchronous
multi-site replication. This last feature is likely to be a major focus for CloudFS
going forward, both to address disaster-recovery needs and to facilitate migration
between clouds. Location transparency and cost efficiency are often cited as
advantages of the cloud model, but are lost if moving computational resources from
one cloud to another requires waiting for an entire large data set to be transferred
as well.

References

[1] CloudFS: http://cloudfs.org/cloudfs-overview.

[2] GlusterFS: http://www.gluster.org/.

[3] PVFS: http://pvfs.org/documentation/index.php.

[4] Ceph: http://ceph.newdream.net/publications/.

