LDAP CAN BE A DOUBLE-EDGED SWORD.
On the one hand, you have data available
on the network, which is easy to access in a
standard way. On the other, you have a sys-

BRENDAN QUINN

] essons] earnm ed tem that doesn’t work or behave like a nor-
. . . mal database. At London Business School,

fTom hV] n g W]th we've had a central LDAP repository for

LDA P years now, and over time it's come to be at

the center of our network. We have applica-
Brendan Quinn has more than 14 years of experience tions and network devices that use LDAP
as a sysadmin, security engineer, and infrastrucure
engineer. He is currently a Senior Infrastructure for authentication and authorization. We
:]T:ge;tnfgsgi‘c‘?:sTﬁ;gﬂig‘;ﬁ:‘:jﬁ School. He is have applications that depend on data in

the LDAP repository for core pieces of their
functionality. We're even using LDAP to
route every piece of email that enters our
network. Over the past few years, I've
learned a few things the hard way about
LDAP integration and performance. I'd like
to share a few of those lessons, in the hope
of saving you some headaches.

brendan.quinn@gmail.com

“Why Is the Web Site Slow?” or,
Thinking About Performance Tuning

Performance can be a serious problem when deal-
ing with LDAP. There are lots of documents out
there that explain the mechanics of tuning partic-
ular LDAP servers, and I've included a few links
to get you started [1, 2]. In the Sun Directory
Server, performance tuning consists of building
indexes and adjusting cache sizes. Tuning Open-
LDAP while using the Berkeley DB backend will
be similar. However, it’s difficult to tune an LDAP
server unless you understand the traffic it’s likely
to see. So before you dive in and start tweaking,
start by asking a few questions.

Is there a particular application or applications
that generate large numbers of queries? If so, can
you predict how many?

At our site, we route all the email for our 5000+
person userbase using data stored in LDAP [3]. As
you might imagine, this generates quite a lot of
queries. We can estimate the number of queries
the LDAP server will get based on the number of
queries needed to route each individual mail mes-
sage, multiplied by the number of mail messages
handled per day. Looking at the mail logs, we can
also get the number of messages processed per
minute during peak times or mail floods. In this

;LOGIN: APRIL 2007 LESSONS LEARNED FROM LIVING WITH LDAP 21

22

;LOGIN: VOL. 32, NO. 2

case, we tested the LDAP architecture by modeling significantly more traf-
fic than this amount of mail would generate. When we were happy with
the response times of the LDAP server under the modeled load, we knew
that the gating factor for mail performance would be the underlying mail
architecture and not LDAP.

What filters are being used? Does the application use programmatically
generated complex filters?

The kinds of filters used by directory-enabled applications can often be
more complex and slower than you might expect based on the kinds of
data being returned. For example, we have one application that always
appends a * to the filters it generates, even though it always knows the
exact data it’s searching for. So although I'd expected an exact match filter,
in fact it always used a substring filter. In practice, this meant that the
exact match indexes I'd built were useless; I needed to build substring
indexes instead. If you're not sure which filters are being used, check the
LDAP server access logs. Logs don't lie, and you can usually see exactly
which filters the applications are using.

Once you understand the kinds of filters your applications are using and
you have some estimates of what kind of traffic your LDAP architecture is
expected to handle, you can start tuning your LDAP servers.

I've written a couple of tools in Perl that you may find useful for testing
LDAP server performance [4, 5]. They depend on Net::LDAP.

“Why can’t | change my address?” or,
A Brief Diversion into Objects, Namespace, and Access Control

In the next few sections I'll be talking a lot about how applications use
LDAP Before I do, let’s discuss a few key concepts. For a much more com-
plete explanation, it’s worth reading Tim Howes, Mark Smith, and Gordon
Good’s excellent and comprehensive book [6].

LDAP is object-oriented. That’s a bit of a confusing term in the context of a
data store, because traditional object orientation is about tightly binding
data and logic. LDAP objects don’t have logic; they consist purely of data.
What object orientation actually means in this context is that data in LDAP
is structured as objects, which contain attributes and belong to object
classes. Attributes name the bits of data and define the syntax of that data.
Object classes define what attributes an object can (and must) have. Object
classes use inheritance, which just means that they inherit attributes from
their parent object classes.

The namespace of a repository is the structure of that repository. LDAP
uses a hierarchical data model. Translated, that means that data is stored
and accessed in LDAP as objects hanging in a tree. Tree nodes are them-
selves objects. Every object has an address, or Distinguished Name (DN),
which consists of the list of tree nodes that must be followed to get to the
object (see Figure 1).

;LOGIN: APRIL 2007

DN = cn=Joe Bloggs, ou=people, o=foo.com —

o=foo.com

FIGURE 1

The most common way of implementing access control on an LDAP repos-
itory is through the use of Access Control Instructions (ACIs). ACIs gener-
ally use a syntax similar to that used for LDAP searches (generally called
filters). The syntax does differ from vendor to vendor though, so you'll
have to look at the documentation for your particular LDAP server for the
specifics. The nice thing about AClIs is that they allow you to manage your
access control rules in the LDAP repository itself, by setting the “aci”
attribute on any object in the tree, nodes and leaves alike.

ACIs also allow the LDAP server to make use of all of the data contained
in the LDAP repository when making access control decisions. If the client
has provided credentials for an object contained in the repository (called
binding), the server can perform internal lookups for group membership,
attribute values, and so on.

“But it says on the Web site that it’s LDAP integrated .. .”, or,
Using LDAP for Authentication and Authorization

So you've bought an application or a piece of network equipment, and you
want it to use LDAP for authentication and authorization. The vendor

claims, “Easy integration with your LDAP repository!” Unfortunately, every
manufacturer seems to have a slightly different meaning for this statement.

In general, the Authentication-Authorization (AA) protocol should look
something like this:

1. The application performs an anonymous bind against the LDAP server.

2. The application does a search (generally returning only the Distin-
guished Name) to verify that the username provided matches an ob-
ject existing in the repository.

3. The application attempts to bind as the DN returned by the previous
search, using the password provided.

4. The application, now bound to LDAP as the user attempting authenti-
cation, searches for particular attributes in the user’s object.

5. The application checks the value of the returned attribute to determine
whether the authenticated user is authorized to access the application.

LESSONS LEARNED FROM LIVING WITH LDAP

24

;LOGIN: VOL. 32, NO. 2

The semantics of the AA process will differ slightly from vendor to vendor,
but the overall approach should be fairly similar to that listed here.
Unfortunately, there are a few things that can go wrong even with this sim-
ple case.

First, anonymous searches (even for DNs) are sometimes forbidden for
security reasons, especially in cases where the LDAP repository must be
exposed to the open Internet. This will cause the application always to fail
to authenticate, because it will be unable to determine which DN to
attempt to bind with when validating the user’s password. In some cases,
the application can be configured with credentials to use for the DN
search, rather than using an anonymous bind. Other applications can be
configured to construct the DN from the username provided, although this
requires that the namespace use the username as part of the DN, which
won't always be the case. If the application doesn't support either of these
approaches, you’ll have to allow anonymous searches for DNs, or not use
the application at all. If your site doesn’t allow anonymous searches for
DN, it’s important to ask the vendor whether the application supports one
of these alternatives before purchase.

Second, at many sites, users are forbidden from reading some or all of their
own attributes. This will cause authentication to succeed but authorization
to fail. The simplest way of dealing with this is to permit the users to read
any attributes in their own object that are used for authorization, but this
will not always be permitted by the security policies. Some applications
will support binding as another user (typically the one used for the DN
search) to search the user object for the required attributes.

Finally, which attributes does the application use for authorization? Some
applications will allow you to specify an attribute name to check and val-
ues to look for. Some will allow you to specify which attribute to check but
will require a fixed, vendor-specified syntax to match against. Still others
will require that you add a specific attribute or attributes to your schema,
generally with vendor-specified syntax. Whatever the case, you'll need to
think about where the data stored in these attributes comes from, and how
it’s maintained and managed.

It's worth noting that some applications that claim to support LDAP
authentication don’t use the generic process outlined here. In some cases
they're designed to bind as an administrative user (with full access rights),
retrieve the uid and userpassword attributes, and attempt to validate the
passwords themselves. This is poor practice, and you should avoid any
vendor who uses such a brain-dead approach.

“I'know, we’ll just use LDAP for everything!” or,
Directory-Enabled Applications and You

The most common use of LDAP is for authentication and authorization,
but there are also applications, such as our email system, that make opera-
tional decisions based on the data contained in the repository. This class of
directory-enabled applications generally makes use of application-specific
schema (although possibly making extensive use of one of the standard
schema as well). An application of this type will often expect to manage
the attributes in the custom schema itself, writing directly to the reposito-
ry. As many sites don’t permit users to modify most of their attributes
directly, this generally requires giving the application some kind of admin-
istrative access. At our site, we've handled this by setting up a number of

;LOGIN: APRIL 2007

group objects (in ou=Groups), which we reference in the ACIs on different
parts of the repository. When an application requires administrative access,
we create a user object specific to that application, and we add that user’s
DN to the group object’s uniqueMember attribute. This minimizes the need
for rewriting ACIs and brings the number of ACIs needed down to a man-
ageable level.

When you're dealing with applications that perform LDAP writes as well as
reads, it's important to make sure that the application developers under-
stand that an LDAP repository is not a traditional database. LDAP servers
are highly optimized for reads over writes, and write operations can take a
fair bit of time. In extreme cases, too many write operations can slow an
LDAP server down to a crawl. For example, at one point we had an appli-
cation developer who was using LDAP to store session cache information.
This was generating an LDAP write for every click that every user made on
his or her application’s Web site. The solution in that case was to gently
explain to the developer why this was such a bad idea. You're less likely to
run into this issue with commercial applications, but when applications are
being developed in-house it's worth repeating the “write rarely, read often”
principle at every opportunity.

One more thing on writes is worth mentioning, before we move on. If
you're using a Master/Slave LDAP architecture, when a client attempts a
write to the Slave, it will get a referral to the Master. In my experience,
most applications only allow you to configure a single LDAP server pool,
which is used for both reads and writes. If the application needs to write to
LDAP and supports LDAP referrals, you should configure it to use Slaves.
If the application doesn’t support LDAP referrals, you will have to config-
ure it to use the Master. Most applications that claim to support LDAP
referrals work as advertised, but, not surprisingly, there are a few that fail
in unexpected ways. If your site uses LDAP referrals and you're having
problems with a particular application, try configuring it to use the Master
instead. If this fixes the problem, yowll know that the failure most likely is
in the way the application handles LDAP referrals.

“But that data was in the repository yesterday ...,” or,
Issues Arising from Data Management

The data in your LDAP repository has to come from somewhere. Some
data will originate in LDAP and be maintained directly there. Some data
will likely originate in one or more administrative databases. Some may
originate in another, special-purpose LDAP server, such as Microsoft Active
Directory. All of this data will need to be synchronized. When there are
applications making decisions based on LDAP data, synchronization issues
can have unexpected consequences.

Let’s examine a hypothetical site, where most of the data in ou=people
originates in a single administrative database, while passwords are man-
aged directly in the LDAP repository. Data from this database is synchro-
nized with LDAP by using a process that runs once per day. One day,
somebody working with the database makes a mistake and accidentally
deletes the entire marketing department. This is noticed relatively quickly
(within an hour or so), and the database is corrected. Unfortunately,
between the deletion and the correction, the daily LDAP update has run.
This resulted in all of the users in the marketing department having their
user objects deleted. The LDAP administrator doesn’t find out about the
issue until the call comes in from the head of marketing, who is angry that

LESSONS LEARNED FROM LIVING WITH LDAP

25

26

;LOGIN: VOL. 32, NO. 2

no one in the department can get onto the network. Our poor LDAP
admin is faced with a quandary. If the database synchronization process is
rerun, all the users will be recreated, but they will all need their passwords
reset, and some of their usernames may have changed. If the repository is
restored by using the last backup, those in the rest of the company who
changed their password since that backup will have their password set
back to before the change.

What could have been done to prevent this from happening in the first
place? You can’t completely prevent human error, so there’s nothing that
could have prevented the initial deletion from the database. However, this
type of failure could have been anticipated and planned for. For example,
the synchronization process could have been designed to be less automatic,
requiring that someone look at an analysis of the changes that will be
made and start the process manually. Alternatively, the synchronization
process itself might have had a sanity check built in: Build in some logic
that would notice that the process was being asked to delete a large num-
ber of user objects, and refuse to proceed without human intervention and
approval. Did the objects need to be deleted immediately at all? What if
the synchronization process had instead marked the object as inactive, say,
by prepending a date string to the hash contained in the userpassword
attribute with the date that the account had been made inactive? The
process could then automatically delete inactive user objects after a speci-
fied time period. If you needed to recover the password you could simply
strip out the date string.

Making your synchronization processes smarter will help, but not all data
problems will be as obvious as this. Bad data is everywhere and isn’t going
to go away anytime soon. The best that you can do is to try to understand
the most likely sources of bad data, and try to minimize the impact of any
predictable failure conditions.

One way that LDAP differs from traditional databases is that the data isn’t
designed for one particular purpose. Once data is in LDAP, people will find
new ways of making use of it that can’t be anticipated. This is the very
thing that makes LDAP so powerful. Unfortunately, this complicates the
job of data management. Each application and data source will have a dif-
ferent conception about the purpose of the data in the repository.
Understanding what applications are accessing the repository and how
they’re using the data is an essential step in understanding how to manage
the data that resides there.

“conn=37288428 op=81303 RESULT”, or, Conclusion

You can tell that the LDAP infrastructure is working well when its become
just like the plumbing. Everyone uses it, but nobody ever thinks about it.
Unfortunately, when the LDAP infrastructure isn’t working well, it's more
like public transportation. Everyone still uses it, but they complain about it
all the time. With some thought and attention, an LDAP repository can be
one of the most reliable parts of your network infrastructure. I hope this
article has given you a few things to think about along the way.

REFERENCES

[1] Steve Lopez, “Solaris Operating Environment LDAP Capacity Planning
and Performance Tuning,” is a very comprehensive document, which,
although primarily focused on Solaris and the Sun LDAP server, provides a

;LOGIN: APRIL 2007

wealth of information useful in the general case. Available at
http://www.sun.com/blueprints/0502/816-4829-10.pdf.

[2] “OpenLDAP FAQ-O-Matic: Performance Tuning” provides an overview
of performance tuning OpenLDAP. Available at http:/www.openldap
.org/fag/data/cache/190.html.

[3] Brendan Quinn, “Integrating Exim with LDAP for Mail Relaying—A
Case Study.” Available at http://www.uit.co.uk/exim-conference/
full-papers/brendan-quinn.pdf.

[4] lookup.pl: This is basically a simple LDAP search tool, but with all the
search options pushed into a configuration file, and with high-resolution
timing metrics added. The advantage of this is that it lets you save models
of different types of searches. Available at http://phd.london.eduw/bquinn/
lookup/.

[5] ldap-load.pl: This is an LDAP load testing tool based on lookup.pl. It
simulates load by spawning processes, which then send queries to the
LDAP server. It's mostly useful for generating peak loads, but it can be
used to generate sustained load as well. Available at http://phd.london.eduw/
bquinn/ldap-load;.

[6] Timothy A. Howes, Mark C. Smith, and Gordon S. Good,
Understanding and Deploying LDAP Directory Services (Macmillan Technical
Publishing, 1998).

LESSONS LEARNED FROM LIVING WITH LDAP

27

