
THE MAGAZINE OF USENIX & SAGE
August 2002 volume 27 • number 4

The Advanced Computing Systems Association &

The System Administrators Guild

&

inside:
SYSADMIN

Owen: The Problems of PORCMOLSULB

52

1. On most UNIX systems, the Sendmail binary
has the “setuid” bit set. This means that when it
is run, it takes on the system identity of the user
who owns the binary. Usually this is the root
user, or some other system account that has
permission to write to the mail spool, where
temporary mail files are kept. Since the user
didn’t have this permission, and since the Send-
mail binary was owned by her, Sendmail could-
n’t write to the spool and mail was broken.

2. In any UNIX-like system, the files stored in
/usr will be owned by a variety of users. There is
usually a reason why a particular file would be
owned by a particular user. The example of
Sendmail being owned by root given above is
one case in point. Once the ownership is
changed through a global chown as in this case,
it’s very hard to set things back the way they
were. It’s easier just to reinstall the system.

3. I work for a small startup company in Silicon
Valley. The company wants to keep their name
out of this article. Since I am telling potentially
embarrassing stories about our engineers, I
wholly agree with this position. The arrange-
ment also allows me to be more frank about
certain things, as long as I remain circumspect
about others, such as names.

Vol. 27, No. 4 ;login:

by Howard Owen

Howard Owen has
been a tech junkie
since Conroy's Life
appeared in Life Mag-
azine. He's been a
professional geek
since 1984. Howard
loves Systems Admin-
istration because it sits
at the interface
between human
beings and computer
technology, and that's
where the action is.

hbo@egbok.com

the problem of
PORCMOLSULB
Can Root Be Controlled in Engineering
Environments?
Introduction
The other day I received a call from a user who was having trouble checking

in her latest changes to CVS. Since she was using a Linux box that was not

supported by our group, I could have refused to look at the problem. But

I’m pathologically interested in making sure our users get the most out of

the computing environment. Besides, it could have been an issue with the

CVS server, whose health as a system I am responsible for.

So I strolled over to her cube and had a look. Our CVS check-in process has hooks that

cause email to be sent. I soon determined that the problem had to do with the fact that

the Sendmail binary on her system was owned by her.1 Her boss, a senior engineer,

had installed Linux for her when she started. He didn’t ask the systems group to do the

work, because we would have set the root password to something he didn’t know and

have given the user sudo instead. (More about sudo shortly.)

I walked over to his cube and asked him if he knew what was up with Sendmail being

owned by the user. “Sure,” he said, “I did a chown -R <user> /usr so she wouldn’t

have permission problems.”

I’m slightly ashamed to say I laughed out loud before telling him, “Well, you are going

to have to reinstall Linux.”

He got annoyed and asked, “Why can’t you just do chown -R root /usr?” I told him

why2 and handed him the Linux CDs. They were back on my desk within 20 minutes,

so I knew he had decided to implement his “solution” rather than reinstalling the sys-

tem.

This would solve her email problem, but other problems would surely be created. I

told the user that I wouldn’t touch her system until Linux was reinstalled. I knew that

the senior engineer in this case was no dummy, despite the incredibly boneheaded

mistake he had made. He was, in fact, a very bright guy, engaging and witty in conver-

sation and trusted with a critical role in designing the software our small startup was

betting everything on.3 What could account for the extreme wrong-headedness he dis-

played? Why did he resist the reasonable restrictions we asked our users to accept in

order to receive support on their personal workstations? How could I reconcile my

certain knowledge that this was an extremely sharp and competent senior engineer

with the apparently abysmal lack of wit his actions showed?

PORCMOLSULB
The above problem is an example of PORCMOLSULB: Proliferation of Randomly

Configured, More-or-Less Screwed-Up Linux Boxes. It’s been showing up more and

more in environments I work in. This is partly due to the increasing popularity of

Linux, but the main cause is software engineers’ desire to control root on their per-

sonal workstations. This desire conflicts with the system administrator’s imperative to

maintain systems in a supportable condition and to prevent anonymous damage to

other systems on the same network from inexperienced root-enabled users.

The conflict is based not only on differing goals but on real differences in the compe-

tencies and enthusiasms of the two groups. PORCMOLSULB adds an interesting new

twist to the struggle that tends to shift the balance of power toward the users in the

ongoing battle. In this paper I will describe the battle in a little more detail, then ask

and answer the question, “Can root access on engineering workstations be controlled

in the face of PORCMOLSULB?”

The Conflict over Root Access
I’ve worked as a system administrator for 18 years, in academia, for government con-

tractors, and in private industry. In each of those environments I have found a peculiar

local version of low-intensity warfare between the computer users and sysadmins. I

hasten to add that this conflict was rarely the only characteristic of relations between

the two groups, or even the defining one. Nonetheless, the conflict was always present

in some form. The most common form I have seen this conflict take is the struggle

over root access. There are compelling business, psychological and technical reasons

why this should be so.

The Role of Business Imperatives
From the perspective of the business employing them, system administrators and tech-

nical computer users such as software engineers come to work for the same reasons.

That is, to make widgets, grommets, yo-yos or whatever else the enterprise is produc-

ing. However, looking a little deeper reveals differences in the business roles played by

the two types of employees. Generally speaking, businesses hire systems staff to ensure

that their computing environments are maintained in a state fit for maximizing the

productivity of the enterprise.

Software engineers generally are employed to design and write products for sale. It is

their productivity that the systems staff must maximize.4 This difference in business

imperatives colors a lot of the interaction between the two groups. Specifically, it

shows up when a software engineer demands root access to get her job done. Granting

the access may in fact help the engineer to be more productive, at least until she shoots

herself in the foot with her rootly power. The sysadmin is bound to see a threat to the

stability and security of the systems under his care, and to discount the possibility that

any benefit might accrue from granting the access that couldn’t also be accomplished

with a less sweeping grant of privilege.

Before I examine that in more depth, I’ll tackle the most difficult-to-characterize cause

of conflict between system administrators and their technical users: the personalities

of the people themselves.

The Role of Personalities
I’ve always thought that the conflict over root access was particularly strange in the

context of UNIX software startups in Silicon Valley. It seems to me that UNIX system

administrators and UNIX software engineers have a lot in common. However, the dif-

ference in business roles described above, plus differing enthusiasms and capacities,

tends to lead bright people with an interest in computer technology down different

paths.

APOLOGIA

Since I’m a system administrator, I can’t avoid telling this part of the story from that

perspective. I’ve tried hard to understand my users, and I’ve gotten pretty good at it

53August 2002 ;login:

4. This is a sweeping generalization. There are
plenty of systems engineers directly contribut-
ing to product, just as there are many software
engineers working on the productivity of oth-
ers. However, I’ll stand by the generalization for
the purposes of this discussion, since my expe-
rience tells me it’s true more often than not.

●

SY

SA
D

M
IN

THE PROBLEM OF PORCMOLSULB ●

Vol. 27, No. 4 ;login:

over the years, but the coloration my own place in the scheme of things will lend to my

discussion of the personalities involved in this conflict is unavoidable. With that warn-

ing issued, I hope you will forgive the personal nature of the discussion that follows.

MY CHOICES

Why am I drawn to system administration? Why not be a software engineer, for

instance? I do a fair amount of programming in my work. I can code some Perl for

several hours, enjoying all the things you must do to program effectively, such as hold-

ing several dozen details in your mind at once. Best of all, I love integrating all those

details into a finished solution that actually does something.

However, I don’t like to wait too long to get to that point. I’m impatient. I also get

burned out quickly doing that sort of thing. Finally, I get bored really really easily. For-

tunately, as a sysadmin I am compelled to do a lot of other things. I have to deal with

other human beings, frequently under difficult circumstances. I work with computer

hardware a lot, racking up systems or diving under desks to replace bad components.

And best of all, I get to work with computer systems: UNIX, Linux, Windows, Palm, it

doesn’t matter. I love systems. I can make them stand on their heads or dance the two-

step. I love the feeling of control and accomplishment that going to the exact center of

a difficult problem in complex systems gives me.

MY USERS’ CHOICES

How is all that different from what a typical software engineer does? This is a hard

question for me to answer, because I have to try to put myself in the place of an engi-

neer, and I tend to just assume that he thinks exactly the way I do.

However, there are some clues in the experiences I’ve had with such engineers that

have helped me make the leap of imagination. First, I’ve noticed that these folks seem

to have powers of concentration that are rather absurd, by my standards. Whereas I

need to take a break after a couple of hours of coding, these folks stay glued to their

screens and keyboards throughout their 14-hour days.

Second, I’ve noticed that their technical knowledge tends to be less broad than mine,

but deeper. Both of these observations start to add up to a (perhaps) obvious conclu-

sion: software engineers are specialists. Another conclusion I’ve drawn has taken a lot

longer to arrive at, because it cuts so directly against my own stance toward technol-

ogy. Software engineers are generally not enthusiastic about computer systems. Instead,

they are enthusiastic about software! They view systems as a vehicle for software, a

means to an end.

I view systems as ends in themselves. Once this idea struck me, I marveled at how long

it took me to see it. It seems that both system administrators and software engineers

are constitutionally suited for the differing roles they are asked to play in the enter-

prises that employ them.

Now that we’ve introduced the players, let’s set the scene: UNIX in all its common per-

mutations, including Linux.

The Role of Technology
UNIX operating systems generally provide a rather primitive model for distributing

privilege to system users. The power to control all system processes and resources is

UNIX operating systems

generally provide a rather

primitive model for

distributing privilege to

system users.

54

55August 2002 ;login:

System administrators often

complain (with justification)

that what they do is never

visible until something

breaks.

●

SY

SA
D

M
INgranted to the single all-powerful user: root. Other users may be granted varying levels

of access, depending mainly on which UNIX group they belong to and on how group

access permissions are set on various objects in the system. However, root (or any user

with UID 0) is the only user who can arbitrarily change access permissions. As a result,

when non-root users encounter a restriction in access permissions, they must call

upon the power of the root user to rearrange permissions so that they may continue

their work.

C2
There are exceptions to this monolithic permissions model among various proprietary

and free UNIX implementations. Many OS vendors, including most UNIX vendors,

have applied for and received DOD Orange Book C2 certification for one or more of

their products. (For an exhaustive list, see http://www.radium.ncsc.mil/tpep/library/

fers/tcsec_fers.html.) However, these vendors generally do not ship their systems with

C2 security enabled.

Even Microsoft, whose Windows NT code base implements many of the facilities that

C2 requires, such as Access Control Lists, doesn’t do that. Since Microsoft, at least, has

had to submit a version of NT with network access disabled in order to get certifica-

tion, that’s not entirely surprising. And though I’m not an expert on the topic, I sus-

pect that the reason even those vendors who may be able to run C2 while on a network

don’t ship with it enabled is because C2 access controls are fairly burdensome to users

and administrators alike.

Regardless of the real reason, the fact remains that the UNIX systems found in most

commercial environments, from vendors like Sun, HP, IBM, as well as Linux and

xBSDs, come configured by default with an antiquated permissions model.

Working Within the Model
Even given the monolithic UNIX permissions model, it is possible to give users most

of what they want without unleashing the full power of root. Issues that concern

shared access to files can be dealt with by judiciously adjusting group membership and

permissions. If a user needs to open low-numbered TCP/IP ports, for example, it’s

possible to setuid root as just a particular binary, though that carries with it all sorts of

other security implications.

There are many strategies that help users to “work within the system.” But each of

these has in common one fatal flaw: if the model needs to be adjusted because of an

unforeseen condition, root (aka the sysadmin) needs to get involved to make the

adjustment.

In a rapidly changing environment like a software startup, this has several impacts on

the user. First, it slooows her down. An overworked and harassed sysadmin has to be

located by an at least equally overworked and harassed engineer to make the change.

According to Murphy, this will always happen at 3:00 a.m. before a critical demo. I

really really hate to have my pager go off at that hour! Even if that apocalyptic scenario

doesn’t get played out, resentment may be fostered on both poles of the struggle.

The user may start to see the sysadmin as a power-mad tightwad, jealously guarding

root access for his own nefarious purpose. The sysadmin may feel put out by the fact

that the user isn’t willing to learn enough about UNIX to get around her problem. He

may also be blind to any benefit that might accrue to the user and the enterprise from

allowing the access.

THE PROBLEM OF PORCMOLSULB ●

http://www.radium.ncsc.mil/tpep/library/

Vol. 27, No. 4 ;login:

Because working within the

system is so troublesome, the

ever-inventive UNIX

community has produced

many tools that try to add

finer-grained control to the

monolithic UNIX permissions

model.

56

There’s a bit of irony here. System administrators often complain (with justification)

that what they do is never visible until something breaks. This is a consequence of the

natural outcome of great sysadmin: quietly working systems. In a similar way, the

sysadmin is unlikely to see any benefit from giving a user root, because those benefits

short-circuit trouble calls to the sysadmin! Before moving on, I’d like to note that nei-

ther of the characterizations presented above is fair, and they rarely play out in such an

extreme form in the real world. But their flavor is correct, at least in the places I’ve

been.

Tools That Try to Help
Because working within the system is so troublesome, the ever-inventive UNIX com-

munity has produced many tools5 that try to add finer-grained control to the mono-

lithic UNIX permissions model. One of the most popular is sudo, familiar to many

sysadmins. It allows users to invoke specific commands with root privilege. It uses the

user’s own password to authenticate access, thus protecting the root password. It also

logs each command invocation with the name of the user, thus providing an audit trail

of root access.

Typically, tools like sudo are deployed to meet a specific user need for root access, such

as to mount a CD-ROM drive. Used in this way, the tools add a little to the risk of root

compromise, but it’s usually manageable. The main issue is unintended privilege that

the sudo-enabled command might offer to the user. For example, the mount com-

mand that can make a CD-ROM available could also allow an arbitrary file system to

be mounted. That file system (or even the CD) could contain a setuid root shell binary.

One way around this would be to wrap a script around the mount command that dis-

allowed setuid mapping. But then you have to worry about the security of shell scripts

running as root. In fact, in a relatively open environment like a software startup, there

is no sure way to protect yourself from malicious misuse of privilege in all cases. You

end up having to fall back on trust, treating abuse of that trust as a personnel problem.

The problem gets even worse as more and more commands are added to the suite of

those offered to sudoers. Each new command brings its own particular set of security

holes. The problem, once again, is that UNIX assumes a monolithic permissions

model that tools like sudo can only work around, not cure.

This shows up again as weaknesses in programs like sudo that have nothing to do with

the quality of the code, and everything to do with the fact that hacks like sudo are nec-

essary in the first place. For example, sudo has difficulty with I/O redirection:

hbo@egbok > ls -l /tmp/foo
-r--r--r-- 1 root other 1464 Mar 25 13:10 /tmp/foo
hbo@egbok > sudo ls >>/tmp/foo
bash: /tmp/foo: Permission denied
hboegbok > sudo ls | sudo cat >>/tmp/foo
bash: /tmp/foo: Permission denied

This problem occurs because I/O redirection is implemented by the shell before the

command (sudo) is executed. The monolithic UNIX permissions model leads the shell

to assume that the identity that does the I/O redirection is the same as the one that will

result from the execution of the command. This is false in the case of sudo, which vio-

lates that permissions model. The following trick gets around the problem:

hbo@egbok > sudo ls | sudo tee -a /tmp/foo >/dev/null

5. A comprehensive list of such tools is main-
tained at http://www.courtesan.com/sudo/
other.html.

http://www.courtesan.com/sudo/

But it's not very intuitive. This also works:

hbo@egbok > sudo sh -c "ls >>/tmp/foo"

But as previously noted, if you allow shell access with sudo, you might as well give out

the root password.

Globbing is broken too:

hbo@egbok > mkdir fff
hbo@egbok > chmod 700 fff
hbo@egbok > touch fff/foo
hbo@egbok > sudo chown root fff
Password:
hbo@egbok > cd fff
bash: cd: fff: Permission denied
hbo@egbok > sudo cd fff
sudo: cd: command not found # cd is a bash builtin!
hbo@egbok > sudo rm fff/*
rm: cannot remove fff/*': No such file or directory

The “globbing” expansion requested by the use of the asterisk fails because, once again,

the shell tries to do it before executing the sudo command. We also see in this example

the problem of trying to “cd” into a protected directory. Since “cd” is a bash builtin,

sudo doesn't know what to do with it and you are out of luck

Of course, you could put code to solve either problem in a script and pipe to that. But

if you let your users run Perl with sudo, what’s to stop them from writing something

like this?

#!/usr/bin/perl
exec "/bin/bash";

Once again, there goes your audit trail! In fact, if your users have successfully agitated

for sudo access to more than a handful of commands you will almost certainly face an

impossible number of holes in your security policy.

PORCMOLSULB, Again
So far, we’ve seen two groups of professionals, apparently similar on the surface,

engaged in a struggle for control of root access on personal workstations. Each group

is trying to carry out the goals that their respective business imperatives demand. The

software engineer wants root so that she can get around restrictions in the UNIX sys-

tem in order to get her work done. The system administrator is trying to ensure that

the user’s system stays functioning. What are some possible outcomes of this struggle?

Complete victory by either side is unlikely. To borrow a concept from chemistry, a

more plausible outcome is that some sort of “dynamic equilibrium” will be reached as

managers in support and engineering struggle to balance competing business interests.

When the struggle concerns root access on servers, the business imperatives lean more

toward the sysadmin’s view of things, because the technical problems of sharing root

on a server are less tractable. On engineers’ personal workstations, however, the busi-

ness case for allowing unfettered root is more compelling, because the workstation is a

primary tool enabling the engineer’s productivity.

If the balance of power shifts toward the sysadmin, we start to see the phenomenon of

PORCMOLSULB showing up. This occurs when support departments can’t keep up

57August 2002 ;login:

●

SY

SA
D

M
IN

THE PROBLEM OF PORCMOLSULB ●

Vol. 27, No. 4 ;login:

with the demands of their user base for development “playpens,” or when they put

restrictions on those playpens beyond what the users are willing to accept.

It turns out that engineers are increasingly able to convince their managers that a com-

pletely uncontrolled Linux box would be a boost to their efforts in the rush to meet

insane deadline pressure.6 The sysadmin crew is probably feeling the pressure too, so

they are in worse shape than normal to resist this trend. Indeed, they may not even

become aware the box exists until it shows up in the critical path for some important

milestone. But even if they know the box is being deployed, and lack the power to pre-

vent it, they can still be stuck with fixing the box under killer time pressure, with the

business on the line and with no advance idea of how the box was configured by its

amateur sysadmin.

What Is to Be Done?
That nightmare scenario didn’t actually happen to me in the case I opened this paper

with. But we were facing a killer deadline, and the mere possibility of it happening

made me nervous. I had faced similar situations before, so I knew that arguing for the

“right” way of doing things wouldn’t lead me anywhere useful. I’d also recently had my

epiphany regarding the surface similarity and deep difference between sysadmins and

software engineers. Here’s how this particular comedy did play out.

DO YOU SUDO?

About 10 days after the senior developer got his engineer working again by doing a

chown -R root /usr, she showed up in my cube asking for the Linux disks. I was mildly

surprised that it had taken that long for a side effect of that solution to convince her

that she needed to reinstall. But I tried not to act smug, and handed her the disks with-

out asking why she wanted a reload of Linux. But I did ask her if she wouldn’t rather

that I do the install. I’d set her up so that her home directory on her workstation

would automount underneath her when she went out to the network. I’d also arrange

for it to be backed up regularly, and I’d support it so that she could come to me if she

had problems. She allowed as how that might be a good thing. So I delivered the

punch line: “All you have to do is give up root and use sudo. It takes a little getting

used to, but I’ll help out.”

Well, she readily agreed to that too, and I was in a self-congratulatory mood when she

came back in 10 minutes saying her boss had nixed the idea. He said she had to have

root instead of sudo. I actually took a short time out before going over to his cube. My

question to him was rather sharp, but nothing like it could have been. “Do you really

think backups, the automounter and support are worth having the root password?”

“Yes,” he said.

“Why fer ——ssake??” I politely asked.

“Because you won’t let us run shells with sudo!”

I proceeded to tell the story of 27 eight-and-a-half by ten colored glossy audit trails.

He said, “Stop right there! What good would an audit trail do you if someone did

chown -R <user> /usr?”

Well, he had a point. But I had an answer: “Because the audit trail would tell me right

away that I had to reload Linux, rather than some less drastic solution. And besides

most problems aren’t caused by thoroughly boneheaded moves like that one!”

6. Managers generally feel bad about asking
their people to work 12+-hour days to meet
unreasonable deadlines, no matter how brave a
face they put on the matter. Giving their engi-
neers the tools they need is therefore not only
good sense from an organizational standpoint,
it lets the managers hand out a perk or two.

58

He laughed and said, “OK. Give her sudo.”

I felt pretty good after that. It could have turned out differently, but it didn’t. Despite

the sharpness of the exchange, I felt like I’d made a critical connection with this guy.7

In addition, I had a toehold in his group with a supported Linux box that would not

be randomly configured, and would be less, not more, screwed up. And his new engi-

neer would be using sudo! I would work hard to make sure that she had as good an

experience with it as I could manage. In fact, over the next couple of days they came to

me several times with things they couldn’t do with sudo, and could I please just run

the command with root? Each time it had nothing to do with sudo, and each time I

cheerfully fixed it for them, or pointed them in the right direction. Soon, I had a cou-

ple of converts.

BEYOND SUDO

Now it turns out that the senior developer, and all his colleagues, were resistant to

using sudo because we restricted shells. This is an area where a sysadmin can argue

unto blue-facedness about the lack of a need for a shell when you have more-or-less

unrestricted sudo access. Indeed, since we had such unrestricted access, escaping from

sudo and its audit trail was a trivial exercises. Given those facts, I decided to just accept

that despite the technical arguments, sudo alone was not a workable solution for these

senior engineers on their workstations. In half a day, I whipped up a pair of Perl scripts

that used script(1) and a FIFO to provide an audited root shell using sudo.8 This gave

them practically nothing they didn’t have already with our open sudo policy, and pre-

served our audit trail. All the senior engineers accepted a support regime that included

these scripts.

Caveats and Conclusions

DANGER [W|J]ILL SYSADMIN!

There are big problems with this solution. Having root on a workstation that mounts

NFS shares is tantamount to giving the user root on the NFS server! Most NFS servers

can and should be configured so that any access to an exported file system by UID 0 is

mapped to a user with no privilege whatsoever. But that’s not the whole answer. With

root, a user can assume any UID in the passwd map. This means that on the NFS

server, other users’ files and system files not owned by root are at the mercy of root on

the NFS client! The approach I’ve described works best when the workstations are NFS

servers, not clients. There is still an issue with other systems mounting shares from the

workstation. If the NFS client implementation doesn’t enable you to disallow setuid

binaries, a root user on the server could place, for example, a setuid root bash binary

on the exported file system, then execute that binary on the client and get root privs.

PHILOSOPHY 101

This is not an exhaustive list of the security problems such a setup could raise. How-

ever, in my small shop, I can look each of my users in the eye every day if I choose.

There is not a single unteachable idiot in the bunch. I also don’t hand out my scripts to

everyone. In short, I rely on the good faith of my users. I give them the tools they say

they need, and I try to give them the benefit of the doubt on the question, despite my

technical knowledge to the contrary. If they shoot themselves in an extremity with

their privilege, I triage and fix the damage, with the benefit of a recent audit trail.

59August 2002 ;login:

●

SY

SA
D

M
IN

THE PROBLEM OF PORCMOLSULB ●

7. I probably neglected to mention that I’m new
on the job.

8. The result of considerably more than half a
day’s effort is available at http://www.egbok.com/
sudoscript.

http://www.egbok.com/

Vol. 27, No. 4 ;login:

<tirade mode=“self righteous” color=“purple”>

I trust my users in this regard because of one argument in favor of Democracy: if

you give people more choices, some will make bad ones; many more will make

good ones, yielding a net benefit.

</tirade>

This principle may well be applicable beyond my environment. How it plays out in

yours is up to you and your users.

Finally, Documentation
Once I’ve fixed any problems caused by inexperienced root users blasting off their

toes, I try to leverage the occasion to get them to read my documentation. Ah, yes.

Documentation. Nobody likes to write it, and nobody likes to read it. I write lots of

documentation, and, perversely perhaps, I enjoy doing it. What I find hard to take is

the indifference most of my users show toward what I write.

My epiphany regarding the differences between sysadmins and software engineers has

provided me with an explanation for that conundrum as well. What’s relevant to me

and to the systems under my care is not directly relevant to my users’ concerns! If I

were to write the best-ever UML manual, then they might notice. But when a pretty

bright engineer has made some embarrassing error that has clearly resulted in a hit on

his productivity, or worse, that of his colleagues, then the docs I write may seem more

relevant.

You have to be tactful and swift in exploiting these opportunities for education, how-

ever. Tactful because these folks are proud, and their pride has just been wounded.

Swift, because they’ll have their heads completely stuffed full of Java before long, with

no room for anything else.

Documentation. Nobody likes

to write it, and nobody likes

to read it.

60

