DAVID JOSEPHSEN
1Voyeur:

opaque brews

David Josephsen is the author of Building a Monitor-
ing Infrastructure with Nagios (Prentice Hall PTR,
2007) and Senior Systems Engineer at DBG, Inc.,
where he maintains a gaggle of geographically dis-
persed server farms. He won LISA’04’s Best Paper
award for his co-authored work on spam mitigation,

THE JAVA SERVLET CONTAINER MODEL
is one of the most popular ways to provide
dynamic content to a Web browser. If you
haven't had the pleasure of dealing with
one, a “Servlet Container”is what you get
when you combine a small Web server with
aJava program called a servlet. The job of
the Web server is simply to accept HTTP re-
quests from the network. The Web server
can do things such as parse host names
from HTTP headers and perform SSL hand-
shakes as any normal Web server might.

and he donates his spare time to the SourceMage
GNU Linux Project.

dave-usenix@skeptech.org

50

;LOGIN: VOL. 32, NO. 5

But instead of handling the HTTP requests itself,
this Web server passes them to a program called a
servlet. The servlet then generates some content,
usually in HTML, for the Web server to pass back
to its client. The servlet itself is not a binary pro-
gram but, rather, Java bytecode. It runs inside a
Java Virtual Machine (JVM), which provides a run-
time environment complete with threading, memo-
ry management, much-hyped security, interfaces to
other Java and system functions, and presumably
everything else a servlet could want. There are
quite a few implementations of this model, includ-
ing Apache Tomcat, BEA Weblogic, IBM Web-
Sphere, and Oracle Application Server, but the ba-
sic idea is the same.

In practice it works pretty well until it doesn’t, and
the complexity introduced by the model makes it
nearly as unpopular among system administrators
as it is loved by Web developers and their man-
agers. The problem from the systems perspective is
the virtual machine. Because the servlet we are try-
ing to troubleshoot or monitor is running inside a
virtual machine, our system tools are rendered use-
less. From the outside, all we can see is the JVM
process itself.

If you have a single Web site running on the JVM,
then the memory footprint of the JVM is pretty
close to the memory footprint of your Web site.
Likewise, the CPU load induced by the JVM is
pretty close to the CPU load of your Web site. But
what if you have five Web sites being vhosted on
your Web server? Now a single JVM is running five
servlets. Which of them is the one hogging your
CPU? Even if you don’t have a problem to diag-
nose, you at least have a capacity planning conun-
drum, but, believe me, it gets worse.

;LOGIN: OCTOBER 2007

Let’s say you do have a problem and it isn’t resource-bound. For example,
the application is hanging, or it is crashing outright at unpredictable times.
Even with a single servlet in the JVM, tools such as strace, dtrace, and sys-
temtap can only be of limited value, because the JVM has its own internal
memory management and thread model. All you can see from the outside is
what the JVM’s doing, and since it allocates most of the resources it needs up
front (including, e.g., its database connection pools), that usually isn’t very
much.

And speaking of hanging and crashing, I've been privileged in my short ca-
reer as a Tomcat administrator to see the JVM crash in all sorts of intricate,
fascinating, and unpredictable ways. So I can say from personal experience
that the servlet container model makes for interesting monitoring fodder in
that, short of directly parsing the HTML it returns, it can be difficult to even
define a criteria for “functional” that actually describes a functional servlet
container. So if you need to monitor specific metrics on your applications,
or you've ever wondered just what the heck is happening inside that virtual
machine in general, this article will provide some tips, from a systems per-
spective, for penetrating the black box that is the servlet container.

Profiling

Like their non-Java counterparts, JVM system profilers can provide detailed
info on what the JVM is spending its time doing. There are two primary
ways of accomplishing this. The first is by registering for messages from
built-in instrumentation libraries such as the Java Virtual Machine Tool In-
terface [1]. The second is by using a process called byte-code injection,
wherein known byte-code instructions are detected and preempted with
snippets of management-related code. Byte-code injection is more accurate
but is much more expensive. Many profilers exist, but most assume that you
are a developer operating within an IDE such as Eclipse. For a sysadmin try-
ing to debug a problem on a production system, you can’t do much better
than hprof [2].

The tool hprof is a simple, powerful JVM profiler that's been included in the
JDK since version 5.0. There is nothing to install, and there are no depen-
dencies (well, other than the JVM itself). Simply enable it by passing a -X
switch to your JVM options. If you’re using Tomcat, for example, you would
simply need to add a line similar to:

-Xrunhprof[:options]

to your startup.sh or Tomcat init file. When the program exits, or whenever
the JVM catches a sigquit (kill -3 in UNIX), hprof writes its profiling informa-
tion to a standard text file. It can provide a stack trace of every live thread in
the JVM, heap profiling (what’s using all the memory?), and CPU profiling
(what'’s using all the CPU?). It can use either byte-code injection or the Java
Virtual Machine Tool Interface, but in practice the former method incurs
such a heavy performance penalty that it is, in my experience, unusable for
troubleshooting in production environments.

By way of an example, we recently had a problem with several applications
hanging on a production Tomcat system. The application hang was accom-
panied by a CPU spike, so we used hprof to obtain some CPU samples and
clicked around the site until the problem showed up. The CPU profile (near
the bottom of the hprof dump) looked something like this:

IVOYEUR: OPAQUE BREWS 51

52

;LOGIN: VOL. 32, NO. 5

CPU SAMPLES BEGIN (total = 206138) Tue Jul 24 22:00:30 2007

rank self accum count trace method
1 42.02% 42.02% 180 481612
oracle.jdbc.driver.OracleDriver$1.<init>

2 1494% 1494% 30796 478299
java.net.SocketInputStream.socketRead0

3 1.09% 11.09% 22868 495714
java.net.SocketOutputStream.socketWrite0

4 3.94% 3.94% 8116 495716
java.net.SocketOutputStream.socketWriteO
<snip>

The number 1 user of the CPU (at 42%) was the jdbc driver, the glue be-
tween our Java application and its Oracle database backend. The number
listed under the “trace” column is a unique ID with which we can locate and
examine the stack trace of this thread. Toward the top of the hprof dump is
the stack trace in question:

TRACE 481612:

oracle.jdbc.driver.OracleDriver$1.<init>(OracleDriver.java:1425)
oracle.jdbc.driver.OracleDriver.getSystemProperty(OracleDriver.java: 1423)
oracle.jdbc.driver.OracleDriver.connect(OracleDriver.java:840)

<snip>

oracle.jdbc.pool.OracleDataSource.getConnection(OracleDataSource.java: 165)
pkg.dbgCalls.getConnection(dbgCalls.java:294)
pkg.dbgCalls.getTrackingld(dbgCalls.java: 1843)

org.apache.jsp.index_jsp._jspService(index_jsp.java: 145

The last line in the stack trace lists the file and, more specifically, the line
number in the file that contains the code that is hogging our CPU. This
problem ended up being caused by an ancient copy of the ojdbc14.jar in the
WEB-INF folder of the application. Not all problems are this cut-and-dried,
and the CPU sampling technique becomes less useful the longer the JVM
operates (which makes troubleshooting problems you can't reliably replicate
difficult). Also, hprof can't really provide real-time analysis, and it doesn't
lend itself to ongoing performance or availability monitoring. Generally,
however, hprof is great at providing really specific information like this on
demand with a manageable overhead, without raising the vulnerability foot-
print of the server, and without installing additional software.

JMX

The JVM itself contains instrumentation code for monitoring and manage-
ment and an API for accessing monitoring and management information in
the form of Java Management Extensions (JMX) [3]. JMX is composed of a
service that brokers monitoring and management requests to the JVM
(called an “mbeans server”) and several connectors, which expose the API
in various forms such as SNMP and RMI (a Java protocol used by JMX-based
monitoring apps). In-house developers can also use the JMX libraries to in-
strument their applications directly; however, the JVM’s instrumentation is
sufficient for most monitoring purposes.

If you didn’t parse much from that last paragraph, I can sympathize. Java
documentation often reminds me of a Frank Herbert book (which is to say,
overly concerned with jargon), so I'll attempt another explanation (this time
in English). JMX is a direct answer to the problems stated in the opening
paragraphs of this article. It provides a window into the operation of the

;LOGIN: OCTOBER 2007

JVM, and it makes possible such things as a JVM equivalent of the UNIX top
program and much more. Further, the same performance and monitoring
data can be consumed several different ways, including SNMP and RMI
(which makes it possible for a top-like program to monitor a server remote-
ly). When a monitoring vendor says that its app has “Java Integration,” that
probably means they have a home-brew built-in JMX agent of some sort.

In fact, a JVM equivalent of top called Jtop is included with the current JDK
in the demo/management subdirectory. Jtop can give real-time data about
the JVM’s CPU utilization on a per-thread basis. To use it, you must first en-
able JMX in your JVM by passing a couple of command-line switches to
your startup script. Enabling RMI (remote connections) access to your JVM
is a dangerous thing to do. JMX exposes sensitive configuration info such as
user names and passwords, as well as the ability to change just about any-
thing related to the operation of the JVM. So you should follow Sun’s in-
structions [4] for enabling authentication and SSL on your JVM’s RMI con-
nector. The quick, dirty, and highly insecure way to enable JMX is:

-Dcom.sun.management.jmxremote \
-Dcom.sun.management.jmxremote.port=1223\
-Dcom.sun.management.jmxremote.ssl=false \
-Dcom.sun.management.jmxremote.authenticate=false \

Those switches aren’t specific to Jtop; any RMI-based JMX app will require
them. Jtop is fairly nifty, but it doesn’t even hint at the amount of informa-
tion that JMX exposes about a running JVM. Jconsole [5], however, includ-
ed with the JDK and located in JDK_HOME/bin/jconsole, is a fully function-
al graphical frontend to the JVM. It provides real-time in-depth analysis of a
running JVM’s memory allocation, CPU utilization, run-time parameters,
and stack traces. Jconsole can do everything from providing the exact CPU
and memory utilization of a single thread to adding and deleting accounts
from the tomcat-users.xml. You do incur quite a bit of overhead using it, but
not enough to obviously affect the response time of a running application.

There are several ways to get this info out of JMX and into your monitoring
system. The easiest is perhaps JMX’s SNMP connector [6]. Simply set the
system property for it in the JVM like so:

-Dcom.sun.management.snmp.port=portNum

Then create an ACL file in JRE_HOME/lib/management/snmp.acl (there’s a
sample file: JRE_ HOME/lib/management/snmp.acl.template). Once this is
done, the entirety of JMX is exposed via SNMP for your favorite snmp-en-
abled monitoring system to make use of. You may even define traps for trap
collectors and passive monitoring systems.

For Nagios users, there is a check_jmx [7] plug-in that can query the status
of any JMX metric that you see in jconsole. Its syntax is typical of Nagios
plug-ins in general. For example, if you were interested in monitoring the
JVM’s heap you could use:

Jcheck_jmx -U\

service:;jmx:rmi:///indi/rmi://myHost: 1223/jmxrmi -0 \

java.lang:type=Memory -A HeapMemoryUsage -K used -| HeapMemoryUsage -J \
used -vvvv -w 1000000000 -c 1500000000

Finally, if you're thinking about rolling your own RMI-based monitoring
script, Sun’s JMX tutorial [8] has plenty of sample code to get you started,
and there’s a great white paper on the subject called “JMX Interoperation
with non-Java Technologies” [9] on Daniel Fuchs’s blog.

IVOYEUR: OPAQUE BREWS

53

JMX is not a panacea. It’s still dependent on the JVM itself operating correct-
ly, and that’s a pretty big dependency. It does, however, provide excellent in-
sight into the functioning of an operational JVM, and it’s allowed me to nip a
few problems in the bud before they had the opportunity to destabilize the
JVM, and hey, any visibility is a net gain IMHO.

Take it easy.

REFERENCES

[1] http://java.sun.com/j2se/1.5.0/docs/guide/jvmti/index.html.

[2] http:/java.sun.com/developer/technicalArticles/Programming/HPROEhtml.
[3] http://java.sun.com/j2se/1.5.0/docs/guide/management/overview.html.
[4] http://java.sun.com/j2se/1.5.0/docs/guide/management/agent.html.

[5] http://java.sun.com/developer/technicalArticles/J2SE/jconsole.html.

[6] http://java.sun.com/j2se/1.5.0/docs/guide/management/SNMPhtml.

[7] http://www.nagiosexchange.org/Misc.54.0.htm]?&tx_netnagext_pil
%5Bp_view%5D=808&tx_netnagext_pil%5Bpage%5D=20%3A10.

[8] http://java.sun.com/j2se/1.5.0/docs/guide/jmx/tutorial/tutorial TOC.html.

[9] http://java.sun.com/javase/technologies/core/mntr-mgmt/
javamanagement/JSR262_Interop.pdf.

54 ;LOGIN: VOL. 32, NO. 5

