
O C T O B E R 2 0 1 3   v o l . 3 8 , N o . 5
E L E C T R O N I C S U P P L E M E N T

 | OCTOBER 2013 | VOL. 38, No. 5 | HotPar ’13 | WWW.usenix.org	 PAGE 1

HotPar ’13: 5th USENIX Workshop on Hot Topics
in Parallelism
San Jose, CA
June 24-25, 2013

Panel
Tools in the Real World
Summarized by Rik Farrow (rik@usenix.org)
Panelists: Niall Dalton, Calxeda; Brandon Lucia, University of Washington and
Microsoft Research; Tipp Moseley, Google; Paul Peterson, Intel Corporation

Brandon Lucia has just gotten his Ph.D. from the University of
Washington and is going next to MSR. Brandon started talking
about software development tool research. Development tools eat
data, such as programming traces and source code. Next, we need
to abstract the data (for example, convert program traces to event
traces). Abstractions helps us facilitate analysis, the final step, for
example, in suggesting a solution for a problem in performance.

Brandon provided a concrete example from his own work, a project
called Recon (recon.cs.washington.edu), for concurrency debug-
ging. Recon uses CPU hardware to monitor shared data accesses,
uses this to build context-aware graphs, and analyzes these
graphs to reconstruct the root cause of a failure.

Brandon ended by covering some trends. Statistical modeling and
analysis allows you to take big piles of data and make sense out of
them, distilling the data into a model. The next trend is the col-
lection of data in real time, such as instrumenting all of Google’s
servers to capture rare events in situ. Third, tools can also be used
for automation, not just for analysis but also for fixing problems.
The last trend Brandon talked about was closing the gap between
hardware architecture and software tool designers. Hardware
support allows you to collect data that you wouldn’t otherwise be
able to collect.

Tipp Moseley began by saying that tools solve problems. Google
collects hundreds of thousands of profiles every day, including
hardware counters (instructions per second, branch mispredic-
tion, cache misses) and software profiles (heap size, growth, lock
contention, disk fragmentation). They process this data to produce
reports on potentially anomalous results for applications, librar-
ies, and even functions. Because Google owns the entire stack,
every time you submit a change, your change includes tests so that
the change can be analyzed. Tipp said that their tools work well
for uncovering race cases, while some other tests, like load tests,
are difficult to test. Google does profile applications in production,
but scale is a huge problem. A one-in-a-million race condition will
happen all the time at Google’s scale. Static analysis works poorly
at this scale, because the systems are so large with many interact-
ing programs on distributed systems.

Tipp said that the really hard problems cross boundaries. For
example, each Web request comes in through load balancers, to
frontends, to backends, then to storage. It becomes very difficult to
figure out where a problem occurs in this chain, discovering what
causes long tail latency, for example, in performance.

Tipp wants tools that have low overhead, such as sampling that
takes less than 3%, as well as more hardware counters.

Niall Dalton said the most important tool is coffee. Niall dis-
played a chart on which there is a latency spike every 500 ms
after an OS upgrade, and asked how we would solve this. In
another example, a new version of a system comes in, and again
there are latency spikes that show up routinely, but software
tools fail to discover what’s causing the problem. Niall explained
that the problem lay in the BIOS, and that he had to hack the
BIOS to fix the problem. Both examples were single applications
on dedicated systems. Niall next described having two applica-
tions on the same box, both stressing RAM access, but tools that
trace applications wouldn’t see that. Niall said changes to disk
seek patterns, network incast, and the effects of big data applica-
tions that are not on the system under observation but affect its
performance are like a “whale swimming by.” So you have your
own problems, plus your neighbors’.

A lot of us have built ad hoc tools over the years, but the hard-
est problem is to discover where, deep in the system, something
is going on. Just think of dueling schedulers. And it might take
2,000 hours before a kernel crash occurs.

Paul Peterson said that when you are in the software tools business,
your software will work better on your hardware than on other
hardware. Paul added that he was speaking for himself, not Intel.
Although people are most familiar with Intel as a hardware com-
pany, Intel has also been a software company that has been working
in the world of parallelism since multicore CPUs became common.
Intel works with BIOS, device drivers, operating systems for opti-
mizing performance, and with 14,000 engineers worldwide.

Paul works on the Parallel Studio suite of products, focusing on
the node level, but also on the cluster level, with tracing and analy-
sis tools at each level. For example, Advisor XE helps people design
and build parallel programs. They also have Composer, Intel MPI,
VTune amplifier, and Inspector, which looks for memory leaks.
Intel produces enabling software that helps developers.

The chair started off by saying that coffee is his favorite tool,
too. He then asked Tipp whether some of the concerns he has are
Google-only problems, that is, only large data companies have
these problems. Tipp said that in 10 years, everyone is going to
have to deal with them, even on smartphones. Another panelist
said that cloud computing is already producing environments

Conference Reports

E L E C T R O N I C S U P P L E M E N T

 | OCTOBER 2013 | VOL. 38, No. 5 | HotPar ’13 | WWW.usenix.org	 PAGE 2

that look like a lot of problems within Google. Paul ranked his top
three list of customer complaints: tools shouldn’t break (especially
debugging tools—broken debuggers really piss people off); speed
matters (for anything other than hardware tools) and overhead
should be less than 10%; and finally, the tool doesn’t produce
enough data. People want tools to be faster and richer. Niall said
that these problems already exist, say, if they want traces on a
group of systems instead of one.

Next, the chair asked Tipp what they did to solve race detection.
Tipp said he didn’t solve this himself, but that much smarter
people built tools built on Valgrind that just seem to work. A lot
of the work is based on fine-tuning edge cases. Google has good
test coverage, but doesn’t have good tools for doing race detection
on code working at production scale. Brandon said that he didn’t
think that race detection problems are solved, that the overhead is
too high (10x). Tipp said that he wanted that side, the production
side, solved as well.

An audience member asked Tipp about publishing statistics and
info that would help academics work on realistic projects. Tipp
said that Google often does publish measurement papers. Being
in academia and working on these problems is tough, but Google
does try to. Google has both student and professor internships
that can help provide real-world experience with the unexpected
things that will happen. Another panelist pointed out that work-
ing within a cloud is similar to not having access to traces from
within Google, because cloud providers hide most infrastructure
details. So people should try and build tools that can work in these
environments and uncover performance issues, like long tails.

Paul pointed out that Intel funds research groups. He said that
Kim Hazelwood (Google) is an example of that. While at the Uni-
versity of Virginia, she worked on binary instrumentation (PIN),
which Intel funded. Intel is looking for proposals, especially if
there’s a hardware hook to it. If you have a hardware idea, you’ve
chosen the highest bar to cross, but the one with the highest pay-
off. If you want to measure something constantly with high per-
formance, you want to use hardware.

Brandon said that the cloud was a useful tool for scaling out;
although it’s not the same as Google-scale, it is useful. Niall sug-
gested building a microserver, using low-powered systems, and
fake up a half-rack that can provide a nasty set of problems. Some-
one asked for a good set of software to run. Niall said there is no
good single answer, but you should start with Linux, then throw in
noise generators, latency-sensitive stuff, bandwidth hogs, and just
abuse your machine because that’s what users in the real world
are going to do.

Another person said he had presented a tool at SOSP for debug-
ging race conditions, but ran into problems that occurred in the
libraries layers, not in the software under test. Paul replied that if
glibc is using a particular lock, you must be able to communicate

that to the tool running the test. Paul is now looking at problems
that comes from garbage collection, because data is getting moved
around, so many more people may start having similar problems.
The questioner then moved away from the mike but kept talking,
and the rest of his side of the discussion was lost.

Keynote Address
Parallelism in the Cloud
Eric Brewer, University of California, Berkeley, and Google
Summarized by Rik Farrow (rik@usenix.org)
Eric Brewer began by saying we have had giant-scale services
for 17 years now, using a three-tiered architecture: with highly
available, load balanced, frontend servers; stateless workers that
can easily be restarted; and durable storage that is replicated and
highly available. Latency of Web services matters a lot, with vari-
ous claims for lost revenue based on customers who are delayed
by additional hundreds of milliseconds. Eric displayed Jeff Dean’s
performance slide, showing the three tiers again, but with the
second tier largely replaced with cache servers designed to reduce
latency, but often hurting tail latency.

Eric said that caching, and prediction in general, can hurt tail
latency. Other things that can hurt tail latency include parallel-
ism, where the response is limited by the slowest reply; virtu-
alization, because of both scheduling issues and hiding of real
resources; and logs, where write can be fast but occasional com-
pactions cause blips in latency.

Someone asked whether scheduling or hiding hardware was the
worst aspect of using virtualization. Eric answered that virtual-
ization hides the underlying hardware, but scheduling is also more
difficult. He suggested that a good test to see if you are on a VM is
to look for variance in the tail latency. If there is a lot of variance,
you are on a VM.

Someone else asked why not run everything in a Blue Gene, and
Eric said he would answer the essence of that question soon.
Another person suggested just chopping off stragglers, and Eric
replied that in many cases, such as MapReduce, you need all of
your results.

Eric presented a strawman: that one solution to the tail latency
problem would be to allocate dedicated resources for live services.
That means no other jobs on those servers, so there are no sched-
uling issues and no page faults. The problem with this approach is
that you need to dedicate resources based on your peaks, and those
peaks can be 10 times as high as your average usage.

The solution has been to build huge clusters to handle the peaks,
then to allocate spare capacity to batch computing. This has
lead to MapReduce, Hadoop, and maybe even big data in general.
Eric used Amazon pricing for spot instances as an example: on-
demand instances cost 10 times as much as spot instances.

E L E C T R O N I C S U P P L E M E N T

 | OCTOBER 2013 | VOL. 38, No. 5 | HotPar ’13 | WWW.usenix.org	 PAGE 3

Eric then introduced Akaros, a project of the AMP Lab at UC
Berkeley (http://akaros.cs.berkely.edu), a research OS made for the
cloud. Akaros is a single-node OS, with scheduling decisions made
by a higher layer, designed to run a mix of low-latency and batch
jobs, with transparent resources. With Akaros, you provision your
latency-sensitive services for peak needs, then allow resources to
be allocated to all jobs’ current needs. When provisioned services
require resources, batch jobs lose their allocations, with a revoca-
tion time of 2–3 microseconds.

Someone asked about CPU caches. Eric replied that caches can be
cold, but it is important that pages be present and not have to fault.

Akaros is designed for manycore CPUs, with as many as 100 cores
per server, but it also will work for SMP. There is no user interface,
so limited interrupts, careful memory partitioning, no short
quanta, and all system calls are asynchronous—events are queued
on syscall completion. Manycores are allocated to a single process,
with a single address space, and no blocking, similar to a many-
core version of Capriccio, but with context switches that are four
times faster than Linux.

Eric then examined the use of VMs, beginning by saying that our
need for VMs will decline over time because VMs reduce pre-
dictability and efficiency. In some cases, we will still need VMs
for legacy code, server consolidation, and untrusted code. They
are working on providing a VM on top of a manycore process
(MCP) in Akaros.

Akaros exists now, with a 64-bit x86_64 version and a SPARC V8
version. Each application does its own local scheduling, and asyn-
chronous system calls work. The network stack is partially done,
and a Go port is in progress, as is a KVM-like VM solution.

Rik Farrow asked about the API, and Eric replied that it is
POSIX. That means the Go port should be easy, but a Java port
will be more difficult, as it relies on special system calls. Greg
Bronevetsky (Lawrence Livermore National Lab) asked about
sharing cores. Eric answered that predictable provisioning is
the key. Jean-Paul else asked if user scheduling is making all
the decisions, can that application get a quantum. Eric answered
that the application can make a system call and set a timer,
which results in an event.

Russell Williams (Adobe) wondered whether there are serious
services that cannot currently be done on EC2. Eric replied that
the size of many apps that are running today in large DCs are
hundreds of times the size of apps running on cloud servers.
Once you reach some number of servers, you will need more pro-
visioning guarantees. Another person pointed out that cluster
schedulers are already too complicated today, and that Akaros is
moving into this territory. Eric replied that provisioning could
make cluster scheduling simpler because you will know what
resources you have.

Emery Berger pointed out that this has the flavor of hard, real-
time systems, and wondered whether you will get this 100% of
the time. Eric replied that that’s the goal. Emery continued that
what you really care about is the 99%: multiplexing, spreading out
bursts across the system, performance anomalies, and embrac-
ing randomness. Eric said that they know that fan-out makes tail
latencies worse. What’s more likely are reactive techniques so that
you can change the behavior of the system during a tail latency
event. Greg Bronevetsky asked about scheduling for power usage.
Eric replied that you will know in advance how much power you
will be using, and that most loads are bimodal: either on or off.

Bugs
Summarized by Nuno Machado (nuno.machado@ist.utl.pt)

Characterizing Real World Bugs Causing Sequential
Consistency Violations
Mohammad Majharul Islam and Abdullah Muzahid, University of Texas at
San Antonio

Mohammad Majharul Islam presented a comprehensive study
of 20 Sequential Consistency (SC) violation bugs, randomly col-
lected from several well-known open source programs and librar-
ies (e.g., Mozilla, Apache, MySQL, Java, etc.). Mohammad argued
that these types of bugs are among the hardest ones to solve,
mainly because, besides being counterintuitive, they result from
a particular reordering of memory accesses and may only appear
depending on the processor’s memory model.

Mohammad reported that, by analyzing the reports of the 20
chosen bugs, they found double-checked locks to be the most com-
mon bug pattern (45%), followed by incorrect fences (30%), and
improper flag synchronizations (25%). Additionally, the study has
shown that these SC violation bugs can be solved by correcting
fences (45%), using both atomic variables (30%) and locks (20%),
and restructuring the code (5%). Mohammad also noticed the rel-
evance of these findings by saying that around 50% of these SC
bugs required from 90 days up to several years to get fixed, despite
their having been caused by violations involving only two threads.

Mohammad concluded the presentation by saying that this study
aims to be a substratum for further research on the topic, since the
bugs collected in this work can serve as standard benchmark to
evaluate future solutions intended to address SC violations.

But How Do We Really Debug Transactional Memory
Programs?
Justin E. Gottschlich, Rob Knauerhase, and Gilles Pokam, Intel Labs

Justin Gottschlich centered his presentation around the question:
“How does one debug a Transactional Memory (TM) program that
uses real hardware?” He began by showing that traditional ad hoc
debugging techniques (e.g., breakpoints, single-stepping, printf,
etc.) are insufficient to cope with TMs. This is due not only to the
inherent nondeterminism of multithreaded applications, but also
the great complexity arising from both speculative executions

E L E C T R O N I C S U P P L E M E N T

 | OCTOBER 2013 | VOL. 38, No. 5 | HotPar ’13 | WWW.usenix.org	 PAGE 4

and conflict management when one has software TM (STM) and
hardware TM (HTM) systems.

Justin claimed that a record-and-replay (RnR) approach can be
successfully employed to debug multithreaded programs, as it
records the relevant nondeterministic events during runtime to,
later, allow the execution to be replayed deterministically. Here,
Justin highlighted their previous chunk-based RnR system, which
relies on hardware support to trace the order of thread chunks
(i.e., blocks of contiguous instructions executed prior to shared
memory conflicts or system events); however, when it comes to
HTMs, some additional issues have to be addressed. In particular,
Justin pointed out the need to support tracking hardware trans-
actional events (e.g., begin, commit, and abort); instrument STM
accesses in order to record reads and writes for software trans-
actions; and modify the replayer to provide precise information
about conflicts and HTM replay emulation.

Justin finished by presenting some use cases that show how their
modified RnR system can be used effectively to debug programs
in which both types of transactions execute concurrently. After-
ward, he was asked whether System Z-supporting hardware
transactions that are guaranteed to make forward progress vio-
lates his claim that all the HTMs are used in their study. Haswell,
Blue Gene/Q, and System Z are all best-effort. Justin replied that,
despite System Z-supporting constrained transactions, they are
limited in their size, which, in the authors’ opinion, makes it too
nongeneralizable a transaction type to ensure forward progress.
Therefore, they still consider System Z a best-effort HTM.

Another question regarded whether the claim that all real HTMs
do not have escape actions is violated because System Z supports
nontransactional stores. Justin argued that no real HTM system
supports full escape actions and, to the best of the their knowl-
edge, System Z, while supporting nontransactional stores, does
not support nontransactional loads; for that reason, it does not
provide full escape actions.

Property-Driven Cooperative Logging for Concurrency
Bugs Replication
Nuno Machado, Paolo Romano, and Luís Rodrigues, INESC-ID, Instituto
Superior Técnico, Universidade Técnica de Lisboa

Nuno Machado presented a novel approach for defining instru-
mentation points for record-and-replay systems based on coop-
erative partial logging. This approach works by leveraging on
multiple partial traces containing the order of access to shared
program elements (SPEs), and using statistical techniques to
determine which of the collected partial logs should be merged
and attempted to replay the bug.

Nuno claimed that their previous work on this topic, which ran-
domly defines subsets of SPEs to be traced, suffers from a num-
ber of shortcomings: it may not provide log overlapping, may not
ensure fair load distribution, and disregards access correlations

existing among SPEs. Nuno described how their new proposed
technique addresses these issues. First, the technique uses a
“quorum” strategy to ensure that any two SPE subsets have a
non-empty intersection. Second, it performs initial training runs
to measure the frequency of occurrence of each shared access,
so partitions can be defined taking into account load balancing.
Third, it identifies correlations between variables by comput-
ing a metric of how often they are accessed nearby within each
method. Finally, Nuno mentioned that they use an Integer Linear
Programming model to optimize the partition of the original set
of SPEs into subsets that provide load balancing, correlations,
and coverage between themselves.

Nuno finished his presentation by showing some preliminary
experimental results that demonstrate initial evidence of the ben-
efits of their new approach. In particular, for the programs tested,
the approach leads to fewer attempts when trying to reproduce the
buggy execution in 55% of the cases and incurs smaller load varia-
tions between partial logs.

