
; LO G I N : AUGUST 201 0	 I VOY EU R : P O CK E T S - O - PACK E T S, PA RT 2 	 67

D A V E J O S E P H S E N

iVoyeur: pockets-
o-packets, part 2

Dave Josephsen is the author of Building
a Monitoring Infrastructure with Nagios
(Prentice Hall PTR, 2007) and is senior sys-
tems engineer at DBG, Inc., where he main-
tains a gaggle of geographically dispersed
server farms. He won LISA ’04’s Best Paper
award for his co-authored work on spam
mitigation, and he donates his spare time
to the SourceMage GNU Linux Project.

dave-usenix@skeptech.org

S O M E O N E O N C E T O L D M E T H AT O U R
perception of temporal reality changes as
we grow older not because our aging brains
are slowing down but, rather, because we’re
gaining context. Things seemed to move
so slowly around us when we were young
because every new thing we learned made
up a huge percentage of what we already
knew. When you only knew four people’s
names, the next new name you learned
made up 1/5 of your total knowledge on the
subject. How many names do you know
now?

I find this a comforting thought, but despite my
best efforts I have trouble believing it. The fact that
I can’t even remember who said it to me is a telling
example (I’m almost certain it was a “she”). At any
rate, reality seems to me to be speeding up and
changing disproportionately to the meager amount
of context I’ve managed to gather (I’m only thirty
. . . uh . . . five? six?). But even though I’m barely
middle-aged, it seems to me the fundamentals of
the world are changing more rapidly than they
used to. The incandescent light bulb was invented
about 100 years ago. An above-average human
life-span to be sure, but it’s possible today to have
been born in a time when reading by lantern was
the norm in North America, and to have lived from
that time, through the construction of the grids, air
conditioning, the moon landings, nuclear power,
solid-state electronics, and the Internet—a mind-
boggling influx of reality-shattering changes. Fifty
years before that light bulb there were places on
the continent for which there were no maps.

For my part, I’m not sure if I’ll be able to tell to-
day’s children about life before the Internet. I have
all sorts of fond memories of how it began—getting
my first UNIX shell account from PrimeNet for
$6 per month (to MUD), asking my first questions
at altavista.digital.com, etc., but I have trouble
remembering how I learned things before I could
pull my pocket-sized everything-machine out
of my pants and ask the magical Google answer
hive-mind any question that happened to pop into
my head. Before the Internet, how did we research
things? I was there, but now I have trouble imagin-
ing it. There are several changes that have occurred
in my lifetime that I could say this about; before
things changed, I didn’t know anything was amiss,
but afterwards I couldn’t imagine what life was like
before. I suppose this was what was meant by the

68	 ; LO G I N : VO L . 35, N O. 4

phrase “paradigm shift” before the marketeers got hold of it: when things
change so fundamentally that the previous reality no longer even seems
possible.

Argus

This month I promised I’d talk more about Argus, because I didn’t get
nearly as deep as I wanted to with it last time. If you read this column with
any regularity, you may have noticed I’m prone to gushing, but there is no
amount of gushing I could do over Argus that wouldn’t be deserved. Argus
is one of the changes I alluded to above in that I’m not sure how you’d
manage a network without it, but I assume it would involve an inordinate
amount of guesswork. Argus knows everything about everything that ever
transpired on my network. It knows so much about network interaction that
it regularly teaches me things about networking in general that I thought I
already had a practical understanding of.

I’ve learned so much myself from my interactions with Argus that I recom-
mend it as an aid to people who want to study networking. Not only has
Argus taught me things about my network and about networks in general, it
has taught me objective truths about the universe. For example, Argus has
taught me that I cannot ever, under any circumstances, trust a DBA. I may
like them personally, and even respect them professionally, but trust them
I simply cannot do, and while this is something I’d often suspected, it is
because of Argus that I know it to be the truth.

So let’s get our hands dirty with an examination of our HQ network’s Argus
infrastructure, and then I’ll walk through a couple of examples of how I
use Argus on a day-to-day basis. Argus is actually two projects: Argus itself
[1] is a flow capture daemon, while the Argus Client Programs [2] are the
tools that do everything else. The client utilities all have names that begin
‘ra’ (read argus), while the Argus daemon is just called argus. From now on,
when I’m talking about Argus the project, to include the client utilities, I’ll
use the capital A, and when I’m referring to the argus packet capture binary,
I’ll use the lowercase a.

It can be difficult to understand what all the different little Argus programs
do, because there are a lot of them, and there is a lot of functionality overlap
between them. argus, for example, really is a packet capture daemon, but it
can be used just like one would use tcpdump, to watch packet flows in real
time from a given interface. In our design, and in most of the Argus setups
I think you’ll likely run into, argus is run on the router, firewall, or device
we’re interested in gathering traffic from, and various Argus client programs
are used to collect, parse, retransmit, store, and analyze the collected traffic.
The Argus documentation refers to argus in this configuration as a “probe.”

Probe Setup

Let’s start with my probe setup. The core routers in our HQ building are
OpenBSD boxes on commodity hardware with 10 1 Gbps interfaces each
(see Figure 1). Given that they are gigabit devices and have a lot of ports,
it would be expensive to use hardware network taps with them, but since
they’re multi-purpose OSes on commodity hardware, Argus is a natural fit.
Since argus can only listen to a single port at a time, we’ll run one argus
instance for each device and then consolidate them into a single data flow
before exporting it off the box. It’s possible to run argus as a stand-alone
daemon (argus -d), but I prefer to run it under daemontools [3]. My daemon-
tools service directory looks like this:

; LO G I N : AUGUST 201 0	 I VOY EU R : P O CK E T S - O - PACK E T S, PA RT 2 	 69

argus.em0 argus.em1 argus.em2 argus.em3 argus.em4 argus.em5 argus.em6
argus.em7 argus.em8 argus.em9 radium

F I G U R E 1 : H O W A R G U S C O M P O N E N T S F I T T O G E T H E R I N M Y H Q
N E T W O R K A R C H I T E C T U R E .

Each argus.x directory has a daemontools run script, but really these are all
just symlinks of the same script, only differing in interface name. Once the
symlinks, variables, et al. have been resolved, the argus command for em0
comes out looking like this:

/usr/local/sbin/argus -i em0 -B ‘127.0.0.1’ -P “4000” 2>&1

And for em1:

/usr/local/sbin/argus -i em1 -B ‘127.0.0.1’ -P “4001” 2>&1

So you’ve probably guessed that -i specifies the interface name (just like
tcpdump). If I were to stop there, argus would have given human-readable
output to STDOUT, but since I specified -P, argus will instead provide
Argus-readable data to port 40XX. This is an important concept to under-
stand—every Argus program can give two kinds of output: human-readable
and binary Argus data stream. The default is always to output human-read-
able, but if you want to save output to a file, or pipe the output of one Argus
program to another, you need to specify -w. A -w <filename> writes Argus
output to a file, while -w - writes it to STDOUT, suitable for piping to other
Argus programs. Most Argus programs also support -P, which will write
the output to a network socket, and this will always be Argus binary data
format. In my daemontools scripts I’ve also specified the optional -B switch,
which tells argus to bind to a specific address rather than 0.0.0.0, which is
the default.

So my router has 10 argus daemon processes, each writing to localhost
on its own high-number port. Now I want to combine the output from all
these daemon processes and provide them as a singular data stream to my
syslog/pcap server. To do this I use radium, which you may have noticed
among the services directories listed above (radium also supports -d if you
want it to run as a stand-alone daemon). radium, which describes itself as a
“real-time Argus Record multiplexor,” is the first of the Argus clients I’ll be

70	 ; LO G I N : VO L . 35, N O. 4

talking about, and it’s the only Argus client I use on the capture endpoint.
radium is intended to do exactly what I need here: it reads argus data from
any number of network sockets and outputs a single aggregated data stream
to the destination of your choosing. Here’s what my radium command looks
like when daemontools execs it:

radium -S localhost:4000 -S localhost:4001 -S localhost:4002 -S
localhost:4003 -S localhost:4004 -S localhost:4005 -S localhost:4006 -S
localhost:4007 -S localhost:4008 -S localhost:4009 -B 10.20.1.2 -P 3999

You’ve probably guessed that -S specifies a network socket from which to
read argus data. You can also read from files with -r, but there are limita-
tions. radium can only read one file at a time, and you cannot read from both
sockets and files at the same time. radium, like argus and most of the other
Argus tools, supports -B and -P for writing out to sockets and -w for writing
out to files. In my environment we provide our aggregated data stream on
port 3999 on the router’s internal IP, where the syslog/pcap server can read
it, and we lock it down with pf locally so only the pcap server can connect.

Data Collector Setup

The /service directory on the pcap server has a radium daemon and a
rastream daemon. The radium command on the pcap server looks like this:

/usr/local/sbin/radium -S 10.20.1.2:3999 -S 10.20.1.3:3999 -B 127.0.0.1 -P
4001

If you are abnormally observant you may have noticed that the internal ad-
dress of the router ended in “.2”. This is because there are actually two rout-
ers in a failover setup using CARP. So the pcap server has a radium service
that aggregates the flows from each of these routers and provides this stream
on localhost:4001. Even if you only have a single probe to read from, I’d
recommend using radium to collect it on your pcap box, because this future-
proofs things. If/when you get more probes, incorporating them is just an
additional -S. rastream’s job is to write the data stream to log files, and I
could have simply piped radium straight into rastream, but I prefer to write
to a socket here instead. This makes it possible for me to come to the pcap
box run any client tools against localhost 4001, and get real-time info from
all of my probes. radium supports 128 simultaneous client connections, so
reading the localhost port on the pcap box doesn’t interfere with the logging
process. My rastream command looks like this:

/usr/local/bin/rastream -S localhost:4001 \
-M time 10m -w “/var/log/argus/%Y-%m-%d/argus.%H.%M.%S” 2>&1

The rastream command reads the aggregated probe data from port 4001 and
then splits the resulting output into consecutive sections of records based
on criteria I give it. These can include file size, time intervals, record count,
or even events in the data stream (e.g., rotate the file when you see an SSH
connection to a specific host). I use time mode (-M time) with an interval
of 10 minutes. I also specify the names of the resultant log files with the
-w switch. rastream supports an extended -w option that includes variable
expansion with the $. Since I split the logs based on time interval, I use
time-based variables, but rastream can actually resolve any printable field in
the flow record, which includes byte-counts and the like.

Record Management

Now that the data is on a disk, we can use any of the argus client tools to

; LO G I N : AUGUST 201 0	 I VOY EU R : P O CK E T S - O - PACK E T S, PA RT 2 	 71

read it with -r. We can also put some thought into file management and
compression. Larger Argus installations can easily generate hundreds of gigs
of data per day, so it may not be enough to write the files and forget about
them. Let me tell you the three most popular ways to get the data file sizes
under control.

The first option you have is a client called racluster. racluster is an amazing
Swiss Army knife of a client. In fact, it’s the client I use to do most of my
data analysis, and I’ll be talking more about it in the next issue. With its
default options, however, it takes argus input from -S or -r and merges status
records from the same flow and argus probe. As argus captures packets from
the network, it reports flow statistics every 5 seconds or so. That means
there will be n/5 records per network connection, where n is the number of
seconds each connection lasts. Running racluster against an argus dataset
merges all of these little records into singular records that represent the
entire flow from beginning to end. In my configuration, doing this reduces
the size of the data files by 40–60%. We do this via cron once per day. The
racluster command looks like this:

/usr/local/bin/racluster -R /var/log/argus/${DAY}/ -w /var/log/argus-${DAY}.log

racluster is one of several argus clients that support recursively reading
directories full of Argus data files with -R. We simply read in a directory
of 10-minute-interval files and write out a single file representing the day.
racluster needs no other options whatsoever to drastically shrink the size of
your archives.

The second option is filtering. Every Argus client, as well as argus itself,
supports the use of tcpdump-style traffic filters. Simply give the Argus com-
mand as normal, then add a - followed by a tcpdump filter, and you’re there.
For example, if I wanted to get rid of everything that wasn’t TCP traffic, as
well as use racluster to shrink my files, I could do:

/usr/local/bin/racluster -R /var/log/argus/${DAY}/ -w /var/log/argus-${DAY}.log - tcp

The full subset of tcpdump filtering is supported, so things like - tcp and
dst host 192.168.5.1 and dst port 888 work fine. I could also do this earlier
in the stream by adding the filter to any of the argus, radium, or rastream
commands I’ve pasted above. Many larger installations run multiple filtered
rastream clients against their radium service to store very specific subsets of
network traffic in different files, because of storage requirements as well as
maintaining separation of duties. This plus racluster is usually enough, but if
not, your third option is bzip2. Enough said.

That pretty much covers the Argus infrastructure we’re currently using for
our office network, which is, I think, a pretty fair example of how end-to-
end Argus installations are generally implemented. Unfortunately, I’m out of
space this month, so next month, in the third (!) part of this series, I’ll cover
the really fun stuff: data mining and problem solving with Argus.

Take it easy.

REFERENCES

[1] http://qosient.com/argus/dev/argus-3.0.2.tar.gz.

[2] http://qosient.com/argus/dev/argus-clients-3.0.2.tar.gz.

[3] http://cr.yp.to/daemontools.html.

