CHAD VERBOWSKI

the secret lives
of computers

exposed

FLIGHT DATA RECORDER FOR

WINDOWS

Chad Verbowski is the cofounder of the
Cybersecurity and Systems Management research
group, where he focuses on reducing complexity and
improving the security, reliability, and efficiency of
software and integrating the results into the next
generation of Microsoft products. Before joining
Microsoft Chad worked extensively in the systems
management problem space, leading the develop-
ment of flagship management products at MFS
Datanet, Cisco Systems, and Manage.com.

chadv@microsoft.com

;LOGIN: APRIL 2007

WE’VE ALL HAD THE GIDDY EXPERIENCE
of setting up a new system and being
impressed by our newly acquired perform-
ance and capability. Inevitably though, as
time goes on, our new system has less time
for doing our bidding and assumes a life of
its own—nhard drives grind for no apparent
reason, it is achingly slow or stalls altogeth-
er despite available resources, or applica-
tions and devices no longer work as they
once did. Are these the result of unwanted
users or software wooing my system—or
did | do something to disrupt the delicate
fabric of state stored within? With the ever-
increasing spare time gleaned from wait-
ing on my nearly new system, | pondered
these issues and decided to put together a
plan to spy on the secret life of my comput-
er. What you are about to read may not be
the information you need to be the life of
your next party, but it will help you win
back the attention of your computer.

A New Surveillance Gadget—Flight Data Recorder

To solve this mystery I first need surveillance
equipment that is capable of monitoring my mul-
ticore system. As a model, I considered the airline
industry’s success at understanding crashes by
analyzing the data contained in the black-box
flight data recorders that are now standard on
every flight. Designing and building a flight data
recorder that tracks which process interacted with
what piece of state as whom and when proved to
be a daunting task. There were three core chal-
lenges to overcome:

= Overhead—The first challenge of building
such a device for a computer is to accurately
monitor the 28 million daily interactions that
software running on my computer has with
the roughly 200,000 files and 100,000 set-
tings that it contains. Furthermore, to avoid
contaminating the results, we must ensure
that this equipment was undetectable by the
running software and did not impact the re-
sources and availability of the system.

= Volume of Information—The second chal-
lenge is to contain the fire hose of informa-
tion collected without dropping any. Ideally
we want to be able to audit up to many thou-

THE SECRET LIVES OF COMPUTERS EXPOSED

15



16

;LOGIN: VOL. 32, NO. 2

sands of systems and be able to correlate the information across time
and across systems to develop an understanding of what they are do-
ing. Tracking 28 million daily events at 250 bytes per event requires 7
GB of space, which is simply too much to handle. Naively, we may ap-
ply our favorite byte compressor, such as GZIP; however, we would
find that this would only reduce the volume by approximately 90%,
still leaving us with 700 MB daily to deal with. We will either quickly
run out of storage space or cripple our system from the I/O require-
ments of writing these humongous logs to disk.

Analysis of the Results—The third challenge is to be able to make
sense of all this data. If we monitored 5 machines for a week, at 28 mil-
lion interactions per day we would have 1 billion events to contend
with. Traditionally we would attempt to cram them into our favorite
database and apply SQL queries to discover the golden nuggets of
truth. However, this approach is woefully slow and does not scale. The
first problem involves the overhead in converting the data from their
archived and compressed form into something that can be bulk-insert-
ed into a database. Then there is the time taken to actually insert it. We
found that, even with the stars aligned, our enterprise-class database
server could spike to inserting events at a rate of 10,000 events per sec-
ond. This means the insertion of our 1 billion events would take more
than 27 hours. Even if we took the time to prepare and insert this data,
we would still need several hours to index the tables, and countless
hours to run our queries. Clearly, databases are a significant bottleneck
that will force us to limit the number of machine days we can analyze
or to filter or condense the data before analysis.

Faced with these challenges, many folks have run screaming from the
room, thinking there is more likelihood of success to be had working on
their perpetual motion machines. However, I remain unfazed—possibly
because I am slow on the uptake, but just maybe because I have a key
insight. Traditionally, the three challenges were attacked individually, but
perhaps we can drastically improve our results if we optimize across all of
them.

Based on this insight, Flight Data Recorder (FDR) collects events with vir-
tually no system impact, achieves 350:1 compression (0.7 bytes per event),
and analyzes a machine day of events in 3 seconds (10 million events per
second) without a database. How is this possible, you ask? It turns out that
computers tend to do highly repetitive tasks, which means that our event
logs (along with nearly all other logs from Web servers, mail servers, and
application traces) consist of highly repetitive activities. This is a comfort-
ing fact, because if they were truly doing 28 million distinct things every
day it would be impossible for us to manage them. If we normalize the
events as we receive them, rather than storing them in our log as a flat
sequential list, we find that normalization removes the redundancy and
provides us with a 35:1 reduction in log size. By maintaining the event logs
in the normalized form, we make it faster and easier to analyze the log files
directly, which saves us the overhead of putting them into a database.

If we GZIP our normalized files, we can squeeze an additional 10:1 com-
pression, providing us with 350:1 overall. However, having GZIP files gives
us the unsavory task of decompressing them before we can analyze the
normalized tables for our query. Ideally, we want to decompress only the
sections of our normalized tables on which we need to perform our analy-
sis. Pondering this problem, we were motivated by traditional operating
system page table design. Our solution was to overlay our normalized



;LOGIN: APRIL 2007

tables atop 64k pages that are individually GZIP’d. This enables us to
retain our 350:1 compression property, yet provides us with the ability to
traverse the tables and decompress only the sections we need for analysis.

With our new FDR gadget we can easily monitor all file, registry, process,
and module load activity in about 20 MB per day. Best of all, a single col-
lection server can easily process in real-time the logs from 5000 systems
and archive those logs on its available local disk for six months. With our
surveillance tool in place, we are ready to begin our investigation of what
computers do all day.

What Computers Do All Day—An Investigative Report

In my quest to understand the secret life of my computer I found that
many people are often unwillingly forced into solving very similar prob-
lems in the course of their daily lives. At one large Internet company, one-
third of outages were found to be caused by human error, and three-quar-
ters of the time taken to resolve the issue was spent by administrators
scouring the systems to identify what changes needed to be made.
Similarly, a large software support organization found that their engineers
were able to identify the root cause of only a scant 3% of the calls they
received.

Before investigating my own computer’s sordid life, I wanted to understand
the state of what ought to be well-managed and well-maintained systems.
To understand this I monitored hundreds of MSN production servers
across multiple different properties. My goal was to learn how and when
changes were being made to these systems, and to learn what software was
running. Surely machines in this highly controlled environment would
closely reflect the intentions of their masters? However, as you'll see in the
following, we found some of them sneaking off to the back of the server
room for a virtual cigarette.

THE LOCKDOWN PACT

Although rare, there are periods when system administrators like to kick
back and enjoy an uninterrupted dinner with their families. The last thing
they need is a problem with one of the pesky attention-seeking servers. To
avoid problems, administrators form a secret pact they call lockdown, dur-
ing which they all agree not to make changes to the servers for a specific
period of time. The theory is that if no changes are made, no problems will
happen and they can all try to enjoy their time outside the hum of the
temperature-controlled data center. Using FDR, I monitored these servers
for over a year to check the resolve of administrators by verifying that no
changes were actually made during lockdown periods. What I found was
quite surprising: Each of the five properties had at least one lockdown vio-
lation during one of the eight lockdown periods. Two properties had viola-
tions in every lockdown period. We're not talking about someone logging
in to check the server logs; these are modifications to core Line-Of-
Business (LOB) and OS applications. In fact, looking across all the hun-
dreds of machines we monitored, we found that most machines have at
least one daily change that impacts LOB or OS applications.

ALL RIGHT, WHO BROKE IT?

One of my favorite examples of a troubled computer is summarized in an

THE SECRET LIVES OF COMPUTERS EXPOSED

17



18

;LOGIN: VOL. 32, NO. 2

email from one system administrator to all other system administrators in
that organization. It reads, “Whoever is changing the page-file setting on
these computers please stop—you are taking down our site!” What I like
about it is the way it shows how even if we know what the root cause of
our problem is, we are powerless to understand how it happened and
therefore powerless stop it from recurring in the future. What makes find-
ing the culprit of these changes so difficult is the latency between when
the page-file setting is changed and when the symptom of the change
shows up (a crash from exhausting physical memory). It turns out that the
setting does not take effect until the system is rebooted, which can be a
long time after the change was made. Once FDR was installed on these sys-
tems, we found that this page-file setting is actually modified quite fre-
quently—tens of servers are affected every two to three months. The FDR
logs show that this modification is made by a remote Registry call, likely
from a rogue administrative script. Armed with this intelligence report,
administrators can now quickly undo the change if it happens again, and
most important, they have the critical information required to keep this
problem from recurring.

ILLUMINATING UNWANTED APPLICATIONS

We would all expect server environments to be highly controlled: The only
thing running should be prescribed software that has been rigorously test-
ed and installed through a regulated process. Using the FDR logs collected
from the hundreds of monitored production servers, I learned which
processes were actually running. Without FDR it is difficult to determine
what is actually running on a system, which is quite different from what is
installed. It turns out that only 10% of the files and settings installed on a
system are actually used; consequently, very little of what is installed or sit-
ting on the hard drives is needed. Reviewing a summary of the running
processes, we found several interesting facts. Fully 29% of servers were
running unauthorized processes. These ranged from client applications
such as media players and email clients to more serious applications such
as auto-updating Java clients. Without FDR, who can tell from where the
auto-updating clients are downloading (or uploading?) files and what
applications they run? Most troubling were the eight processes that could
not be identified by security experts. Based on their names, some of these
could be benign in-house tools (mlconv.exe, monnow.exe, sitreremover
.exe); however, others (e.g., Isacacheagent.exe) sound like potential tools
for compromising security (since LSA typically refers to the Windows
security system).

REMEMBERING TO LOCK THE DOOR

Few of us obsess overly on securing our home and possessions; we tend to
content ourselves with a few commonsense tasks routinely followed to
ensure our protection. We lock the doors on our car when we park it, and
we lock the doors on our house when nobody’s home. Although in the
back of our mind we know that if someone is determined to get in they
probably can, we don’t want to make it easier for them. When it comes to
servers, there are some similar best practices. One of them is to avoid leav-
ing credentials or primary security tokens on systems. Primary tokens are
created with credentials and can be used to hop to another system. The
remote system receives secondary credentials, which cannot be used to hop



;LOGIN: APRIL 2007

again. These are used by hackers who compromise a server to hop from
one system to the next and spread throughout your network. Using the
FDR logs, we found six services (daemons) running on many machines
that were using hard-coded credentials, which could potentially be harvest-
ed by hackers. We also found that a third of the systems had screensavers
running on them from when administrators had logged in remotely and
left their sessions active. These remote sessions leave primary tokens on
the system for hackers to harvest. By running FDR on these systems we
can quickly identify these potential security problems and ensure we are
not making it easier for undesirables to break in.

WHY IS MY SYSTEM SLOW?

When applications are running on our system we really have no clue as to
whether the amount of resources they are consuming is reasonable or not.
Should this monitoring agent be consuming 5% CPU, or 15%? We really
don’t know. From running FDR we not only see what processes are reading
and writing on the system, but we also have the timestamps for each inter-
action. Using these timestamps, we can easily calculate how many opera-
tions (reads/writes) each process is doing per second. We can even tell if it
is reading the same thing over and over and over again. In fact, by looking
for these patterns we identified processes that were doing just that. An
LOB application was reading the crypto settings 240 times per second, and
a management agent was continuously reading the 10,000 service (dae-
mon) settings in a tight loop. Without this information, a developer would
usually be oblivious to these useless performance costs. Although these
may seem insignificant on the surface, consider that losing 10% of your
CPU across 100 servers is equivalent to buying 10 extra servers.
Furthermore, if one application is unnecessarily dominating the system by
reading settings, other applications will perform more slowly.

When the Cat’s Away, the Mice Will Play ...

Peering through our FDR microscope at the daily lives of our computers,
we found many unexpected activities. They made us laugh, they made us
cry, but in the end they provided us with knowledge that empowered us to
improve our systems. For the past 20 years, systems management has been
more of a “dark art” than a science or engineering discipline because we
had to assume that we did not know what was really happening on our
computer systems. Now, with FDR’s always-on tracing, scalable data collec-
tion, and analysis, we believe that systems management in the next 20
years can assume that we do know and can analyze what is happening on
every machine. We believe that this is a key step to removing the “dark
arts” from systems management.

You too can leverage FDR technology for investigating your computer, by
using some of the products that incorporate FDR technology. The first
wave of products includes Windows Vista, which contains the drivers that
expose the file, Registry, process, and module information through the
Event Tracing for Windows (ETW) providers. There is also the Application
Compeatibility Toolkit v5.0, which contains the Update Impact Analyzer
(UIA) and monitoring agents that use FDR technology for understanding
Windows systems to enable you to better prepare for upgrades and patch-
es.

THE SECRET LIVES OF COMPUTERS EXPOSED

19



REFERENCES

[1] C. Verbowski, E. Kiciman, A. Kumar, B. Daniels, Y.-M. Wang, R.
Rousseyv, S. Lu, J. Lee, “Analyzing Persistent State Interactions to Improve
State Management,” SIGMETRICS, Saint-Malo, France, 2006.

[2] C. Verbowski, E. Kiciman, B. Daniels, S. Lu, J. Lee, Y.-M. Wang, and R.
Roussev, “Flight Data Recorder: Monitoring Persistent-State Interactions to
Improve Systems Management,” OSDI, Seattle, WA, 2006.

[3] C. Verbowski, J. Lee, and Y.-M. Wang, “LiveOps: Systems Management
as a Service,” LISA 06, Washington, D.C., 2006.

20 ;LOGIN: VOL. 32, NO. 2





