MARK BURGESS

;LOGIN: AUGUST 2006

configuration
management:
models and myths

PART 1: CABBAGE PATCH KISS

Mark Burgess is professor of network and system ad-
ministration at Oslo University College, Norway. He is
the author of cfengine and many books and research
papers on system administration.

Mark.Burgess@iu.hio.no

WHEN | WAS EIGHTEEN AND FRESH
out of school, | worked for a couple of
summers as a gardener in the well-to-do
houses and estates of the English country-
side, together with a small team of other
gardening hands. Each sunrise, we were
transported at breakneck speeds around
the veins of the Midlands in a rusting sta-
tion wagon (appropriately known as “estate
cars”in the U.K.) by my boss, Ken, a soon-to-
retire adventurer with a British Air Force
moustache and a love of music and the
outdoors. We would discuss the great
Russian composers as we clipped away

at hedges and tilled over flowerbeds.

As workers, we were somewhat human in our
modus; it was occasionally precarious work, and
we were not altogether skilled or efficient, espe-
cially after the lunch breaks during which we
would ritually consume as many rounds of beer

at the local pub as there were workers on that par-
ticular day (a matter of honor, and not something
that I could conceivably survive at present). These
were “Bruckner episodes,” as Ken noted, ever try-
ing to get me to listen to that rather mediocre
composer, whose work he referred to as “traffic-
light music.” T later learned this meant that just
when you thought it was about to finally go some-
where, it would stop, dither, and then attempt to
start again. Quite.

I believe I learned several good lessons about
maintenance from my stint in the English Coun-
try Gardens. The first was “Always let your tool
do the work,” as Ken used to point out, with a
nudge and a wink and then a guffaw. In other
words, know how to use the tools of the job ra-
ther than breaking your back with manual labor
(aside from various carnal interpretations).

The second was about careful execution. Garden-
ing is nothing if not a strenuous job. It seems
straightforward, with everything under control,
until you mistakenly cut a prize flower in two or
fall foul of a mix-up—*“Oh, I thought she said do
destroy the garden gnome”—enshrined among the
taskforce as “Always read the destructions.” On
one occasion, enthusiastic overzealousness was
cut short when a friend of mine stepped backward
onto a rake (in classic Tom-and-Jerry style) and
emptied a wheelbarrow full of earth into the
client’s newly filled swimming pool. This was not

CONFIGURATION MANAGEMENT: MODELS AND MYTHS, PART 1

15



policy, but we liked to think of it as one of those inevitable once-in-a-life-
time (or -workday) freak accidents. Yes, we would have been naive to be-
lieve otherwise.

Gardening was, I think, my first exposure to the idea of configuration man-
agement, that is, the routine maintenance of everything from the most sub-
lime stately garden to the most ridiculous cabbage patch. Size is not impor-
tant; the same errors are made in spite of scale. It is very much about see-
ing how the result of extensively planned and orchestrated order generally
falls foul of both growing weeds and the misguided hands of the reputedly
infallible maintainer. (In spite of the best-made plans of pubs and men,
anything that can go wrong is not necessarily to be blamed on a pint of
Murphy’s.)

In this series I want to talk about configuration management in system ad-
ministration from the perspective of a researcher in the field. This is my
cabbage patch, a topic that I have been interested in for some fifteen years
now; it is also a fascinating theoretical and practical problem, which has
been overshadowed in recent years by tool talk and XML incantations. Yet
there is much to be said about this topic from a research point of view, and
all those eager to rush out and build their own tool should pause to take
heed of what has been learned. It's not about tools; it'’s about principles and
assumptions, just as it'’s about knowing the limitations and learning to deal
with them. So T want to dangle a carrot of rationality in front of you, to
turn the discussion away from the cosmetics of tools back to the science of
the problem.

What Is a Configuration?

As with any Geek Tragedy we start by introducing the dramatis personae
and speaking the names of our daemons to show that we do not fear them.
We begin with the notion of the configuration itself. This seems perhaps to
be a rather obvious concept, but, as we know from bitter experience, as-
suming the obvious to be uninteresting is the best way to avoid seeing the
wood for the trees. So what is configuration about? Here are some defini-
tions for configuration, which I found rustling through the weeds:

The appearance formed by the arrangement and relation of parts.
An arrangement or layout.

Functional or physical characteristics of hardware/software as set
forth in technical documentation (from a software document).

The specific assemblage of components and devices that makes up
the components of a complete system.

Of these, I like the first and the last the best. It is clear that configuration
has to do with identifiable patterns and how the pieces fit together to make
a whole. In the last definition we also mix in the idea of a system, that is,
that a pattern might actually perform a role within some functional mecha-
nism.

What Is Configuration Management?

The IEEE Glossary of Software Engineering Terminology (Standard 729-
1983) defines configuration management as:

the process of identifying and defining the items in the system, con-
trolling the change of these items throughout their life-cycle, record-

16 ;LOGIN: VOL. 31, NO. 4



;LOGIN: AUGUST 2006

ing and reporting the status of items and change requests, and verify-
ing the completeness and correctness of items.

This definition is a software engineering definition, but it captures the
main features of what we understand by host or network configuration
management. I like especially that the definition talks about the process
surrounding the configuration (i.e., management) and not merely the defi-
nitions or the tools used. In particular, the idea of change management is
included as part of the process, as is verification, which implies some kind
of monitoring.

Often system monitoring is separated from the idea of configuration imple-
mentation. Possibly this is because it was originally assumed that imple-
mentation would always be executed by humans. Elaborate monitoring
systems have been devised, but these are often read-only. As we shall see
later in the series, this is a key challenge to be met.

State and Configuration

In computer science we talk a lot about states. The idea of a state is part of
the fundamental theory of computation, and most of us have an intuitive
idea of what is meant by the concept, so can we relate configurations to
states? What these ideas have in common is that they are all alternative
values of a variable quantity, such as a register. A configuration is somehow
a pattern formed by a number of state variables. Let’s recap the different
ideas of state to give the devils their names.

The simplest idea of state is that of a scalar value, or a single item. For ex-
ample, file attributes in UNIX are simple register-like values. When we
write chmod 664 file-object we are defining the state of the mode register
for the file object. The state of the register belongs to the set {000,001,002,
...,776,777}, which is called the alphabet of the state. We think of each
value as a separate symbol of an alphabet.

When the possible values the variable can take are limited, we speak of a
finite number of states. An algorithm that uses and manipulates the values
is then known as a Finite-State Machine.

FIGURE 1: A FINITE-STATE SYSTEM FOR AN INTERNET BANK
WEB SITE, WITH TRANSITION PROBABILITIES MARKED IN.
ARROWS REPRESENT POSSIBLE TRANSITIONS.

CONFIGURATION MANAGEMENT: MODELS AND MYTHS, PART 1

17



In a dynamical system, change is represented by changes of state. In other
words, certain variables or registers change their values from one symbol
in the alphabet to another. The different state values can be shown as loca-
tions (see Figure 1), and transitions can be drawn as labeled arrows, where
the labels remind us of the cause of the transition (i.e., the operation that
was executed that resulted in the change). Most of us remember the state
diagrams for process execution in the kernel, labeled with names such as
“ready,” “

» s

waiting,” “dispatched,” “idle,” and “zombie.”

Transitions between the states occur as a result of different actions. Some-
times we control those changes, and sometimes we merely observe the
changes. This is an important thing to remember, as it is often assumed that
once a value has been set, its state remains fixed until we alter it. But be-
cause of the external environment of a system, that is not true. We might
plant the seeds, but they grow all by themselves, thanks to rain and sun.

What about “containers” more complicated than scalar registers? Well,
permissions of more contemporary file systems have more complicated at-
tributes than the UNIX file system. Access Control Lists are lists of scalar
values, whose state can include lists of user identities to be granted access.
The system process table is a list of state information, split into different
columns, that is, formed from different categories or types of information.
These are embellishments on the idea of a list. Okay, so we need lists, but
these are not much more complicated than scalars.

Text files and databases, however, reach a new level of complexity. Text files
are ubiquitous for holding configuration information on UNIX-like operat-
ing systems. Databases are the other universal approach for storing values.

The contents of files and databases are not of a fixed length, so we cannot
think of them as mere registers. If they are ASCII-encoded files, then we can
say that they are composed from a finite alphabet but that is not the same as
having a finite number of states. File size is only limited by memory.

The most pressing feature of files is that they have structure. Many UNIX
files have a line-based structure, for instance. XML files, which are ram-
pantly popular, have a structure based not on lines but on a parenthetical
grammar. Most programming languages are not reliant on starting a new
line for each new statement either: Their formatting is also based on a
scheme of statements organized in nested parentheses.

What is important about the structure of information is not what it looks
like, but how easy or difficult it is to understand the information in these
structures—not just for humans, but for computer algorithms too. Any
tool or scheme for determining the content of a file object or database
must deal with the real complexity of the structure used by that file object
to store and represent information.

Let’s abstract this idea to get a better idea of what we mean. With struc-
tured state information, we are not just deciding the color of a single rose
for our garden; rather, we are planning the landscaping of the entire estate.
We cannot expect a single spade to deal with the complexity of this gar-
den. The tools that create and maintain such a structure need considerably
more intelligence. This idea has been studied at length in computer sci-
ence, because it is a problem of far-reaching and general importance.

Patterns, or Variations of State

As a state changes, either in time or across different locations or objects, it
forms a pattern. It paints a picture or sows a garden. The pattern might be

18 ;LOGIN: VOL. 31, NO. 4



;LOGIN: AUGUST 2006

so complex that it seems inconceivably random, or it might form some
kind of simple and recognizable structure. The structure might be best
comprehended as one-dimensional, two-dimensional, etc. As you see, there
are any number of characterizations we might use to accurately describe
the pattern.

Arguably the most basic question we can ask is the following: Is the pat-
tern formed from discrete symbols, such as individual flowers or entries in a
database, as in the specification in Figure 2?

FIGURE 2: DISCRETE SYMBOLS USED TO BUILD DISCRETE SYM-
BOLS. HERE THE ALPHABET IS {X,-, } AND WE PLANT OUR
FLOWER BEDS TO REPRESENT A FLAG.

Or is it a continuous variation, such as the curve of the path through the
rolling mounds or the changing level of the system load average (see Fig-
ure 3)?

ISO T I T I T I T

100 — —

200

FIGURE 3: A CONTINUOUS CHANGE OF STATE, SHOWING THE
CHANGE IN AVERAGE LOAD LEVEL OF CONNECTIONS TO VARI-
OUS SERVICES OVER THE COURSE OF A WEEK.

This choice between discrete and continuous points exemplifies a funda-
mental dichotomy in science: the competition between reductionism and
holism. That is to say, discrete values generally emerge from trying to break
things down into atomic mechanisms, whereas continuous values come
about by stepping back for a broader, approximate view. Variables that try
to capture average behavior, for instance, vary approximately continuously
(as in Figure 3). The theory for describing patterns in these categories is

CONFIGURATION MANAGEMENT: MODELS AND MYTHS, PART 1

19



20

;LOGIN: VOL. 31, NO. 4

rather different in each case, which explains why intrusion detection and
anomaly detection are so difficult.

Patterns are everything to us, not just in configuration management, but in
the management of anything. We organize things according to patterns.
Patterns are how we understand when things are the same or different.
There are patterns in time (repetition, scheduling, etc.) and there are pat-
terns in space (e.g., disk management, directory management, and cluster
management). When we manage things poorly it is often because we have
no good way of describing and therefore measuring the patterns of the re-
sources that we need to deal with. Indeed, it is a paradox that beings that
are so good at recognizing patterns are often quite inept when it comes to
utilizing them. This is odd indeed, because humans are excellent language
processors, and the principal way of describing discrete patterns is with
language. The study of computer languages is the study of patterns. Con-
tinuous patterns are an essential part of our visual and auditory recogni-
tion. The language of these is the calculus of differential mathematics.

What discrete and continuous patterns have in common is that patterns of
either kind are difficult to identify. Our brains are incomprehensibly suc-
cessful at identifying patterns (so much so that we see patterns even when
they are not there), but finding algorithms for recognizing and even classi-
fying patterns and for associating meanings with them (semantics) can be
one of the most difficult problems to solve.

Does that mean we should not try? Is management a waste of time? Clearly
it is not. Much has been accomplished throughout history by our willing-
ness to forego complexity and employ simple patterns that we can compre-
hend more easily. Of course, tackling this issue involves some sacrifice, but
identifying the patterns offers greater predictability and hence reliability. It
is an important lesson that the real intellectual achievement is to simplify a
problem to its core essence—anyone can make something more complicat-
ed. Indeed, science or natural philosophy is about looking for suitably ide-
alized approximations to complex patterns, not about wallowing in detail.
Also in configuration management, we must forego complexity to achieve
reliable management. This is a theme TI'll be discussing in future issues.

COM:POSTscript

At risk of turning this into a Bruckner episode, we must leave it there for
this time, before the fruits of this batch get us embroiled in a jam. In the
next part of the series I want to talk about the ways in which patterns can
be classified by algorithms. This is an important step toward the automa-
tion of configuration management. We'll see why the only real tool we
have for pattern matching symbolically is the regular expression and why
intrusion-detection systems are trying to solve a hopeless task—identifying
who is a pod among the gardeners!

ardens can be impressive tiered sculptures tull of botanical variety, jun-
Gard be imp tiered sculpt full of bot 1 ty, j
gles rich in diversity, or scrapyards full of junk. It’s the same with our com-
puter configurations. Which is easier to understand? Which is better to

ive with? These are not easy questions to answer, but they are among the
1 th? Th t easy quest t but they g th
questions we shall try to address in upcoming issues.





