
O C T O B E R 2 0 1 3   v o l . 3 8 , N o . 5
E L E C T R O N I C S U P P L E M E N T

 | OCTOBER 2013 | VOL. 38, No. 5 | ATC ’13 | WWW.usenix.org	 PAGE 1

USENIX ATC ’13: 2013 USENIX Annual Technical
Conference
San Jose, CA
June 26-28, 2013

Virtual Machine Implementation
Summarized by Kyungho Jeon (kyunghoj@buffalo.edu)

Optimizing VM Checkpointing for Restore Performance in
VMware ESXi
Irene Zhang, University of Washington and VMware; Tyler Denniston, MIT
CSAIL and VMware; Yury Baskakov, VMware; Alex Garthwaite, CloudPhysics
and VMware

Irene Zhang started her presentation by explaining that check-
pointing is similar to “suspend,” but while taking a checkpoint, the
virtual machine can continue its execution. Because checkpoint-
ing is used for fault tolerance, taking a checkpoint can be done
quickly, in less than a few seconds; restoring from the checkpoint,
although slow, hasn’t been a problem; however, recent applica-
tions, such as dynamic VM allocation and desktop virtualization,
require short restore latency because if restoring from a check-
point takes longer than 10 seconds, starting from a new VM would
be better. To support such new applications, a new VM check-
pointing system for VMware ESXi, named Halite, was developed.
Halite reduces time to restore a checkpointed state from 25 sec-
onds to slightly more than a second.

First, Zhang explained the challenges. Restoring from a check-
point state is hard because it requires bringing the entire state of a
VM from disk to memory. Current VMware ESXi uses an asyn-
chronous method that starts the VM and reads pages when faults
occur. A drawback is that the VM will be unusable for a while.
The performance degradation is due to the VM’s memory being
swapped inefficiently, so the restore process reads randomly from
disks. Therefore, we should eliminate the faults to disks to avoid
the performance degradation. Zhang’s team worked on predicting
which pages that VM might access when it restores and prefetches
them, but they found it is difficult to anticipate a VM’s behavior.

Rather than predicting the working set, the key idea of Halite is
to predict access locality, which means predicting what memory
pages the VM will access together. Once it can predict access
locality, it can store the pages together on disk, by using “locality
blocks” Halite introduced, so we can achieve spatial locality. This
is more helpful than predicting working sets because access local-
ity does not change much as VMs change.

To predict access locality of a VM during the restore process,
Halite uses two techniques: accesses during the checkpoint pro-
cess and guest address space. Halite predicts these during check-
pointing, and the prediction is directly used to save memory pages

into locality blocks. Halite also uses other techniques, such as
compression, but this detail was not discussed in the talk.

As a result of new techniques, Halite could reduce time to restore
from a checkpointed VM state with small overhead on the
checkpointing process. Worldbench, which simulates Windows
desktops, shows that Halite takes a little more than a second for
restoring, but ESXi takes 24 seconds. Halite adds a few sec-
onds delay for checkpointing, whereas ESXi spends more than 10
seconds. Zhang also demonstrated that the locality block alone
reduces restoration time by half compared to ESXi, but to achieve
a sub-second performance, compression is also required.

Mathieu Isabel (Global Excel) asked whether using SSDs was con-
sidered for storing and restoring the checkpointed states. Zhang
answered SSD was tested and she thought it would provide some
improvement, but wasn’t sure how much. Albert Chen (Western
Digital) asked whether using the benchmark is predictive rather
than realistic and random. Zhang answered that the bench-
mark was used because of repeatability, and Worldbench simu-
lates random behaviors of Windows systems. Abel Gordon (IBM
Research) asked about using huge pages (2 MB) for backing VM
memory pages. Zhang said using bigger pages is much more effi-
cient and will improve performance. Mathias Payer (UC Berkeley)
asked about how much active memory can be grouped in local-
ity blocks. Zhang said that the paper uses working set estimates.
Payer then asked about using hardware performance counters for
more precise groupings. Zhang answered that it would be possible
if a virtual hardware counter is implemented, but doing it just for
checkpointing is not a good idea.

Hyper-Switch: A Scalable Software Virtual Switching
Architecture
Kaushik Kumar Ram, Alan L. Cox, Mehul Chadha, and Scott Rixner, Rice
University

Kaushik Kumar Ram presented Hyper-Switch, “a highly efficient
and scalable software-based network switch for virtualization
platforms.” He claimed virtual switches are becoming perfor-
mance-critical components in datacenter networks as the number
of VMs a server hosts increases. In the future, Ram expects most
network traffic will never leave a single physical server. Therefore,
we need a high performance virtual switching component inside
virtualized servers.

Current network architectures in virtualized environments are
implemented inside the same domain, either the driver domain
(Xen) or the hypervisor domain (KVM). Hyper-Switch changes
the conventional design by moving the switch into the hypervisor,
but retains device drivers running in the driver domain. The idea
is to separate the control and data planes. The data plane is small

Conference Reports

E L E C T R O N I C S U P P L E M E N T

 | OCTOBER 2013 | VOL. 38, No. 5 | ATC ’13 | WWW.usenix.org	 PAGE 2

enough not to inflate the hypervisor, and thus it can keep the
trusted computing base (TCB) small.

There are two benefits to this approach. First, there is no memory-
sharing overhead because packet buffers are never directly shared
between two VM domains. Second, it allows better I/O resource
usage accounting.

In addition to the design choice, Ram described several optimiza-
tion techniques used in Hyper-Switch. First, preemptive packet
copying avoids a hypercall on the receiver side. Second, Hyper-
Switch delays packet processing and batches multiple packets
so that it amortizes packet-processing overhead across multi-
ple batched packets. This technique is implemented on both the
transmitter and receiver sides. Third, Hyper-Switch offloads
packet processing to idle cores to increase concurrency. This
scheme also considers CPU cache locality.

Hyper-Switch was implemented based on Xen and Open vSwitch.
In the evaluation, Hyper-Switch performed 56% better than Xen
and 61% better than KVM under TCP stream-based workloads.
Hyper-Switch showed perfect scalability until the number of VMs
reached four, and a slow but linear speedup until the number of
VMs was eight. After that, the throughput was degraded because
there were no more idle cores for offloading packet processing.

Emin Gün Sirer (Cornell University) asked whether Ram could
describe how big the system’s resulting TCB will be and how the
TCB will look assuming all the VMs running on a hypervisor are
using the network. Ram answered that the TCB size is determined
by the size of the data plane and is not proportional to the num-
ber of VMs running in the system. He also said he thought the
data plane is about 5% of hypervisor (Xen) code. Rik Farrow asked
whether the performance gain is from avoiding memory copy;
it was not, because Hyper-Switch does not avoid any memory
copy compared to Xen. The gain is mainly because Hyper-Switch
avoids context switches between the VM and VMM.

MiG: Efficient Migration of Desktop VMs Using Semantic
Compression
Anshul Rai and Ramachandran Ramjee, Microsoft Research India; Ashok
Anand, Bell Labs India; Venkata N. Padmanabhan, Microsoft Research India;
George Varghese, Microsoft Research US

Ramachandran Ramjee began by explaining the benefits of Desk-
top VM migration: it offers an always local experience; when used
in servers, allocating the VM near the location provides better
response time; and “parking” a desktop VM on a server allows the
user to turn the local desktop off when not in use, thereby saving
energy.

But there are also drawbacks and challenges. Moving the VM is
a problem because recent desktop VMs have a large amount of
memory; for example, transferring 4 GB will take one hour and you
will end up transferring 200 GB a month. Thus, both number of
bytes transferred and time to migrate are important metrics.

Ramjee mentioned his assumption that disks can be synced inde-
pendently, using an out-of-band synchronization mechanism, so
the talk would cover migrating memory states. Input replay looked
promising for desktop VM migration, but Ramjee found that the
technique was not effective for modern operating systems due to
the randomness generated by prefetching and address space lay-
out randomization (ASLR).

Ramjee then presented evaluation results showing that zero pages
were dramatically reduced in Windows 7, and the input replay
technique resulted in many non-identical, non-zero pages. Other
than replay, various techniques such as rsync and compression
were tested by the authors, but they were not good enough.

Ramjee suggested a new technique, semantic compression. The
idea—based on there being various types of pages, some more com-
pressible than others—is that using different techniques for differ-
ent pages will benefit memory state migration. There are various
kinds of memory pages: heap, image, kernel, prefetched, and free
pages. Each page has a different characteristic. Free pages are
80% compressible but actually don’t need to be migrated.

First, MiG identifies pages. Free or zero pages are not migrated.
The authors found 33% of pages are identical, which means MiG
also does full-page matches. Next, image pages are actually from
file systems, so MiG uses the context to do a “diff” because data
coming from a file system might have changed. For example,
library (DLL) or executable files are already in disks of both sides.
MiG pre-loads them and builds a table of chunks.

When migration occurs, MiG does not send the page, but fin-
gerprints the page and finds whether the other end has the page.
If yes, then the receiver just needs to update a pointer. For heap
and other pages, MiG has an intra-VM redundancy layer, which
indexes entire VM state and finds a lot more redundancies than
gzip compression can.

Finally, Ramjee briefly presented evaluations. There were two
metrics: byte savings and migration time. The evaluation was con-
ducted on Windows 7 VMs with 2–4 GB of RAM. MiG can reduce
40–60% of bytes compared to gzip. For migration time evalua-
tions, MiG’s compute time is almost the same to gzip, but transfer
time is about half compared to gzipped pages.

Konrad Miller (KIT) asked why he can’t drop all the pages origi-
nally loaded from disks, synchronize the disks, and load from the
local disk. Ramjee answered that if some pages were loaded from
disk, that information is hidden in the memory. But it will be prob-
lematic if that information is not transferred. For example, it is
possible SuperFetch data structure points to unloaded, garbage
pages after migration. Then Ramjee was asked again whether
he can use ballooning. The answer was that there is a problem
because the prefetched pages are not low priority pages.

E L E C T R O N I C S U P P L E M E N T

 | OCTOBER 2013 | VOL. 38, No. 5 | ATC ’13 | WWW.usenix.org	 PAGE 3

Computing in the Cloud
Summarized by Yanfei Guo (yguo@uccs.edu)

Copysets: Reducing the Frequency of Data Loss in Cloud
Storage
Asaf Cidon, Stephen Rumble, Ryan Stutsman, Sachin Katti, John Ousterhout,
and Mendel Rosenblum, Stanford University

Asaf Cidon started by introducing the notion that data stor-
age for cloud service is spread over thousands of servers. Due to
independent server failures, one major goal of these systems is
the tolerance to node failures. Asaf pointed out that the current
randomization-based data spreading approach only tolerates
independent node failures; it is not durable to correlated node
failures such as rack power outages that cause multiple servers
to be off line.

Asaf than introduced the term copyset, which is a node set that
contains all replications of one data chunk. Losing access to
one copyset means losing access to one data chunk. Asaf also
reviewed some previous work in providing data availability
when correlated node failures happen. These previous works
limit the nodes that one data chunk can be replicated on and
provide better durability to correlated node failures; however, it
also increase the recovery time because it restricts the ability to
recover data from multiple nodes.

Asaf presented their replication technique, Copyset Replication,
which randomly generates multiple permutations of copysets of
the same size. The data chunk is replicated to these randomly cre-
ated copysets. By controlling the number of permutations, con-
trolling the scatter width of a data chunk is easy. Thus trading off
between the data availability and recovery speed is easy.

Following the talk, Asaf was asked about how Copyset Replica-
tion can be used with a system that can be dynamically scaled up.
Copyset Replication also works in this scenario, but it will become
less optimal as more and more nodes are added to the system. Asaf
said they are studying this as future work.

TAO: Facebook’s Distributed Data Store for the Social
Graph
Nathan Bronson, Zach Amsden, George Cabrera, Prasad Chakka, Peter
Dimov, Hui Ding, Jack Ferris, Anthony Giardullo, Sachin Kulkarni, Harry Li,
Mark Marchukov, Dmitri Petrov, Lovro Puzar, Yee Jiun Song, and Venkat
Venkataramani, Facebook, Inc.

Nathan Bronson started by introducing the social graph at Face-
book, which is a data structure that saves user information and
related behaviors. The social Web servers will query the graphs
and render the page for users. Due to dynamic user page contents,
the social graphs are queried frequently to serve the enormous
request load of Facebook.

Facebook uses TAO to save the social graphs and support high
volume dynamic requests. The backend of TAO is traditional
databases. To speed up the read and write requests, a hierarchical
memcached system is used. There are two levels of cache in TAO,

the leader cache and the follower caches. The leader cache simpli-
fies the synchronization of read and write operation within one
site and across multiple replicated datacenters. This architecture
allows easy scaling for social graph storage.

Someone asked Nathan about the load range on TAO. Nathan said
the regular load is 1 MB, but there are also other loads with differ-
ent sizes. Another question was about using TAO for workloads
that have a lot of write operations. Nathan said that this system is
more focused on workloads with more read operations; they have a
different design to handle workloads with more write operations.

PIKACHU: How to Rebalance Load in Optimizing
MapReduce on Heterogeneous Clusters
Rohan Gandhi, Di Xie, and Y. Charlie Hu, Purdue University

Because of datacenter heterogeneity and differences in nodes,
different times are needed to process the same amount of data.
Rohan Gandhi and his co-authors focused on MapReduce as a rep-
resentative datacenter application. Previous work such as Tarazu
showed that it is effective to mitigate performance heterogeneity
by rebalancing the workload on different nodes. But Tarazu only
brings limited improvement to MapReduce job performance.

Rohan then presented PIKACHU, a new workload rebalanc-
ing approach based on Tarazu. Their approach articulates the
tradeoff between estimation accuracy and the wasted work from
delayed load adjustment. The experimental results show that
PIKACHU can significantly reduce the job completion time with
well-balanced workloads.

Following the talk, Rohan was asked about the reshuffling in
PIKACHU that is required by the workload rebalancing. Rohan
briefly explained how data is collected by the reduce task and then
transmitted during the rebalancing.

Flash-Based Storage
Summarized by Rohan Gandhi (gandhir@purdue.edu)

FlashFQ: A Fair Queueing I/O Scheduler for Flash-Based
SSDs
Kai Shen and Stan Park, University of Rochester

Kai Shen explained that there is a problem with fair queueing in
multi-tenant cloud systems. Existing schedulers use time slices
to achieve fairness, but this approach fails on two counts: (1) dif-
ferent I/O operations require different amounts of resources and
time, (2) time-slice-based schedulers show poor performance in
terms of responsiveness when large number of tasks are contend-
ing for I/O resources. Furthermore, the existing I/O schedulers
suffer from the list of problems resulting from underutilization
due to idle applications and loss of spatial locality from switching.

To improve fairness and responsiveness in multi-tenant settings,
the authors propose FlashFQ, a fair queueing I/O scheduler using
throttled dispatch and anticipatory fair-queueing techniques.
FlashFQ is based on the Start-time Fair Queueing algorithm,

E L E C T R O N I C S U P P L E M E N T

 | OCTOBER 2013 | VOL. 38, No. 5 | ATC ’13 | WWW.usenix.org	 PAGE 4

which uses virtual time and expected resource usage. In FlashFQ,
the authors use a throttled dispatch mechanism, where they moni-
tor the progress of active tasks (applications that are performing
I/O operations) and dispatch the I/O request only if the progress
of the current task compared to the most lagging task does not
exceed the threshold. Secondly, the authors use an anticipatory
fair queueing technique to keep the task active even when there
has been a period where no I/O request was issued by that task
(deceptive idleness).

The authors have implemented FlashFQ in Linux and evalu-
ated the performance against Linux CFQ, Quanta, FIOS, 4-Tag
SFQ(D) on three flash-based storage devices (Intel 311, Intel
X250M, and OCZ Verted 3). The authors used real (Apache server)
and synthetic workloads with different I/O request sizes for com-
parison, and showed that FlashFQ achieves better fairness as it
slows down read and write requests equally when under conten-
tion. They also showed similar results for I/O requests with differ-
ent sizes. In terms of responsiveness, the authors demonstrated
that FlashFQ has the lowest response time among other schedul-
ers for synthetic as well as real workloads.

Someone asked about the size and pattern of the requests issued
in parallel. Kai Shen answered that they have evaluated synthetic
and real workloads that have such a pattern. A participant from
UT Dallas asked about incorrect completion time predictions. Kai
Shen said a bad prediction would produce an incorrect allocation
of resources for requests and acknowledged that the design work
required to address this question has been left for future work.

The Harey Tortoise: Managing Heterogeneous Write
Performance in SSDs
Laura M. Grupp, University of California, San Diego; John D. Davis, Microsoft
Research; Steven Swanson, University of California, San Diego

Laura Grupp claimed that packing for capacity in flash memory
has a negative impact on performance and endurance. As a result,
the worst-case performance (in terms of latency) of the flash
writes is on a par with disks. In this paper, the authors make use of
the observation that different pages in flash have different laten-
cies by scheduling programs to pages that match according to
their requirements. They call their system Harey Tortoise, as it
matches high, hare-like performance while preserving high, tor-
toise-like endurance. Laura demonstrated how observed latency
differs, depending on how many bits are already written: e.g., the
latency is higher for the second bit compared to the first bit. As a
result, there are fast and slow pages.

To exploit this variation, the authors added functionality to page-
based Flash Translation Layer (FTL). In their design, the FTL
holds three queues: emergency, external, background. Each queue
is a set of operations yet to be performed. Each write in the three
queues has a choice of slow or fast pages. To allow access to fast
and slow pages, their design uses multiple write-points on each

chip. Traditionally, there has been one write-point. This function-
ality is useful in handling the bursty workloads where fast pages
are required.

Laura summarized by showing that the performance of their sys-
tem is better than previous systems using five different traces.
The traces differ in burst size and idle time. They compared the
improvement in write throughput by using multiple write-points.
On average the improvement is 34%. They also showed that their
system can achieve better rate-matching.

Someone asked what fundamentally causes the slow and fast
pages. Laura said that different speeds are caused by the way man-
ufacturers store the bits on transistors. The first bit stored takes
less time to write compared to the second bit, and first and sec-
ond bits are stored on different pages, resulting in different pages
with different write latency. Someone asked whether the traces
were collected by the authors for this paper. Laura answered “yes!”
and offered to share the traces, too. Someone else asked whether
three bits per cell means three pages with different speeds. Laura
said, yes—with more bits, there will be more pages with different
speeds.

Janus: Optimal Flash Provisioning for Cloud Storage
Workloads
Christoph Albrecht, Arif Merchant, Murray Stokely, Muhammad Waliji,
François Labelle, Nate Coehlo, Xudong Shi, and C. Eric Schrock, Google, Inc.

Christoph Albrecht described Janus, developed at Google, which
partitions the storage on flash and disk based on performance
requirements. The problem of partitioning arises due to the per-
formance, capacity, and cost tradeoffs between the disk and flash.
The crux of their system is to determine cacheability, which
determines how data storage is to be allocated between disk or
flash. They named their system Janus (a Roman god of beginnings
and transitions) as they use the sampled distribution trace from
the past to determine whether to provide a flash-based storage
and also the amount of flash-based storage for a given workload,
so that the hits to the flash storage are maximized. Apart from
describing the design of Janus, the authors also showed real trace
characteristics from Google.

The design of Janus is motivated by the observation that the
demand for a chunk of data varies based on its age. In Janus, the
file or a chunk of data is added to flash when it is created (rather
than when it is first accessed). Each workload is characterized
based on the age and popularity, to calculate cacheability. This
matrix and also the priority of the workload is solved as an optimi-
zation problem with the constraint of the flash capacity. When the
data is present in the flash, it is flushed to disk based on the FIFO
and LRU age of the data. The authors then show that this way
of varying the amount of data partitioned on flash and disk can
improve cost effectiveness.

E L E C T R O N I C S U P P L E M E N T

 | OCTOBER 2013 | VOL. 38, No. 5 | ATC ’13 | WWW.usenix.org	 PAGE 5

Before concluding, the authors showed that Janus predictions
on flash hits are achieved with real workloads, and hits are up
to 76% higher than unpartitioned flash. Venkat Venkataramani
from Facebook asked about how data is partitioned. Christoph
answered that the greater the workload, the more opportunities to
separate the data and increase optimization.

Miscellanea #1
Summarized by Ioannis Manousakis (jmanous@ics.forth.gr)

Using One-Sided RDMA Reads to Build a Fast, CPU-
Efficient Key-Value Store
Christopher Mitchell, New York University; Yifeng Geng, Tsinghua University;
Jinyang Li, New York University

Christopher Mitchell began by mentioning that InfiniBand is
now mature and cost-efficient, and thus ready to take over from
the Ethernet infrastructure in datacenters. He compared Eth-
ernet and InfiniBand to show how the latter can increase the
performance.

Christopher then introduced their own system, Pilaf, starting
with some related work that appeared in NSDI ’13. He described
how Remote DMA can increase the throughput of GET/PUT
operations and how this mechanism has been adapted in Pilaf.
He mentioned potential problems resulting from their system
and how to overcome them, and he covered races on concurrent
PUT/GET operations. A performance evaluation demonstrated
that Pilaf was able to achieve much higher throughput and lower
latency than Redis and memcached while using fewer CPU
resources. They concluded that combining RDMA (for read-only)
with traditional message passing (for write) provides the best bal-
ance between simplicity and performance. An attendee wondered
whether the authors had compared their InfiniBand implementa-
tion with an equivalent Ethernet version. Christopher answered
no. Had they considered using transactional memory (TM)? They
were not aware of any part where they could benefit from TM.
Was the CRC that they used necessary? Yes, it was. Someone
asked how the hashing mechanism worked. Christopher explained
this to the questioner.

Lightweight Memory Tracing
Mathias Payer, Enrico Kravina, and Thomas R. Gross, ETH Zurich

Mathias Payer said that their primary goal was to make a faster
memory tracing tool for binaries than the state-of-the-art, an
implementation with a Valgrind binary translator, which was 50x
slower than the original execution. Mathias discussed the foun-
dations of memory tracing and the problems that arise. Mathias
introduced the goals and the requirements of this work—flexibil-
ity, isolation, and performance—and described the implementa-
tion of the memory tracer and its architecture. The major benefit
over the Valgrind implementation was the reduced memory allo-
cation of his custom binary translator.

Mathias then discussed the evaluation process by giving the
experimental setup and four configurations for the purpose of
wider evaluation. Those configurations were incrementally
more expensive in terms of resources. The quantitative evalua-
tion in terms of performance essentially concerned the overhead
of the memory tracer. First, Mathias mentioned the highlight: he
achieved really low slowdown (3x) compared to Valgrind (50x);
then he provided the memory overhead, which was less than 90%
for unmodified x86 applications. He concluded by discussing
related work, without citations, and mentioned some similar solu-
tions, their performance, and architectural differences. Someone
wondered whether the authors used the LLVM to do any source-
to-source transformation in order for the memory tracer to work.
The answer was no. The second question was how operating sys-
tem pointers are handled. Mathias answered that the OS point-
ers are supported by converting the pointers from 64-bit to 32-bit.
Someone asked whether the memory tracer supports the vsyscall
(fast system call). Mathias answered yes.

Flash Caching on the Storage Client
David A. Holland, Elaine Angelino, Gideon Wald, and Margo I. Seltzer, Harvard
University

David Holland started by mentioning that all the caches in stor-
age services are resident on the server side. He said that he has
investigated the use of client-side caches instead and discussed
the architectural advantages he has found. Then he summa-
rized the overall roadmap of their work, how they obtained their
results, and described the general cache architectures, require-
ments, and parameters. David concluded from evaluation results
that write-back policy does not matter when you have this type of
client server cache and suggested that write-through cache has
the same performance, is less complex, and thus is more appropri-
ate for this role. He said that persistence is good to have but is not
critical for performance. Someone asked what would happen if
the application used synchronous writes; would the cache work?
David answered that it would. What would happen if there were a
workload skew? Dave replied that the fraction of I/O outside the
workload was roughly 20%, so a workload skew should not happen.

Practical and Effective Sandboxing for Non-Root Users
Taesoo Kim and Nickolai Zeldovich, MIT CSAIL

Taesoo Kim gave two examples of sandboxing: OS jailroot and
downloading an untrusted executable or file from the Internet. He
explained in detail what would happen without sandboxing and
what a sandboxing mechanism should do. Then he gave an over-
view of the design of his work (MBOX) and discussed its two basic
components: the layered sandbox file system and the system call
interposition mechanism.

Taesoo moved to yet another example of how to use MBOX to
install a Linux package as a non-root user or to check the safety of
this package if it comes from an untrusted source.

E L E C T R O N I C S U P P L E M E N T

 | OCTOBER 2013 | VOL. 38, No. 5 | ATC ’13 | WWW.usenix.org	 PAGE 6

Taesoo mentioned the major performance advance of their imple-
mentation, which was the use of the SECCOMP/BPF system to
track the system-call flow between the sandboxed application and
the operating system. This particular tracing design allows the
monitoring of only a subset of the available system-calls, in contrast
to other solutions where they trace them all. Taesoo mentioned the
slowdown of applications when running in the sandbox and high-
lighted the 0.1–20% overhead they observed. Someone wanted to
know how to implement directory changes. Taesoo answered that
he should check the paper for details. Another attendee wanted
more information about related work. Taesoo said that he didn’t
have that information. The last question was whether privileged
calls work with MBOX. Taesoo replied that, because the authentica-
tion is done with user-ID, the tool would work.

Data Storage Session
Summarized by Srinivasan Chandrasekharan (schandra@cs.arizona.edu)

TABLEFS: Enhancing Metadata Efficiency in the Local File
System
Kai Ren and Garth Gibson, Carnegie Mellon University

Kai Ren first explained that small files are abundant and one
of the challenges of the Linux file system is the management of
metadata. He showed results of experiments with workloads
dominated by metadata and small file accesses to show that even
ext4, XFS, and Btrfs leave much performance improvement to be
desired. One of the interesting benchmarks that Kai ran was cre-
ating 100-million zero-length files in one directory.

Kai proposed TABLEFS, which takes a flexible combination of
two ideas from prior work. The first is to collate metadata and
small files to reduce random reads to hard disk, and the second is
to use a log-structured merged tree to reduce random disk seeks.
In the evaluation of this approach, Kai showed a data-intensive
benchmark with spinning disks and SSDs. He also compared
TABLEFS with ext4, XFS, and Btrfs and in the results showed
that TABLEFS could outperform the other file systems by 50% to
as much as 1000% for metadata-intensive workloads.

In answer to a question about FS integrity, Kai explained that they
were able to maintain data consistency. Kai didn’t have an answer
to a follow-up question about why SSD didn’t fare well in a com-
parison to ext4.

Characterization of Incremental Data Changes for
Efficient Data Protection
Hyong Shim, Philip Shilane, and Windsor Hsu, EMC Corporation

Philip Shilane presented this paper in place of Hyong Shim. He
explained that protecting data on primary storage often requires
creating secondary copies by periodically replicating the data to
external target systems. The paper is based on analysis done with
100,000 traces from 125 customer block-based primary storage
systems. The goal of the paper is to minimize overheads on pri-
mary systems and to improve data replication efficiency.

Philip explained that the traces were collected from enterprise
customer sites. He also mentioned that the writes tend to be
highly localized and showed the I/O properties of these traces. He
said that there was a lot more information in the paper. He also
compared the sequential vs random write I/Os and said that they
selected the most sequential and most random I/O for analysis.
The paper proposed the idea of a replication snapshot whereby the
I/O overheads were lowered by about 20%.

On the Efficiency of Durable State Machine Replication
Alysson Bessani, Marcel Santos, João Felix, and Nuno Neves, FCUL/LaSIGE,
University of Lisbon; Miguel Correia, INESC-ID, IST, University of Lisbon

Alysson explained how state machine replications work and why
they’re important. He touched on the topics of durability, main-
tenance, correlated failures, and how real systems implement
durable SMR. He further showed that current techniques of
implementing durable state machine replication must be supple-
mented by three key techniques—logging, checkpoints, and state
transfers—but that these have a high impact on the performance
of SMR even when SSDs are used.

Alysson proposed using parallel logging, sequential checkpoint-
ing, and collaborative state transfers to alleviate the issue men-
tioned previously. Alysson evaluated Dura-SMart against the
BFT-Smart replication library and in summary mentioned that
their contribution is the principled way to deal with durability
overhead without breaking modularity.

During Q&A, someone mentioned that one would need some
kind of state containment and would also need a perfect fail pass.
Another mentioned that parallel logging would have issues. There
was a discussion between the author and the commenters and the
discussion was taken offline.

Estimating Duplication by Content-Based Sampling
Fei Xie, Michael Condict, and Sandip Shete, NetApp Inc.

Michael Condit mentioned that removing duplicates of the same
block is important because it saves space, but predicting the
cost/benefit ratio is hard. The authors tried to address the ques-
tion whether one can estimate space savings before enabling
deduplication.

Michael talked about the goals of the estimator: to have a small
memory footprint and a minimal compute overhead, to maintain
an up-to-date estimate, to provide accuracy guarantees, and to
accomplish this by looking at a small subset of the data. He men-
tioned that the last goal had proven to be impossible, but they had
achieved all the others.

Michael went on to show the algorithm they used and, in a flow-
chart, how the algorithm was implemented in the NetApp storage
server. He further showed the accuracy of adaptive sampling and
evaluated the effect on CPU usage and IOPS. He showed that there
was no significant impact on latency at the client.

E L E C T R O N I C S U P P L E M E N T

 | OCTOBER 2013 | VOL. 38, No. 5 | ATC ’13 | WWW.usenix.org	 PAGE 7

Someone asked whether content-based filtering caused one to lose
blocks? Michael replied that that shouldn’t be the case.

Virtual Machine Performance
Summarized by Cheol-Ho Hong (chhong@os.korea.ac.kr)

DeepDive: Transparently Identifying and Managing
Performance Interference in Virtualized Environments
Dejan Novaković, Nedeljko Vasić, and Stanko Novaković, École Polytechnique
Fédérale de Lausanne (EPFL); Dejan Kostić, Institute IMDEA Networks;
Ricardo Bianchini, Rutgers University

Virtualization in cloud computing has several advantages includ-
ing the decrease of operating costs, the isolation of misbehav-
ing applications, and the migration of operating systems across
physical machines (PMs). Today’s virtualization technology tries
to allocate CPU and memory resources fairly among accommo-
dated virtual machines (VMs). In spite of this effort, performance
isolation in term of the resources cannot be achieved sufficiently
because different VMs located on the same PM may contend for
the shared cache or generate inefficient I/O request patterns on
the shared disk. Dejan Novaković called this situation perfor-
mance interference and indicated that current solutions are not
practical because they must trace the execution patterns of the co-
running VMs for a long time prior to deployment. He emphasized
the scalability issue that those solutions cannot deal with when
lots of new VMs are deployed daily within the cloud.

To solve the problem within quick online activity, Novaković et
al. used three approaches in DeepDive, a system for transparently
identifying and managing performance interference in virtual-
ized environments. First, the warning system performs early
stage examinations that enable negligible overhead. The system
gathers the required statistics of each VM from hardware perfor-
mance counters and the hypervisor. The system then constructs
a multi-dimensional space while using the statistics. Interference
can be detected when current measurements are not located in the
acceptable region in the space.

Second, the interference analyzer conducts thorough and exhaus-
tive analysis when interference is detected by the warning system.
The analyzer clones the suspected VM and runs it in a sandbox.
The cloned VM should show a similar level of performance to
the original VM in the absence of interference. Otherwise, the
analyzer can pinpoint the governing sources of interference by
utilizing the classic cycle per instruction (CPI) model. Finally,
the VM-placement manager finds the best place to migrate the
VM that caused interference by beforehand running a synthetic
benchmark that resembles the behavior of the VM. Dejan showed
that DeepDive infers interference between VMs with high accu-
racy, within 5% error on average, and makes an exact decision on
VM placement within a minute.

An attendee asked about the complexity and overhead related to the
sandboxing technique when the cloned VM interacts with its envi-
ronments and other VMs. Dejan answered that a proxy plays a role

in processing communications between the VM and environments
by intercepting the traffic to/from the VM in the sandbox. Addition-
ally, the proxy provides a cache for the results of requests in order
to decrease overhead. Someone else asked about an undesirable
situation in which a VM completely saturates some resource, and
all of the trials of the VM-placement manager fail. Dejan said that
the manager tries to find the best place for the VM by ranking the
choices, but that case may happen. He said that the manager needs
to be revised with a more sophisticated theory. Another attendee
wondered whether the profiling technique could be applied to the
heterogeneous sector of the machines. Dejan answered that the
three-level approach of DeepDive can cope with the situation by
considering the particular hardware architectures.

Efficient and Scalable Paravirtual I/O System
Nadav Har’El, Abel Gordon, and Alex Landau, IBM Research—Haifa; Muli Ben-
Yehuda, Technion IIT and Hypervisor Consulting; Avishay Traeger and Razya
Ladelsky, IBM Research—Haifa

Nadav Har’El started his talk by explaining why software-based
I/O interposition in paravirtual environments is essential. When
the host software can interpose on the guest’s I/O, it can easily
perform virtual machine (VM) live migration, security scanning,
and virtual networking; however, I/O interposition suffers perfor-
mance degradation because of the way a paravirtual I/O system
works. In a paravirtual I/O system, the guest sends I/O requests
by using shared memory in the hypervisor and notifies the hyper-
visor of the requests. The hypervisor then processes the requests
and makes a reply notification to the guest. During this long activ-
ity, if the host machine has lots of I/O-intensive VMs, the com-
petition between guests can occur in the hypervisor and cause a
scalability issue. Additionally, the guest sending and receiving I/O
events must perform several time-consuming exits that switch
back and forth between the guest and the host.

To address the two problems, Har’El introduced ELVIS, an Effi-
cient and scaLable para-Virtual I/o System. First, to improve
scalability and efficiency, ELVIS utilizes dedicated cores for I/O
processing. Each dedicated core then performs fine-grained I/O
scheduling where one thread handles requests of many VMs. In
this I/O scheduling model, I/O requests can be more fairly pro-
cessed with a short delay by inspecting the request queues and the
I/O activity. The inspection decides which queue should be pro-
cessed and how long the execution should last. Second, to mitigate
the overhead incurred by multiple exits, ELVIS removes the exist-
ing notification mechanism, developing two exitless I/O notifica-
tion methods. For I/O requests from the guest, the dedicated I/O
core polls the shared memory used for I/O requests. The guest
then does not need to notify the hypervisor. For I/O responses
from the hypervisor, polling by the guest can unfortunately cause
unnecessary waste of a significant number of CPU cycles. There-
fore, ELVIS adopts the Exit-Less Interrupts (ELI) technique
by which the dedicated core directly injects a virtual interrupt
into the guest. ELVIS can improve the performance by up to 3x

E L E C T R O N I C S U P P L E M E N T

 | OCTOBER 2013 | VOL. 38, No. 5 | ATC ’13 | WWW.usenix.org	 PAGE 8

compared to the original paravirtual I/O policy when 14 I/O inten-
sive guests are deployed.

Jean-Pascal from VMware wondered whether other solutions that
remove the receive copy might work better than ELVIS. Har’El
answered that in some particular cases ELVIS can show weak
performance; that question, however, is not ELVIS’ goal. Someone
else from VMware asked whether the dedicated core is manually
or automatically handled by the hypervisor. Har’El answered that
for now the dedication is performed in a static way where ELVIS
always dedicates one or two cores per I/O. He said that they are
looking into how they can extend or allocate the dedicated cores
based on the activity of the virtual machines.

vTurbo: Accelerating Virtual Machine I/O Processing Using
Designated Turbo-Sliced Core
Cong Xu, Sahan Gamage, Hui Lu, Ramana Kompella, and Dongyan Xu, Purdue
University

Cong Xu began his presentation by pointing out that server consol-
idation is the key factor that influences the cost of cloud platforms;
however, Xu indicated that poor I/O performance in virtualiza-
tion causes harm to the level of server consolidation. Due to the
complexity of CPU sharing, I/O performance in virtualization
is far from an acceptable level. He continued by explaining how
I/O processing is performed in modern operating systems. When
device interrupts arrive at an OS, the I/O data is synchronously
copied to kernel buffers. User applications then copy the data in
the kernel buffers to their spaces asynchronously. In a single OS,
these procedures are executed promptly by giving preference to
IRQ processing; however, in virtualization, the guest OS that has
to receive interrupts may not be scheduled, and the delay of IRQ
processing can affect I/O performance significantly.

Cong Xu et al. proposed vTurbo to decrease the IRQ processing
latency in cases similar to that of a single OS. This approach is
based on the traditional perception that smaller time slices uti-
lized by the scheduler can significantly improve the I/O perfor-
mance of VMs, whereas longer time slices satisfy CPU-bound
workloads. To solve this dilemmatic problem, the approach des-
ignates a specialized core, named a turbo core, for IRQ process-
ing of the guest OS. The core is a normal core in the system except
that the hypervisor assigns short time slices (0.1 ms) to it. The
hypervisor allocates longer time slices to other regular cores for
CPU-bound workloads. In the turbo core, the synchronous part of
IRQ processing of each VM is performed during 0.1 ms. Because
the IRQ handlers of each VM are scheduled within a short time
period, vTurbo can achieve an acceptable level of performance
without hurting CPU-bound workloads that are executed on other
regular cores. The asynchronous part of I/O processing is eventu-
ally performed when the VM running on the regular core is sched-
uled. vTurbo was implemented on the Xen hypervisor. Cong Xu
showed that vTurbo improves the TCP throughput up to 3x, UDP
throughput up to 4x, and disk write throughput up to 2x.

An attendee asked how vTurbo can improve the TCP performance
when the application does not consume the data. Xu replied that
vTurbo puts the received packets into the kernel buffer and gener-
ates ACKs for these packets. Therefore, the TCP flow between the
client and server will continue even though the application is not
running. The attendee commented that the kernel buffer might be
filled to capacity. Xu said that the situation is not a scenario the
authors fixed, but they have a plan to improve it. Someone from
University of Washington asked about the context-switching
overhead on the turbo core. Xu answered that the way of process-
ing I/O in vTurbo is not different from that of a single OS on the
physical machine. Although vTurbo has some overhead incurred
by cache misses, he said that it is negligible. Should vTurbo have
more dedicated cores when the number of VMs increases? Xu
replied that it depends on the workloads, and even for five VMs a
single dedicated core is still enough.

Packets
Summarized by Ayush Dubey (dubey@cs.cornell.edu)

Network Interface Design for Low Latency Request-
Response Protocols
Mario Flajslik and Mendel Rosenblum, Stanford University

Mario Flajslik began by referring to recent efforts, such as mem-
cached and RAMCloud, which have reduced software laten-
cies to the 1 ms range. Such trends have shifted the bottleneck to
the network interface, where latencies are in the order of tens of
microseconds. The critical path in the network interface of today
requires eight PCIe transitions for each successful transmit and
receive, out of which six are synchronous. The proposed interface
design for reducing latency in request-response protocols, called
Network Interface Quibbles (NIQ), seeks to minimize the number
of PCIe transitions, along with reducing memory allocations and
deallocations.

NIQ provides a split interface for small and large packets. For
small packets, which are defined as the minimum-sized Ethernet
packets (60 bytes), both transmit and receive steps are folded into
a single PCIe transition. In case of transmission, the entire packet
is embedded into the packet descriptor; in case of reception, the
packet is embedded in the completion entry. This mechanism also
achieves the benefit of avoiding any host memory buffers, because
the packet fits in a 64-byte wide cache line. For large packets,
the traditional approach of using DMA to transfer packet data is
employed. NIQ also makes use of a novel polling technique that
avoids memory and instead polls directly over PCIe, with replies
put in cache rather than memory in order to reduce overall noti-
fication latency. The authors found this design choice worked as
a much faster option than traditional interrupt-driven network
notifications, which have high latency overheads.

NIQ was implemented on a NetFPGA board and evaluated
using an object store application that supports a simple GET-
PUT interface. The latency evaluation measured a GET request

E L E C T R O N I C S U P P L E M E N T

 | OCTOBER 2013 | VOL. 38, No. 5 | ATC ’13 | WWW.usenix.org	 PAGE 9

latency for varying object sizes (4–1452 bytes) against an Intel
x520 network card. The same experiment was repeated for mul-
tiple NIQ configurations (interrupts vs polling, small packet
optimization on/off, etc.). NIQ with interrupts gave the high-
est latency, on the order of 20 ms, and polling reduced these
numbers by a factor of 2. The fully optimized NIQ configu-
ration gave latencies as low as 4–5 ms, which represents and
1.5–2x improvement over the Intel x520. NIQ was also demon-
strated to provide better throughput. Another set of experiments
highlighted the importance of proper management of proces-
sor power states to achieve low latency. The authors describe a
tradeoff between deep idle states (low power consumption, high
response time) and active states (high power usage, low latency).

Jean-Pascal Billaud (VMware) asked which CPU mechanisms
were being used to manipulate the cache lines. Mario replied that
they were able to map memory in the NIC to CPU memory with the
help of the CPU. Also, as the NIC kept processing more of the mem-
ory, it signaled the CPU to reuse some of the old memory. Someone
asked whether the authors tried any simulations with frames larger
than 1500 bytes. Mario replied that they did not, but their meth-
ods should probably scale up to handle jumbo packets. An attendee
asked about how much NIC functionality is actually implemented
on the NetFPGA board, and whether there was any reason that
the evaluation was done only for a simple application that sup-
ports GET-PUT operations. Mario answered that the NIC is fully
functional, and the only reason for using NetFPGA was because
the authors already had a lot of Xilinx infrastructure. The reason
for choosing a minimal GET-PUT application was twofold—they
wanted to see latency numbers representative of their use case of
memcached, and they also wanted a minimal application because
any other application would likely introduce other sources of over-
heads unrelated to NIQ. Finally, Konstantinos Menychtas (Uni-
versity of Rochester) remarked that there was no mechanism to
throttle a process, and asked whether there was any way to involve
the operating system in the scheduling process. Mario replied that
often the best way to achieve low latency was to avoid the tradi-
tional OS path, but another way might be to dedicate a few queues in
the operating system for the network interface card.

DEFINED: Deterministic Execution for Interactive
Control-Plane Debugging
Chia-Chi Lin, Virajith Jalaparti, and Matthew Caesar, University of Illinois at
Urbana-Champaign; Jacobus Van der Merwe, University of Utah

Chia-Chi Lin presented his work on interactive network control
plane via deterministic execution. He argued that, because the
control plane is responsible for routing protocols, it is immensely
complicated and a source of the majority of bugs in the networks of
today. Moreover, current solutions involve either automatic debug-
ging tools that only detect anomalies and require a lot of manual
effort for pinpointing the source of the bug, or interactive debug-
ging by deterministically replaying network logs, which does not

scale or is inaccurate. Hence, a tool that can interactively and
accurately debug production networks, as well as their debug logs,
is the need of the hour.

Existing works categorize nondeterministic network entities
as either external events, such as failure of routers or links, or
internal events, such as exchange of messages between routers.
This paper presents a library called DEFINED, which eliminates
nondeterminism by logging all external events and manipulat-
ing internal messages, and provides a deterministic timer API.
DEFINED includes two algorithms for network debugging,
which are designed for production and debugging networks. In
DEFINED-RB, each node speculatively executes events from the
log, and independently determines the correct ordering using logi-
cal timestamps. If the execution is correct, the node delivers the
packet, but otherwise it rolls back its state to a correct point and
replays the events. This is made possible by forking a new control
plane process before processing each network event, and shar-
ing memory between parent and child process for signaling. The
paper includes an optimized ordering function for eliminating
cascading rollbacks. The other mode of execution, DEFINED-LS,
facilitates interactive debugging by dividing the network execu-
tion into a series of logical steps. Each step involves an initial
transmission phase in which the messages are delivered to the
nodes, and a subsequent internal node processing phase. The eval-
uation of the system demonstrates that DEFINED-RB imposes
minimal latency overheads, whereas DEFINED-LS was respon-
sive enough that every single step command completed in less
than one second.

Jon Howell (Microsoft) asked whether, in the common case, fork-
ing a new process for every correct delivery of a packet imposed a
lot of overhead. Chia-Chi replied that the forked chains were not
very long, and physical memory was shared between processes,
which resulted in acceptable overheads.

Improving Server Application Performance via Pure TCP
ACK Receive Optimization
Michael Chan and David R. Cheriton, Stanford University

Michael Chan presented his research on a simple kernel-level
optimization in the TCP receive path for improving server appli-
cation performance. The optimization was motivated by an
example application of a video server transferring a large file via
TCP to a client, which requires a series of small control pack-
ets (ACKs) from the client side. This was further illustrated by
a similar experiment, in which the authors measured that about
99% of the packets were pure ACKs, which used up about 20% of
the cycles. The reason for these overheads was the network driver
was allocating socket and data buffers, traversing up the network
stack, and then promptly deallocating the buffers upon realizing
the packet was a pure ACK.

E L E C T R O N I C S U P P L E M E N T

 | OCTOBER 2013 | VOL. 38, No. 5 | ATC ’13 | WWW.usenix.org	 PAGE 10

The authors presented TCP-PARO (TCP Pure ACK Receive Opti-
mization), which provides a lightweight parallel TCP stack with a
fast path for the common case of pure ACKs. The NIC is required
to send the packet to the parser/demultiplexer module to parse
the header. If the packet is a pure ACK, it is delivered immedi-
ately to the ACK processing module; if not, it is then sent along
the traditional network stack. This method evades the memory
allocation and deallocation overheads for the common case. The
implementation required a change of only about 500 lines of code
to the Linux kernel. The evaluation of TCP-PARO first showed
that running the original experiment of large file transfer saved
an average of ~15% cycles. A breakdown of these savings indicates
that the majority were on the receive path of the network stack
and memory allocation and deallocation. Similar trends were mir-
rored for the number of instructions per request. In the case where
TCP traffic is not ACK dominated, TCP-PARO was still success-
ful in saving a few cycles, and more importantly, did not cause any
overheads. The authors also demonstrated that by enabling TCP-
PARO, achieving near linear scaling for single-source multicast
(TCP-SMO) is possible.

Christopher Stewart (Ohio State) asked whether any sensitiv-
ity analysis was conducted across TCP configurations by chang-
ing congestion windows, and would that affect the percentage of
ACKs and, hence, the savings. Michael replied that no sensitiv-
ity analysis had been done, and congestion windows remained at
the default TCP level. Moreover, changing congestion windows
may have unwanted negative effects on the network throughput.
Predicting whether performance would improve or worsen would
be difficult, because this would change the number of ACKs kept
in the queue. Jon Howell (Microsoft) commented that this was a
good opportunity for optimization, and asked whether there were
any other similar opportunities for building a fast path. Michael
suggested syn floods. Another attendee remarked that TCP-PARO
introduces a bump in the wire for all packets, and questioned
what the overhead would be in case of UDP or any other mode of
communication. Michael answered that even in the case of small
packets, TCP-PARO imposes no overhead and in fact saves cycles.
In the case of UDP packets, the small overhead of initial parser/
demultiplexer processing is masked by larger overheads of cache
miss. There was a final query as to when this optimization would
be included in the official Linux release, to which Michael com-
mented that he was unsure, but that the authors maintain patches.

