
BOOKS

78   ;login: VOL. 38, NO. 1

Regular Expressions Cookbook, Second Edition
Jan Goyvaerts and Steven Levithan
O’Reilly and Associates, 2012. 575 pp.

ISBN 978-1-449-31943-4

This is an excellent reference work, which will some day—
perhaps many days—save you untold effort. Yes, this book
goes over how regular expressions work, but where it shines
is in providing practical recipes that take into account not
only the details of regular expressions but also the details
of the world. For instance, in processing ZIP codes it notes
that there is one ZIP+4 (and only one) that contains letters,
but then notes that your mail to Saks’ shoe department will
deliver just fine without it anyway, and recommends you just
ignore it. Regular Expressions Cookbook is happy to suggest
combining regular expressions and code for readability and
performance.

The book is admirably agnostic, bearing in mind the possibility
that you will want to deal with phone numbers and postal
codes from outside the US, use non-ASCII character sets, and
parse Windows-specific values. Although it is impossible to
cover all the languages and situations where you may want to
use regular expressions, it covers a good wide variety, includ-
ing uses in text editors, and provides references to useful test-
ing tools. I might not have picked up this title had I not been
looking at books to review (after all, I already own two books
on regular expressions), and that would have been a real loss.
Even if you’re already a pro with regular expressions, this
book will point out details and save thought; if you’re not, it
will help you without making you too terribly dangerous.

Python for Data Analysis
Wes McKinney
O’Reilly and Associates, 2012. 432 pp.

ISBN 978-1-449-31979-3

This is a specialist’s book. If you read the title and think,
“Wow, how handy; I have this data I know how to analyze,

Book Reviews
E L I Z A B E T H Z W I C K Y , W I T H M A R K L A M O U R I N E A N D T R E Y D A R L E Y

and I know some Python, and learning all of R seems a bit
unwieldy when I could do all my processing in Python,” then
you really want this book. If you are fully confident in your
skills in one thing or another, either Python or data analysis,
and you’re interested in teaching yourself the other with a bit
of assistance from a reference work, this title would still be a
good choice.

If you need hand-holding, move on. This is the kind of the
book that says airily that there are many ways to get a random
sample of items, with different performance implications,
and then provides an example of exactly one of them. You are
expected to already know what performance implications it
has and to think of the rest for yourself. (It’s hardly an unusual
problem, after all.) The book also, in the Macintosh installa-
tion instructions, tells you to download a software package
without specifying where you would download it from. (For
one thing, the answer is easily findable in search engines, and
for another, it already told you in the Windows instructions—
why you would read the Windows installation instructions in
order to do a Macintosh installation, I do not know.)

I’m probably going to use my copy, if I can pry it out of the
hands of the Python guy at work who has been asking me
wistfully for months whether I know anything about pandas
(the Python library, not the bamboo-eating animals).

Managing the Unmanageable: Rules, Tools, and
Insights for Managing Software People and Teams
Mickey W. Mantle and Ron Lichty
Addison Wesley, 2012. 406 pp.

ISBN 978-0-321-82203-1

There are some good insights in this book and some pithy
rules of thumb; it’s an approachable book about managing
programmers, which will probably help many managers,
especially those who manage groups composed entirely
of programmers turning out new projects. All the same, I
couldn’t love it. Some of the problem was the authors’ style,

	 ;login: FEBRUARY 2013 Book Reviews   79

which doesn’t work for me (and that’s a highly personal thing,
so you should check out the book to see how you feel about it
yourself). Some of that was the laser-like focus on traditional
programming. The authors are quite condescending about
people who program in scripting languages or, worse yet, use
GUI tools, and they don’t care about non-programmers—
including QA, system administrators, designers, and technical
writers—at all. Apparently in their world, programming man-
agers don’t deal with such people. Also programming manag-
ers only manage development groups, not support groups.

The book does a much better job than most on the nitty-gritty
of interviewing and hiring programmers, and the rules of
thumb it presents get a nice wide range of perspectives repre-
sented. If the style and the tight focus work for you, this book
is a good place to start in the programming management
game; the content strikes me as mostly right, if occasionally
over-opinionated.

Python for Kids
Jason R. Briggs
No Starch Press, 2012. 313 pp.

ISBN 978-1-59327-407-8

Super Scratch Programming Adventure!
The LEAD Project
No Starch Press, 2011. 158 pp.

ISBN 978-1-59327-409-2

These two books take superficially similar approaches; both
of them use video game development to motivate kids to learn
to program. Python for Kids is aimed at kids age 10 and up,
whereas Super Scratch is geared toward kids 8 and older;
however, even apart from the age difference, these books will
suit radically different children.

Super Scratch is in a comic book format, and it focuses on
a language designed for children. Python for Kids is a stan-
dard introduction to Python, gently modified for children.
For a lot of kids, particularly kids on the younger end of the
age range, Super Scratch is going to be the more attractive
option. Super Scratch starts off with an intergalactic adven-
ture, and gets to making a cat move on page 21 (and that
includes 10 pages kids can skip and a couple in which you’re
already looking at the cat on your screen). Python for Kids
gets halfway through before it starts covering a game, and it
begins by adding numbers. If your kid wants to program for
programming’s sake and is likely to be offended by having
things dressed up with irrelevant space-going comic strips,
Python for Kids is the better choice.

Of the two, I think Super Scratch does a better job of bringing
programming to kids because it talks about debugging, for
example, and does a better job of providing questions kids are
likely to be interested in answering. Of course, Super Scratch
also starts with a programming language designed for kids,
which is a major leg up.

Python for Kids has to work within the limitations of Python,
which requires a certain amount of typing and discussing
integers and the like. On the whole, I think Python for Kids
copes pretty well, although my head exploded at the para-
graph “Why is a giraffe like a sidewalk? Because both
a giraffe and a sidewalk are things, known in the English
language as nouns, and in Python as objects.” OK, first of all,
a giraffe is not a noun. The word “giraffe” is a noun. Second,
there is no guarantee that nouns are things or things are
describable with nouns. “Beauty” is a noun, but beauty is not
a thing, and a pregnant giraffe is a thing, but only describ-
able with a noun phrase. Third, objects, nouns, and things
have very different characteristics. A giraffe is even less like
a Python object than it is like a noun. Fourth, while giraffes
and sidewalks are like each other in their degree of dissimi-
larity from both nouns and Python objects, this totally fails
to illuminate me about Python objects and doesn’t come up
again. Presumably, if I were 10 years old this would bother
me less, but I still don’t think it would do much to help me
understand Python objects.

My test child is 8; she has encountered Python for Kids in
its previous online existence, and by all reports was unim-
pressed. (Like me, she is not interested in programming for
programming’s sake, so she’s pretty much out of its target
audience in several directions.) She was quite taken with
both Super Scratch and the Scratch programming language,
and although she required a little help to make the connec-
tion between the book and the screen, she was enthused
about working with it. At which point, using only the instruc-
tions she could not proceed without in Super Scratch, she
carefully recreated in Scratch…the first turtle drawing exer-
cise in Python for Kids, which she ran into at least six months
ago. Go figure.

Meanwhile, these experiences seem to have communicated
only some of what they were trying to. Days later, we looked
at the screen saver on my computer, drawing fancy flowers,
and I said to her, “You know that’s a computer program, right?
People write programs that draw flowers.” “Really?” she said.
“Huh. I’ve written three programs, you know.” Score a point
for empowerment; take it away for not having connected that
experience to the things computers do that she loves.

—Elizabeth Zwicky

80   ;login: VOL. 38, NO. 1

Assembly Language Programming: ARM Cortex M3
Vincent Mahout
Wiley-ISTE, 2012. 246 pp.

ISBN 978-1-84821-329-6

I’m one of those people who thinks that software developers
should be aware of the workings at least one and probably two
levels below where they are working. That would be reason
enough to want to read up on assembly language. The recent
growth in consumer and hobbyist ARM systems makes that
a good selection.

Modern compiled and scripted languages plaster over so
much of the arcana that goes on at the machine level that
there’s no good place to just jump in and get coding. Mahout
takes about five chapters to get to some working code. Those
chapters cover the ARM architecture and elements of assem-
bly syntax.

The final four chapters are where this book earns its keep.
Chapter 6 demonstrates how to implement logical constructs
such as looping and branching blocks that in a high-level
language might be represented with a single keyword and a
couple of curly braces. Chapter 7 covers modularity and con-
structing procedures and functions, including detailing the
ARM-calling convention. Chapter 8 is about handling hard-
ware- and software-generated exceptions. Chapter 9 walks
through the creation of a complete simple program, detailing
each of the steps required to assemble, link, load, and run
the program. Remember, in assembly you’re responsible for
initializing the stack and all of the memory you’ve allocated
before branching to your program.

Aside from the long exposition that must happen before get-
ting to the meat, this book has several other quirks that effect
the reading experience. The contrast of the graphics and
code typesetting detract somewhat from the otherwise clean
layout. The code boxes use an unnecessarily dark background
that makes the black text hard on the eyes. Many of the graph-
ics appear to be color images converted to gray-scale without
any additional touch up.

There is, throughout the book, an odd use of language, at least
to my American English ear. When describing the sample
project used to illustrate the use of the assembler/linker/
loader tool chain, Mahout begins, “This entire project is of
restricted algorithmic interest.” I probably would have cho-
sen “limited.” The word choice doesn’t confuse the meaning
but can stand out as you read. If this issue had happened once
I would have passed it off as a quirk, but it occurs repeatedly.
Mahout is a native French speaker. The book is published
and printed in the UK. I would have thought that an English-
speaking editor would have spent a bit more time polishing
simple word choices.

The number of ARM family variations and the fact that ARM
SOC (System on a Chip) are manufacturer-specific mean
that Mahout can’t talk about things outside the core spec
itself. He chose a fairly recent mobile core, the Cortext M3,
as his working model.

In the same way that there are different flavors of compiler
for high-level languages, there are multiple assembler envi-
ronments for a given processor family. Mahout based his
book on the Keil ARM-MDK (Microcontroller Development
Kit). Kiel has been purchased by ARM, and the “Lite” version
is available from the arm.com Web site for free and is capable
of demonstrating all of the work in the book. Appendix D of
the book details how the GNU-GCC assembler (specifically
the assembler from the Sourcery G++ suite) differs from the
ARM-MDK.

This is certainly not a book for a novice programmer. If you
need proper ARM references, the ARM site itself has those
for each of the processor flavors, and for a specific SOC you
will need the manufacturer references. I don’t want to recom-
mend against this book for an experienced coder who wants
to taste assembly language or get a look under the hood of an
ARM system, but I will warn that reading it will take some
dedication. This might be a good book for the classroom, but
I would hope that the teacher would re-organize or gloss the
early chapters and somehow get the students straight into
some hands-on work. I’m still looking for the K&R or Stevens
of modern assembly.

Super Scratch Programming Adventure!
The LEAD Project
No Starch Press, 2011. 158 pp.

ISBN 978-1-59327-409-2

Since the invention of Logo and the turtle in 1967, people
have been trying to create languages and environments that
invite kids to learn and explore programming. The Scratch
programming environment was created at the MIT Media
Lab’s Lifelong Kindergarten project in 2006. An environment
like Scratch still has to be presented to kids in a way which
helps them engage.

Super Scratch Programming Adventure is published in North
America by No Starch Press, but was developed and written
by The Lead Project, a collaboration between the Hong Kong
Federation of Youth Groups and the MIT Media Lab.

When I got this book in the mail, the first thing I did was set
up Scratch on my 13-year-old daughter’s computer. After
supper I handed her the book and walked away. My daughters
have both been resistant to learning programming from me
and I generally don’t push except occasionally to offer some

	 ;login: FEBRUARY 2013 Book Reviews   81

new toy to try, like this. Several hours later she was still play-
ing with Scratch. I’ll call that a win. She continued to play
with it on and off for several days.

When I asked her what she thought of the book she said she
liked it in general. She thought the comic book presentation
was a bit young for her, but that it didn’t detract once she got
into it. She played with each of the games and explored some
of the variations, but she didn’t follow the progression of the
book faithfully and she didn’t formally complete any of the
“lessons” in the way the authors intended. She said that a big
part of Scratch is creating the artwork for the stories. She
doesn’t consider herself an artist so she stopped when she ran
out of things to do with the (large) provided set of “avatars.”

With the experiment over I started working through the
book myself.

Scratch is a programmable storytelling environment. The
user can draw characters (avatars) and backgrounds or use
some from the provided library. The stories are programmed
by dragging and dropping a set of tool bar objects, represent-
ing logic constructs and methods, on various other objects,
such as avatars or drawing pens. A loop or code block actually
wraps around the contained steps so the nesting and scope
are visually clear. Method parameters are text boxes whose
contents the user can change. Types of programming objects
(logic, avatars, drawing tools) are color coded. Scratch and
the programming examples for the book are available online
from the URLs provided.

Super Scratch Programming Adventure! has the typical cast
of characters: the human, for the reader to identify with, and
a collection of animals and aliens to play the roles of helpers
and villains. The adventure is presented as a series of crises
to be overcome. Each crisis has a program that starts out
working, but not in the desired way. The text guides the
reader through the process of changing the program to solve
the problem. The end of each chapter suggests some other
ways to experiment to see the effect of different changes.

The chapters present the typical concepts of variables, code
blocks, looping, and procedures in a purely practical and
experimental way without any attempt at theory. The stu-
dents get a visceral understanding through their play. In a
classroom setting a teacher might have a discussion session
to get the students to talk about the implications of what
they’ve done, but that’s not part of the text. By the end the
students have played with 2D motion, sound, color, and user
interaction.

As I mentioned, Scratch is a storytelling environment and
Super Scratch Programming Adventure ! is a storybook. Story-
telling isn’t much fun without an audience. Scratch provides

a means to upload stories to a public Web site, and the book
encourages the student both to do that and to explore the
stories there for additional ideas.

My experiences with recent middle and high school “com-
puter” classes have been disappointing, and I expect it’s
not uncommon. Recent activities in the UK [1, 2] and this
book from Hong Kong (not to neglect any US efforts I’m not
aware of) give me hope that middle and secondary computer
education may yet grow beyond teaching proprietary word
processing software. This book is probably best suited to
a middle school environment. It’s going to require creative
and enthusiastic teachers to foster the sense of expressive
freedom needed so that the students never know they’re
“programming.” I’d certainly recommend this book and
Scratch to an involved parent whose child has expressed
an interest in using computers for something more than
viewing videos and playing games. This book will stay on
my daughter’s shelf, and it may yet call her back to play.

[1] http://www.guardian.co.uk/politics/2012/jan/11/
michael-gove-boring-it-lessons.

[2] http://www.raspberrypi.org/about.

—Mark Lamourine

The CERT Guide to Insider Threats: How to
Prevent, Detect, and Respond to Information
Technology Crimes (Theft, Sabotage, Fraud)
Dawn Cappelli, Andrew Moore, and Randall Trzeciak
Addison-Wesley Professional, 2012. 432 pp.

ISBN: 978-0-321-81257-5

Carnegie Mellon’s CERT Insider Threat Center has (in col-
laboration with various law enforcement agencies) amassed
a substantial data set of criminal cases involving malicious
trusted insiders. Through analysis of this database the
authors (all of whom work for the Insider Threat Center, by
the way) have identified distinct profiles associated with
fraud, IP theft, and sabotage. The authors use these case
histories to great effect throughout the book to drive their
points home.

They won my heart early with this line in the book’s overview:
“If you learn only one thing from this book, let it be this: Insider
threats cannot be prevented and detected with technology
alone.” For managers, faced with a difficult and a subtle prob-
lem, the temptation to throw an expensive black box at it, put a
tick in the box, and assume that it does what it says on the tin
can be irresistible. Couple that with the trend of outsourcing
critical functions and you’ve got a recipe for danger.

82   ;login: VOL. 38, NO. 1

The first four chapters provide a fairly high-level overview of
case histories, profiles, motivations, and mitigation strate-
gies. The rest of the book is devoted to issues specific to the
software development life cycle, best practices for prevention
and detection, suggested technical controls, and in-depth
examination of selected cases. Technical types can glean use-
ful insights from this book, but to get the maximum benefit, try
organizing a reading group with the folks over in HR.

Advanced Internet Protocols, Services, and
Applications
Eiji Oki, Roberto Rojas-Cessa, Mallikarjun Tatipamula,
and Christian Vogt
Wiley, 2012. 260 pp.

ISBN: 978-0-470-49903-0

I marvel that such a slender volume can pack such a wallop
of disappointment. Based on the publisher’s description,
this book sounded like it would pair nicely with the new
edition of TCP/IP Illustrated, Volume 1. I hoped it would fill
in the gap on topics that Kevin Fall omitted for brevity’s
sake (i.e., dynamic routing protocols, traffic shaping, QoS,
and so forth). Sadly, this book contains so many errors (both
linguistic and technical) that I cannot imagine an editor
was ever even in the same room with the manuscript. This
is a rambling 260-page paraphrasing of RFCs that somehow
manages to be less readable than the RFCs themselves. This
book lists for $US 99.95. For that amount of money you can
buy two copies of Fall’s opus. Do yourself a favor and skip
this one. Hopefully, Fall is hard at work updating TCP/IP
Illustrated, Volume 2.

—Trey Darley

USENIX Board of Directors
Communicate directly with the USENIX Board of
Directors by writing to board@usenix.org.

P R E S I D E N T

Margo Seltzer, Harvard University
margo@usenix.org

V I C E P R E S I D E N T

John Arrasjid, VMware
johna@usenix.org

S E C R E T A R Y

Carolyn Rowland
carolyn@usenix.org

T R E A S U R E R

Brian Noble, University of Michigan
noble@usenix.org

D I R E C T O R S

David Blank-Edelman, Northeastern University
dnb@usenix.org

Sasha Fedorova, Simon Fraser University
sasha@usenix.org

Niels Provos, Google
niels@usenix.org

Dan Wallach, Rice University
dwallach@usenix.org

C O - E X E C U T I V E D I R E C T O R S

Anne Dickison
anne@usenix.org

Casey Henderson
casey@usenix.org

