®
® ®
THE MAGAZINE OF USENIX & SAGE
’ ‘ August 2001 e Volume 26 ¢ Number 5

Special Focus
Issue:Clustering
inside: Guest Editor: Joseph L. Kaiser

CLUSTERS

HOME CLUSTERS
by Andreas Boklund

USENIX & SAGE

The Advanced Computing Systems Association &
The System Administrators Guild




74

by Andreas Boklund
Andreas Boklund is a
lecturer at the .
Department of Infor- &
matics andMathe-
matics at the Uni-
versity of Trollhattan- &
Uddevalla,Sweden.
He has also con-
structed, and remod-
elled a cluster for
thermal spray and
welding simulation research for the Univer-
sity's Department of Technology.

andreas@boklund.nu

home clusters

This article is a description of the cluster that I have assembled in my home and why I
did it. One of the most interesting questions is: Why would anyone want to have a clus-
ter of computers in their home?

I have been interested in computers since my parents bought their first IBM PS/2 and I
started to learn how to write simple BASIC programs. I have been programming ever
since. Nowadays, I do most of my development work in C, although I occasionally write
small hacks in other languages.

Back in 1997 I read an article about the Beowulf project, where NASA researchers man-
aged to create a cluster of workstations that was so powerful that it could compete with
the “supercomputers” of that time, especially in terms of power to price. The idea of
parallel computing and clusters of computers is not new — it had been practiced for
decades. The thing that made Beowulf clusters interesting was that they used standard
PC parts that could be bought from any computer vendor. Ordinary hardware and the
(then) new operating system Linux were used. For me, a computer science student, it
was a dream come true. Now I could finally harness the power of a “supercomputer” in
my own home. The only question was what would I use such a beast for?

The most tedious tasks that I know are to sit and wait for code to compile or for a movie
to be compressed. Compressing a movie is not really a problem; it takes a long time but
it can always be run overnight. Compiling is another story; when I compile something, I
do not want to contemplate my code for a few minutes or even for a few seconds before
being able to see if it works; maybe I am just an impatient person. The basic idea behind
my home cluster was to be able to shorten the execution times for compiling and ren-
dering, although I would not mind if the execution times of other programs could be
speeded up as well.

Creating a powerful cluster is not an unworkable task if you are skilled in UNIX/Linux
administration, understand the basics of parallel computing, and have proper funding.
A harder task is to create a cluster with the limited resources of your home. I basically
have three limiting factors: my budget, the space that the computers require, and my
girlfriend (time). Based on the given factors, I constructed a cluster.

My personal cluster consists of three computers: my workstation, Phoenix, which is
equipped with two Celeron 500MHz processors and 128MB of RAM; my girlfriend’s
workstation, Sunrise, which has a Celeron 466MHz processor and 96MB RAM; and our
file server and Internet router, Sabrina, which has a Pentium II 350MHz processor and
128 MB RAM. Phoenix and Sunrise have two Fast Ethernet cards each and Sabrina has
three.

The network topology used is both simple and cheap, at least as long as it is used in a
small network. All computers are connected through a dedicated network interface card
to the other (two) computers by a crossover of twisted pair wire. Theoretically this
means that all computers can send and receive information to the other two at the same
time, at the maximum speed of a Fast Ethernet network card. As an extra bonus, the
latencies on the network are lower than in a switched or hubbed network. The reason
for this is that the data does not have to be handled by a switch or a hub, it goes straight
from network card to network card. The extra, third, network card in Sabrina is con-
nected to the Internet through which Sabrina routes all incoming and outgoing traffic.
Sabrina also masquerades the IP addresses of Phoenix and Sunrise, which are from one
of the free IP ranges.

The operating systems used on all three computers are various RedHat-based Linux dis-
tributions all running a Linux 2.2.x series kernel. The kernels have been patched with

Vol. 26, No. 5 ;login:



the MOSIX kernel enhancements. The MOSIX project was founded in the early 1980s at
a university in Jerusalem. MOSIX extends the functionality to the kernel and allows it to
move (migrate) already running processes to other computers that are running a
MOSIX-patched Linux kernel. MOSIX is a transparent and universal tool for moving
running processes to other computers. The only items the user has to specify are the IP
addresses of the computers that the operating system is allowed to move processes to.
MOSIX does not know what the process is doing and it does not care; it uses a set of
algorithms to decide if a process would benefit from being migrated or not. If a process
is doing a lot of I/O it will not be moved since all I/O operations need to be performed
on the computer that the processes were initiated on, but if the process is doing a matrix
multiplication it might benefit a lot from being moved.

I use an extension to MOSIX called MPMake. It is a patch for GNUmake that allows
several makes to be spawned over a MOSIX cluster. To make use of MPMake you have
to place your source code on a shared volume and mount it on the computers that you
want to compile it on. When you compile your code, you use the MOSIX-patched ver-
sion of GNUmake and specify the number of processes that you want it to use. So how
is the performance of MPMake compared to an ordinary make? As always when it
comes to computer architectures, it depends on your application and the task that it
tries to perform. The performance gain will be different depending on which program
you are compiling. I did some measurements a while ago with MPMake on a MOSIX
cluster of Intel Pentium III 500MHz computers, compiling a Linux 1.2.14 kernel. When
using two processors we got a performance gain of 43% and with eight processors the
performance gain was 79%; although this system had been hand-tuned to lower compi-
lation time, that’s not too bad! MOSIX and MPMake can be downloaded from their
home page, www.MOSIX.org. You will also need the corresponding Linux kernel source.

MOSIX is a good tool for many issues, but it has a high demand for bandwidth and does
all its I/O through the node that initiated the process. Therefore, I also installed the mes-
sage-passing libraries MPICH and PVM. They were developed at Argonne and Oak
Ridge National Laboratories, respectively. MPICH is an implementation of the MPI
standard, which is used on a wide range of different architectures, from two-way SMP
machines to large clusters and Cray supercomputers. The message-passing libraries do
not work in the same way as MOSIX. When you use MPI or PVM, you have to write the
program against one of the libraries. This approach is more time-consuming, and you
need the source code; on the other hand, the application will execute faster. Most scien-
tific applications that can run on clusters make use of either MPI or PVM. Message-
passing libraries are faster because they start processes on other computer nodes and the
processes run there, communicating with the other processes. Nowadays, I don’t run
many programs at home that use either MPICH or PVM. When I occasionally compress
a movie sequence, I use MPICH and the Berkeley MPEG compressor.

So what does this cluster do for me? It lowers the time that is used for compiling by
approximately one-third. It also speeds up the execution of all applications that can use
more than two CPUs at a time, as long as they do not use a shared memory segment
since my setup does not allow shared memory between computers. It also lowers the
time that it takes to compress movies.

What did it cost me? I already had all the hardware except for the three extra network
cards, and now I do not need a hub or a switch. It did not take me long to set it up cor-
rectly, although it took me a while to learn how to do it. But as long as you are learning,
the time is well spent.

MOSIX is a transparent and
universal tool for moving
running processes to other

computers

August 2001 ;login: HOME CLUSTERS

CLUSTERS

75



