
32	 ; LO G I N : VO L . 33, N O. 3

M i c h a e l D e m m e r , B o w e i D u , a n d
Er i c B r e w e r

TierStore: a distributed
file system for
challenged networks
in developing regions
Michael Demmer is a PhD candidate at UC Berkeley.
His research is on delay- and disruption-tolerant
networking, distributed systems for unusual or
challenged network environments, and application
of technology in developing regions. He received
his BS from Brown University.

demmer@cs.berkeley.edu

Bowei Du is a PhD candidate at UC Berkeley.
 His research is on distributed storage in delay-
tolerant networks. He received his BS from
Cornell University.

bowei@cs.berkeley.edu

Eric Brewer is a Professor of Computer Science at
UC Berkeley who focuses on all aspects of Internet-
based systems, including technology, strategy, and
government. He leads the TIER research group on
technology for developing regions, with projects in
India, Ghana, and Uganda, and including commu-
nications, health, education, and e-government. He
received an MS and PhD in EECS from the Massa-
chusetts Institute of Technology and a BS in EECS
from UC Berkeley and was recently elected to the
National Academy of Engineering for leading the
development of scalable servers.

brewer@cs.berkeley.edu

T e c h n o l o g y h a s a g r e at r o l e t o
play in developing regions, but we need ap-
proaches that can tolerate limited network-
ing and power infrastructure. One promis-
ing model is to build applications around a
file system interface that provides eventual
consistency in these “challenged” network
environments. Our resulting system, Tier-
Store, hides much of the complexity of in-
termittency and simplifies the deployment
of important applications such as email,
Web caching, and wiki-based collaboration.

In many developing region settings throughout the
world, there is an unmet need for robust informa-
tion distribution applications. The limited com-
munications infrastructure that exists in these
environments means that simple information shar-
ing systems can have a large impact. In fact, several
projects have shown tangible results in the areas
of health care, education, commerce, and produc-
tivity. As one example, data collection related to
causes of child deaths in Tanzania led to a reallo-
cation of resources and a 40% reduction in child
mortality (from 16% to 9%) [1, 3].

However, the limited infrastructure also makes ap-
plication deployment challenging. Wired networks
are often either poor in quality or virtually nonex-
istent, cellular networks may be growing rapidly
but remain a largely urban and costly phenom-
enon, and satellite networks provide good cover-
age but are prohibitively expensive. Many of these
networking approaches further suffer from periodic
outages owing to unreliable grid power. Thus any
software system targeted toward these environ-
ments must deal with intermittent connectivity and
potentially long-lasting network partitions and fail-
ures.

In response to the combination of application
needs and the complexity of programming inter-
mittency-tolerant applications, we have developed a
distributed storage system called TierStore [4]. Tier-
Store is a new approach to designing and deploying
information distribution applications which aims to
overcome the connectivity challenges in developing
countries, while at the same time making it easy to
port existing applications and develop new ones.

This work is part of the Technology and Infrastruc-
ture for Emerging Regions (TIER) [7] research ef-
fort at UC Berkeley. The aim of the TIER project
is to address challenges in bringing the information

technology revolution to the masses of the developing regions of the world.
Unfortunately, most projects that aim to do this today rely on technology
that was developed for the affluent world, yet these imported technologies
fail to address key challenges in cost, deployment, power consumption, and
support for semi- and illiterate users. Instead, our approach is to explore the
development of novel solutions to technical challenges that explicitly take
the needs of developing countries into account.

Background

In developing TierStore, we were inspired by several existing projects that
deal with poor and intermittent connectivity. For example, the Wizzy Digi-
tal Courier system [9] distributes educational content among schools in
South Africa by delaying dialup access until night time, when rates are
cheaper. As another example, DakNet [6] provides email and Web connec-
tivity by copying data to a USB drive or hard disk and then physically carry-
ing the drive among locations that have no traditional network connectivity,
sometimes via motorcycles. Finally, the TEK [8] disconnected Web search
engine allows users to search the Web using SMTP as the underlying proto-
col, which can buffer communication across network outages.

These examples help underscore the value of information distribution ap-
plications in developing regions, but they all essentially started from scratch
and thus use ad hoc solutions with little leverage from previous work. In-
stead, the goal of TierStore is to be a general-purpose framework that can
abstract away most of the complications related to working with intermittent
networks.

Asynchronous 	 Disconnection-tolerant 	 Synchronous
	 offline WWW
email	 information portals
voicemail	 e-government services	 VOIP
bulk data copy 	 survey/data collection	 video chat
	 medical records

T a b l e 1 : A n a ppl i c a t i o n t a x o n o m y w i t h r e s p e c t t o
i n t e r m i t t e n c y

Table 1 gives a rough breakdown of example applications and their behav-
ior with respect to intermittent networks. At the end points, “asynchronous”
applications already work well in disconnected environments, whereas “syn-
chronous” applications fundamentally require end-to-end connectivity and
just cannot function during network outages. However, the large class of
“disconnection-tolerant” applications can potentially work well in a discon-
nected fashion, yet their implementations are limited by the requirements
of the underlying software platforms on which they are implemented. For
example, many such services require Internet connectivity simply because
they have been written as Web applications, whereas they could potentially
function well even when disconnected. Our goal with the TierStore system
is to make it easy to adapt these applications to work well in an intermittent
environment.

One step toward this goal comes in the form of Delay-Tolerant Networking
(DTN) [2]. DTN is a new approach to networking in challenged environ-
ments that seeks to address the shortcomings of traditional Internet pro-
tocols in some scenarios. Specifically, there are many cases in which it is
difficult to maintain the kind of reliable, low-latency network connection
needed by TCP/IP-based protocols. In these cases DTN can route network
messages across a variety of different transports such as peer-to-peer wire-

; LO G I N : J U N E 20 0 8	 TierStore : A Di stribute d F ile System for De v elo ping Region s	 33

34	 ; LO G I N : VO L . 33, N O. 3

less connections, dialup links, or physically carried flash drives or PDAs.
Furthermore, DTN is based around application-defined data objects called
“bundles” (not packets or circuits) and can deal with outages by storing mes-
sages in the network core to wait for connectivity to be restored. DTN also
offers new approaches to routing, quality of service, and reliability based on
custody transfer which help to deal with many of the problems that exist in
challenged network environments.

Yet applications need more than just a messaging service. Running while
disconnected implies that applications need to have local storage to respond
to user requests. Distributing information between instances mandates con-
ventions for object naming and organization to ensure that multiple sites
remain in sync with each other. Operations that modify the system state
need to be logically ordered, and potentially conflicting operations need to
be identified and resolved. Perhaps most importantly, adapting existing ap-
plications to DTN environments would require significant rewriting to use
the DTN-specific messaging APIs. TierStore is aimed squarely at addressing
these application needs while leveraging the existing advantages of the DTN
framework.

How TierStore Works

To address these needs, TierStore implements a replicated file system inter-
face, and applications interact with the system using the standard POSIX
APIs. This decision means that existing applications that are already writ-
ten to use the file system for interprocess communication can be adapted
with relatively few changes, while developers creating new applications can
leverage their familiarity with the existing APIs and use a wide range of pro-
gramming environments and languages to interact with the system. Figure 1
shows the TierStore system components.

F i g u r e 1 : T i e r S t o r e S y s t e m C o m po n e n t s

Unlike NFS or CIFS, there is no central server that stores file data. Instead,
each TierStore node keeps a copy of the data and uses a lazy distribution
protocol to forward updates among nodes using DTN bundles. This means
that replicated file data is available for access even when the network is
down, and local filesystem interactions need not consume valuable band-
width.

replication

File system modifications, such as writing some data to a file, are encoded
as update messages. These updates are immediately applied to the local node
so that applications see the effects of their operations in the file system. They

DTN

Network

Object / Metadata /

Version Repositories

View Resolver

FUSE / NFS

Subscription

Manager

Update

Manager

Filesystem Interface

Conflict Management

Persistent Storage

Replication

Applications

TierStore

Apps

DTN

are also forwarded to the subscription manager that determines how to dis-
tribute the updates to other nodes.

To enable fine-grained data sharing, the files and directories in the TierStore
file system are divided into non-overlapping subsets called publications.
Publications define the units of replication between TierStore installations,
and they are defined in application-specific ways. For example, an individual
publication might be a user’s mailbox, files from a particular Web site, or a
set of data collection samples from a specific region. TierStore nodes then
subscribe to a set of publications, indicating that they want to receive up-
dates to the relevant files. Subscribing is the TierStore equivalent to mount-
ing a portion of the file system, and therefore file data in a publication is
replicated only to the set of subscribed nodes.

TierStore uses DTN for all internode communication, meaning that it can le-
verage its range of network transports and in-network message queuing fea-
tures. Thus TierStore need not be concerned with the details of how updates
are communicated, but instead it can queue an update message for transmis-
sion whenever the network becomes available, using whatever transmission
mechanism is most appropriate for the environment.

To help distribute data efficiently over low-bandwidth links, each TierStore
node is configured as part of a multicast-like distribution tree in the DTN
network. Each publication can be thought of as a multicast group, so up-
dates need only be transmitted once across a network link in the tree and
are reforwarded down the tree, eventually reaching all subscribed nodes.
In our early deployments, this distribution tree was manually configured,
as the number of nodes was fairly small, but we are currently working on a
new DTN multicast implementation to automate this process.

handling conflicts

F i g u r e 2 : D e f a u lt co n fl i c t h a n d l e r . D i s co n n e c t e d u s e r s Al i c e
a n d Bo b m a k e e d i t s t o t h e s a m e f i l e . W h e n t h e y r e co n n e c t ,
t h e o t h e r ’ s e d i t s w i ll b e v i s i b l e a s a co n fl i c t f i l e i n t h e f i l e
s y s t e m .

Since TierStore nodes might be disconnected for long periods of time, they
must be able to modify the filesystem state while disconnected, so applica-
tions need some way of handling concurrent updates. Yet long outages mean
that traditional approaches such as file locking will not work well. Instead,

Alice Bob

Network is unavailable ...

$ echo “red” > /tierstore/foo $ echo “blue” > /tierstore/foo

$ ls /tierstore $ ls /tierstore

foo foo

Network is available ...

$ ls /tierstore $ ls /tierstore

foo foo.#bob foo foo.#alice

$ cat foo $ cat foo

red blue

$ cat foo.#bob $ cat foo.#alice

blue red

; LO G I N : J U N E 20 0 8	 TierStore : A Di stribute d F ile System for De v elo ping Region s	 35

36	 ; LO G I N : VO L . 33, N O. 3

we allow arbitrary operations to occur and then detect (and possibly resolve)
conflicts when nodes return into connectivity.

The first (and best) way to handle conflicts is to avoid them in the first
place. TierStore only considers conflicts on a per-file basis, so updates to
different files or directories are independent and do not conflict. Thus ap-
plications that partition their data into separate directories or use uniquely
named files that are not updated at different parts of the network are thereby
conflict-free. Many of the applications we have ported to TierStore naturally
fall into this category.

When conflicts are unavoidable, applications can register custom handlers
to resolve the situation. These handlers are able to look at conflicting ver-
sions of a file and arbitrarily rename, merge, or modify them to deal with
the conflict. If there is no custom resolver, a default policy appends each
conflicted filename with .#X, where X is the identity of the node that gener-
ated the conflict. This approach allows applications to see both versions of
the conflicted file, similarly to how CVS allows multiple versions of a file to
simultaneously exist on different branches. Applications can then resolve the
conflict later at any point in the network.

However, one subtle aspect of this default policy is that file operations that
occur at a particular node are presented unmodified to applications that are
running at that node (i.e., without the .#X extension). This does mean that
the displayed filesystem structure can vary at different locations in the net-
work, but it also has the important side effect that nodes always “see” the
files they have generated and modified locally, regardless of any conflicting
updates that may have occurred at other locations (see Figure 2). This is an
important decision that helps when porting unmodified applications, since
their local file modifications do not suddenly disappear if another node
makes a conflicting update to a file. It also means that application state re-
mains self-consistent even in the face of conflicts and, most importantly, is
sufficient to handle many applications without needing to write a custom
conflict resolver.

Using TierStore

We have adapted several commonly used applications for use with TierStore
to validate our system: an IMAP email service, a shared offline Web cache,
and a shared wiki collaboration system. These three applications represent
a range of requirements. Email in IMAP folders is accessed by a single user,
but the folders may be replicated to many different computers. A Web cache
is shared by many users but is read-only. A wiki system is shared by many
users and has the potential for many conflicting writes from users editing
overlapping parts of the wiki.

To support a shared email service with the TierStore system, we used a stock
IMAP server configured to store mail content in maildir format. The maildir
storage format is ideal for use with TierStore because each mail message is
stored as a separate file and the metadata associated with the message is en-
coded in the message file name. Mail folders are thus mapped to directories
in the TierStore file system, and each user mailbox is placed in a separate
publication. This allows each computer in the network to elect to replicate
only some of the users’ mailboxes. To handle benign conflicts in state (e.g.,
flagging a message on one computer and marking it read on another), we
wrote a conflict resolver that takes conflicting state flags and resolves them
to be the union of the flags.

For push-based shared Web cache functionality, we took an existing offline-
enabled Web cache, WWWOFFLE, and configured its cache directory to
point to a TierStore shared directory. For a selected set of Web sites, we pop-
ulate the cache directory with a Website crawl of commonly accessed refer-
ence Web sites. This model suits the needs of organizations that create local
mirrors of online references such as Wikipedia. Using the TierStore system
allows administrators to integrate Web content mirrors from many alterna-
tive sources into the same system. A bulk load of content via media such as
DVDs can be supplemented by small incremental deltas pushed over con-
ventional Internet access.

Finally, we have ported an existing piece of wiki software, PmWiki, to Tier-
Store as well as our created own wiki software [5], which leverages TierStore
as its storage back end. PmWiki stores its pages as individual files on the
local file system. This matches the semantics of TierStore quite well, because
conflicts in the file system map to edit conflicts at the page level; page-level
conflicts are well understood by users of wikis, since they already occur be-
cause of delays between when a page is loaded in the browser and when the
edit is saved to the server. Using the default conflict resolver, users of Pm-
Wiki will see edit conflicts as specially named pages on the wiki site. In our
own wiki software, we implemented a resolver that performs a text-based
merge of the conflicting pages.

Next Steps

On the research front, we are continuing to push TierStore in two direc-
tions. The first is focused on the networking layer to develop a robust
publish/subscribe-based distribution network that functions well in DTN
environments. The next is focused on developing an easy-to-use SQL inter-
face to support disconnection-tolerant Web applications that interface with a
database instead of the file system.

We are also continuing to work on several TierStore deployments in devel-
oping countries. One example is supporting community radio stations in
Guinea Bissau, a small West African country characterized by a large num-
ber of islands and poor infrastructure. For many of the residents, their main
information source comes from small radio stations that produce and broad-
cast local content. TierStore is being used to help bridge the communica-
tion barriers between the different islands and distribute content from these
stations throughout the country. We are also currently doing a pilot deploy-
ment in Senegal, where TierStore will be used to link student medical re-
cords between two schools and a local hospital.

In general, our initial results from working on TierStore are encourag-
ing, and we hope to gain additional insights through more deployment
experience.

references

[1] E. Brewer, M. Demmer, B. Du, M. Ho, M. Kam, S. Nedevschi, J. Pal,
R. Patra, S. Surana , and K. Fall, “The Case for Technology in Developing
Regions,” IEEE Computer 38(6), 25–38 (June 2005).

[2] V. Cerf, S. Burleigh, A. Hooke, L. Torgerson, R. Durst, K. Scott, K. Fall,
and H. Weiss, “Delay-Tolerant Networking Architecture,” RFC 4838, April
2007.

[3] D. de Savigny, H. Kasale, C. Mbuya, and G. Reid, in Fixing Health Systems
(International Development Research Centre Books, Ottawa, 2004).

; LO G I N : J U N E 20 0 8	 TierStore : A Di stribute d F ile System for De v elo ping Region s	 37

38	 ; LO G I N : VO L . 33, N O. 3

[4] M. Demmer, B. Du, and E. Brewer, “TierStore: A Distributed File System
for Challenged Networks in Developing Regions,” in FAST ’08: 6th USENIX
Conference on File and Storage Technologies , pp. 35–48 (Feburary 2008).

[5] B. Du and E. Brewer, “DTWiki: A Disconnection and Intermittency Tol-
erant Wiki,” in 17th Annual International WWW Conference (April 2008).

[6] A.S. Pentland, R. Fletcher, and A. Hasson, “DakNet: Rethinking Connec-
tivity in Developing Nations,” IEEE Computer (January 2004).

[7] Technology and Infrastructure for Emerging Regions (TIER) Research
Group: http://tier.cs.berkeley.edu/.

[8] W. Thies, J. Prevost, T. Mahtab, G. Cuevas, S. Shakhshir, A. Artola,
B. Vo, Y. Litvak, S. Chan, S. Henderson, M. Halsey, L. Levison, and S. Ama-
rasinghe, “ Searching the World Wide Web in Low-connectivity Communi-
ties,” in Proceedings of the 11th International World Wide Web Conference, Global
Community Track (May 2002).

[9] Wizzy Digital Courier: http://www.wizzy.org.za/.

•	 �6 days of training by experts in their
fields
•	 3-day technical program
	 •	 �Keynote Address by Sean Dennehy 	
and Don H. Burke, Intellipedia, U.S.
Central Intelligence Agency

	 •	 �Plenary Session by Bruce Schneier,
Founder and CTO, BT Counterpane

	 •	 Invited talks by industry leaders
	 •	 �Refereed Papers, Guru Is In Sessions,
Workshops, and Work-in-Progress
Reports

•	 Vendor Exhibition
•	 And more!

22nd Large Installation
System Administration
Conference

Save the Date!

www.usenix.org/lisa08/jlo

November 9–14, 2008, San Diego, CA

