DAVID N. BLANK-EDELMAN

practical Perl tools:

This column is
password-protected.

David N. Blank-Edelman is the Director of Technol-
ogy at the Northeastern University College of Com-
puter and Information Science and the author of
the O’Reilly book Perl for System Administration. He
has spent the past 24+ years as a system/network
administrator in large multi-platform environ-
ments, including Brandeis University, Cambridge
Technology Group, and the MIT Media Laboratory.
He was the program chair of the LISA ‘o5 conference
and one of the LISA 06 Invited Talks co-chairs.

dnb@ccs.neu.edu

PASSWORDS SUCK. | SUPPOSE | COULD
say that another way, beat around the
bush, use a word that doesn’t evoke an act
between consenting adults, but let’s face
it. Passwords suck. | know it, you know it,
everyone in our field knows it. And un-
fortunately, as much as I'd like to tell you
about a Perl module that solves the problem
(Data::MakePasswordsNotSuck, | suppose),
there’s no such module that I'm aware of.
At best | can show you a number of differ-
ent Perl modules that make dealing with
passwords just a hair better. And that’s
just what we're going to do in this column.
The actual Perl code in this column will be
super-simple, because we're going to try
and use the tools that make these improve-
ments as easy as possible.

Start with Better Passwords

46

Many people would agree (four out of five dentists
who chew gum, to be precise) that passwords aren't
the problem per se; rather, the beef is with bad
passwords. There are a number of psychological,
sociological, and contextual factors for why people
pick and keep bad passwords. One important fac-
tor is the “blank-page” problem. If someone says to
you, “Quick, pick something you’ll need to be able
to remember, but don’t make it something any-
one else can guess,” that's a lot of pressure. Hav-
ing posed this question to a new crop of students
every year for the last 13 or so years I can assure
you that lots of people fail this test. Even the ones
with reasonably high SAT scores. They will stare
doe-eyed into space for a moment, stick the tip of
their tongue out the corner of their mouth, ponder,
and then come up with their middle name, or even
“password.” I've said this in print before, but I'll
say it again: I'm fairly certain that Oog’s password
to get into his cave was probably “Oog.” It wasn't
until a later era that he changed it to 00g.

You can try to prevent some of this by screening
for bad passwords (and we’ll see how to do that

in our next section), but having someone iterate
through all of the bad passwords they know until
they find one the system will accept isn't a particu-
larly good password-picking algorithm. It might be
better to try to provide something at the get-go that
is reasonably “secure.”

;LOGIN: VOL. 33, NO. 6

(As an aside, I used snarky quotes here because there’s so much more to a secure password
implementation beyond just the contents of the passwords. There are tons of important things
one has to watch, such as how the password is stored, used, etc. The two words “rainbow ta-
bles” are enough to demolish lots of “secure” password schemes.)

There are several Perl modules designed to generate more secure passwords. Some of them
create passwords that are truly random. Some of them produce passwords that are close to
random, but have the nice property of being pronounceable in someone’s native language (and
hence perhaps more memorizable). Random passwords are in theory more secure, but there
have been some good debates over the years in the security community about whether provid-
ing users with something they have to write down on a sticky note is better than something
less random that they are more likely to be able to keep in their head.

All of the Perl modules in this space are very easy to use. You ask for a password, the module
hands you one. You may have to or want to provide some parameters describing the kind of
password you want (or perhaps provide some hints on what “pronounceable” entails in your
language), but that’s all the thinking you need to do to use them. Let’s see a couple of exam-
ples. The first prints a random password of 10 characters in length:

use Data::SimplePassword;
my $dsp = Data::SimplePassword->new();

10 char long random password, we could specify which
characters to use if we cared via the chars() method
print $dsp->make_password(10),"\n";

When [have to generate random passwords I tend to use Crypt::GeneratePassword, be-

cause it generates pronounceable passwords that are slightly more secure than those that rely
strictly on the NIST standard (FIPS-181) for creating them. Plus it provides the functionality
for screening the generated password for naughty words of your choice. One of the hazards of
creating pronounceable passwords is that it is possible to generate passwords with character
sequences (such as “passwords suck”) that might offend those with delicate sensibilities. To
use it, we call either the word() function for pronounceable passwords or the chars() func-
tion for purely random passwords. Both functions take two required arguments: the minimum
and the maximum length of the password to return. For example, the following code:

use Crypt::GeneratePassword;

for (1..5) {
print Crypt::GeneratePassword::word(8, 8),"\n";
}

would print something like this:

eictumpu
orastbot
rnbuiltp
meagnell
vilieway

I'll stop here on this subject, but I should point out that trying to improve usability issues
around authentication is a nontrivial problem. For a good treatise that looks at questions like
this see Simson Garfinkel’s PhD thesis at http://www.simson.net/thesis/.

Screening Out Bad Passwords

;LOGIN: DECEMBER 2008

We don't always have the luxury of being the sole source for the passwords our users will
use. It’s very likely that they will want the opportunity to change it for themselves (although
often you can suggest more secure temporary passwords as part of an “I forgot my password”
request). In those cases and in the cases where generating more secure passwords is not fea-
sible, it becomes even more important to have a mechanism for screening out bad passwords.

PRACTICAL PERL TOOLS: THIS COLUMN IS PASSWORD-PROTECTED. a7

48

The real trick to this is deciding what constitutes a “bad” password in your environment. Is a
password bad if it contains a dictionary word in any common language? (Probably.) If it contains
some permutation of the user’s personal information such as name or login name? (Yes.) If it is
insufficiently random? (Maybe.) If it has ever been used before by this user? (That depends.) If

it is palindromic? (Probably.) The Perl password-checking modules available can check for these
things (or code can easily be added to do so).

As an aside to give you one measure of comparison, passfilt.dll, the optional “strong password
enforcement” library Microsoft ships enforces (to quote their doc) the following rules:

= Passwords may not contain your user name or any part of your full name.

= Passwords must be at least six characters long.

= Passwords must contain elements from three of the four following types of characters: English
uppercase letters, English lowercase letters, Westernized Arabic numerals, Non-alphanumeric
characters, Unicode characters

That last restriction seems to give people (especially those for whom English is not a first lan-
guage) a considerable amount of trouble. Youw'll want to think carefully about your policy when
you implement password checking.

There are several Perl modules that cover the password-checking territory. From the list, I'd
probably recommend choosing between Data::Password::Check and Crypt::Cracklib. The first is
a pure-Perl module that comes with a set of basic tests but allows the programmer to add more at
will. The second module I mentioned is my first choice, but it requires the ability to compile and
link an external library. Crypt::Cracklib links against Alec Muffett’s excellent Cracklib library
(the current distribution site of which is http://sourceforge.net/projects/cracklib). According to
the README:

CrackLib makes literally hundreds of tests to determine whether you've chosen a bad password.

= It tries to generate words from your username and gecos entry and match them against what
you've chosen.

= It checks for simplistic patterns.

= It then tries to reverse-engineer your password into a dictionary word and searches for it in
your dictionary.

If you add the boatload of additional dictionaries and wordlists available on the Net and for pur-
chase (e.g., the CD from www.openwall.com for Jack the Ripper) you get a very effective pass-
word-checking tool. I've had the pleasure over the years of watching new Indian students in our
college be amazed and somewhat frustrated that our system won't let them use Hindi or Urdu
words or names in their password.

A demonstration of how to use Crypt::Cracklib is almost embarrassingly simple:
use Crypt::Cracklib;
my $result = fascist_check($inputpasswd,’/path/to/your/bighonkin_dictionary’);

if ($result eq "ok”){
print “Password provided is accepted.\n”;
}
else {
print “Can't accept password because it $result\n”;

}

All of the magic takes place in the fascist_check call. It will return “ok” if Cracklib deems the
password to be ok; otherwise it returns Cracklib’s reason for rejecting it (e.g., “contains a diction-
ary word”).

;LOGIN: VOL. 33, NO. 6

Better Password Input

This is a fairly simple notion, so I'll make our discussion of it really quick. If you are going

to be handling the actual input of passwords yourself at a command line (versus having a
browser take it in for you), you should do what you can to make the experience safe and
pleasant. Not showing the actual password as you type is a notion almost as old as the first
password prompt, but people have also come to expect some feedback as they type. Just last
week we had a new student come in asking for help because of a problem logging into our So-
laris machines in our student lab. She was sure her password wasn't being accepted, because
the XDM login session did not show anything at all as she typed on the password line. That’s
the first time we've seen this issue, but I'm willing to bet it isn’t the last. If you choose the
right Perl module you can easily head off this sort of naive issue at the password pass.

Again, there are a number of Perl modules we could use. The two special-purpose modules I'd
recommend are [O::Prompt and Term::ReadPassword{::Win32}. The former is Damian Con-
way’s module. On the plus side, it does a good job of providing most everything you would
need for a general-purpose prompting module (including things such as per-keystroke feed-
back). On the negative side, I0::Prompt provides most everything you would need, but only
under a UNIX-ish system. It doesn’t work so well on a Windows system, for example. It also
could use better documentation. Here’s an example of how you would request a password
using it:

use 10::Prompt;
my $passwd = prompt “Password: “, -echo => "*';

Term:ReadPassword and its Windows equivalent, Term::ReadPassword::Win32, have fewer
features (since it isn't meant to be a general-purpose prompting module) but do have the
multi-platform reach if that's important to you. Using them is equally easy:

use Term::ReadPassword;

turn on the * for each char typed feature(?)
$Term::ReadPassword::USE_STARS = 1;
my $passwd = read_password('Password: *);

Before we head to the last section, I do feel compelled to mention that the Ul questions
around prompting for a password aren’t all straightforward, no matter how windy it got in
here because of all of the hand-waving I did in the introductory paragraph. If your code prints
an asterisk for every character typed, this gives anyone watching the process a quick idea of
the length of the entered password. If you think that’s an unacceptable disclosure, you may
want to hack the module code to be a bit more circumspect (e.g., display twice as many or a
random number of asterisks per keystroke).

One Step in a Better Direction

;LOGIN: DECEMBER 2008

I didn’t want to end a column about passwords that started with gloom and doom without
suggesting that there might be other alternatives available or at least on the horizon. If we ig-
nore the work people are doing on more interesting password-like tests (visual passwords con-
structed with faces or favorite pictures, scratch-and-sniff passwords, etc.) there are still some
current-day possibilities for improving the situation. The one I want to mention is Steve Gib-
son’s take on one-time password systems. This is a scheme where you somehow arrange for
your system to accept a different password for a user each time that person logs in. As soon

as you use a password, it is “used up” and hence not useful to someone trying break into your
account. Gibson came up with something he calls (with the usual humility) “Perfect Paper
Passwords.” Documented at http:/www.grc.com/ppp, it is a pretty spiffy (read: usable) system,
which he describes like this: “GRC’s ‘Perfect Paper Passwords’ (PPP) system is a straightfor-
ward, simple and secure implementation of a paper-based One Time Password (OTP) system.”
When used in conjunction with an account name and password, the individual “passcodes”

PRACTICAL PERL TOOLS: THIS COLUMN IS PASSWORD-PROTECTED. 49

50

contained on PPP’s “passcards” serve as the second factor (“something you have”) of a secure
multi-factor authentication system.

The system allows you to generate little paper passcards for your users to print out that contain
a sequence of one-time codes. It’s a nice way to provide this sort of security on the cheap. It’s not
actually perfect in all situations (see the paper by A. Wiesmaier et al. [1] as a start for more de-
tails) but it may give you a little more peace of mind.

The Perl tie-in to PPP is the module Crypt::PerfectPaperPasswords, which can generate passcodes
and passcards for the system. I haven't seen a Perl-only implementation of the server that accepts
these passcodes, but having a generator you can use from your Perl programs (e.g., a Web app)
could be useful.

And with that refrigerator lightbulb ray of hope, we have to bring this column to an end. Take
care, and I'll see you next time.

REFERENCE

[1] A. Wiesmaier, M. Fischer, M. Lippert, and J. Buchmann, “Outflanking and Securely Using
the PIN/TAN-System,” Proceedings of the 2005 International Conference on Security and Management
(SAM °05), June 2005.

;LOGIN: VOL. 33, NO. 6

