SAM STOVER AND MATT DICKERSON

using memory
dumps in digital
forensics

Stover is an independent security researcher with
experience in network- and host-based forensics.

sam.stover@gmail.com

Matt Dickerson works as a network security engi-
neer for LMIT. He tests malicious software for
detectability at the host and network level.

piscivorous@gmail.com

AS WITH ANY TECHNOLOGY DESIGNED
to detect malicious activity (e.g., intrusion
detection, burglar alarms, etc.), digital
media investigation is a constant struggle
to keep up. Common tools such as EnCase,
The Coroners Toolkit (TCT), and The Sleuth
Kit (TSK) have limitations that crackers are
taking advantage of. While these tools have
become adept at finding evidence on a
non-volatile storage device such as a hard
drive that has been physically removed (i.e,,
a “dead” analysis), volatile information,
specifically memory, is much more difficult
to investigate. However, there is a remark-
able amount of data present in memory—
to date there is no way to implement a
process/activity on a computer without
leaving a footprint in memory. For example,
a cracker compromises a server, installs a
rootkit, then secure-deletes unnecessary
files (i.e., via SRM or PGP Shred) from the
hard drive. At this point, if the power cord is
yanked and the hard drive imaged, evi-
dence of the rootkit will be that much
harder to find with the aforementioned
tools.

This article will attempt to give an admin faced with a
potential rootkit, “live” investigative methods that
could be undertaken prior to a dead analysis. Keep in
mind that “dead analysis” in this case means power-
ing off the machine (either cleanly or by yanking the
power cord) and imaging the hard drive. We’ll be im-
aging memory and analyzing it offline, but the target
system will not be powered off.

Note that the authors are not promoting a deviation
from a dead analysis. Offline hard drive searches are
still the number one way to find evidence. However,
as previously stated, there are circumstances where
the hard drive doesn’t contain the evidence you are
looking for. In those cases, here are two methods you
can use to examine volatile data.

UNIX

UNIX offers fairly straightforward memory access via
the /proc virtual file system, and /proc/kcore allows
inventive strings-ing, such as the following hack

;LOGIN: DECEMBER 2005 USING MEMORY DUMPS IN DIGITAL FORENSICS

43

44

;LOGIN: VOL. 30, NO. 6

which generically lists all loaded kernel modules (LKMs) in Linux (tested 2.4
kernel only):
#! /usr/bin/perl

use strict;
use warnings;

open(FH, “strings /proc/kcore |")
|| die “Could not open /proc/kcore for reading”;

my %data;

while (<FH>) {
next unless /__insmod/ && /_S.text/;
next if N/ || \"/;
my $raw = (split/__insmod_/, $_)[11;
my $module = (split /_S\./,$raw)[0];
$data{ $module }++;

}

for my $key (keys %data) {
print $key, “\n";
}

While this is a primitive method to list loaded modules, it also lists hidden
LKMs such as Team Teso’s adore (compare the output with Linux lsmod—the
differences are hidden modules). Hacks like this can provide a UNIX system ad-
ministrator with a quick first pass to determine if the machine in question has
an LKM rootkit.

Windows memory is handled by the OS in a fashion that does not lend itself to
live analysis per se, but one technique that works rather well is the capability of
the Helix LiveCD (http://www.e-fense.com/helix/) to do a live capture of physi-
cal memory. This is accomplished by using a trusted dd executable on the CD,
and the resulting file can be analyzed on a separate machine. For this investiga-
tion, we used the HackerDefender rootkit (http://www.hxdef.org/) and the Optix
back door (http://www.megasecurity.org/trojans/o/optix/Optix_all.html) as the
targets of our examples. A dd image of the physical memory was taken prior to
the loading of each tool, then immediately after. The images were then com-
pared via hex/binary editor to determine if either tool had left any residue in
memory. While it would be impossible for a second investigator to analyze the
live machine at a later time and obtain an exact copy of the dd image collected
(i.e., identical md5sums), if the acquisition process is not found to be faulty,
both defense and prosecution could analyze the exact same dd image were this
evidence to go to court.

dd images can be imported into any number of forensic analysis tools, but to
demonstrate that any admin can do a cursory examination, the bvi hex editor
(http://bvi.sourceforge.net) was used. Any hex editor with basic search capabili-
ty should be sufficient to do a quick analysis of a memory dump image file.

HackerDefender

A Windows 2000 Advanced Server SP4 system was booted up, and the Helix CD
inserted. The main Helix screen appeared automatically, and the Live Acquisi-
tion option was chosen.

The amount of time it takes to dd is dependent upon how much memory you
have. This particular system only had 256M, and it took just under six minutes.
Once the imaging completed successfully, we installed HackerDefender (HD).
One nice feature of HD is that it automatically hides the directory it was in-
stalled from, so you know it is working properly. Once we saw the folder disap-
pear from Explorer we reran the memory dump, and six minutes later we had
two dd images to compare.

;LOGIN: DECEMBER 2005

Our theory was that there would not be any evidence of HD in memory in the
pristine baseline image, which turned out to be accurate. We searched for the
strings hxdef and HXDEF and found nothing.

Upon examining the image with HD loaded into memory, we found rather dif-
ferent results. The first hit shows the location of the HD executable, plus the ex-
cerpt powerful NT rootkit, which is from the HXDEF100.INI file:

0112E610 70 6F 77 65 72 66 75 6C 20 4E 54 20 72 6F 6F 74
powerful NT root

0112E620 6B 69 74 00 48 58 44 20 53 65 72 76 69 63 65 20
kit.HXD Service

0112E630 31 303000 FF 01 OF 00 10 00 00 00 02 00 00 00

0112E650 47 3A 5C 54 4F 4F 4C bA 5F 7E 32 5C 48 58 44 45
GA\TOOLZ_~2\HXDE

0112E660 46 5C 48 58 44 45 46 31 30 30 2E 45 58 45 00 00
F\HXDEF100.EXE..

This finding is notable for two reasons. First, since we did not view the
HXDEF100.INI file, nor was that excerpt found in the baseline image, it seems
logical that this is a remnant from loading the rootkit into memory. Second, the
full path of the installation executable we used to install HD was
G:\toolz_win\HXDEF\hxdef100.exe, most of which is clearly present in the
block shown. In this experiment, both Optix and HD were installed from a USB
drive, to limit the footprint on the hard drive. In a real-world scenario, an inves-
tigator would know that the G: drive corresponds to a USB drive, which would
indicate that the attacker had physical access to the machine. Physical vs. re-
mote access is a rather important piece of information, and it is highly unlikely
that this path would be found in an examination of the hard drive alone.

Continuing the search, we find another excerpt from the HXDEF100.INI file, as
well as mention of the HD driver hxdefdrv.sys. (Note that only the ASCII por-
tion of the output will be shown in the rest of the examples.)

....erDrv100..D:
riv>erFileNam/e=
hxdefdrv.sys..
>V
ic:eDl|escr<ip:t
“ion=powerful NT
rootkit..Dric<ve
\rN:ame=HackerDe

There were numerous other findings for the strings HXDEF and hxdef, some of
which were exact duplicates of what we’ve shown here, the rest similar. There is
enough evidence in the image file to indicate that the contents of memory can
be a useful place to look when suspicious of a rootkit. In fact, some of the evi-
dence would never be found in a dead analysis of this system.

Back doors differ from rootkits and in fact are usually designed to work in con-
junction with a rootkit. For example, most back doors do not hide files—that is
the responsibility of the rootkit. What back-door programs do very well is open
a port, giving an attacker easy return access. Optix is no different in this regard,
and must be loaded into memory in order to function.

USING MEMORY DUMPS IN DIGITAL FORENSICS 45

46

;LOGIN: VOL. 30, NO. 6

Our hypothesis, identical to that for HD, was that we would find no evidence of
Optix in the baseline image. This was confirmed; there were no hits when
searching for the strings optix and OPTIX in the baseline image, as there were
after the tool was loaded.

As with HD, the Optix image showed the path for the installation executable:
\0.toolz_win.TOO

LZ_~2..1....-3
uWO0.optix undete
.OPTIXU~1.

Again, it is important to note that this important piece of evidence would proba-
bly not be found in a dead analysis.

Further findings were even more interesting than HD, as Optix is a bit more in-
vasive out of the box. Another hit on this image showed an HTTP GET request
to an IRC server, with embedded information advertising that this machine is in-
fected:

GET /wwp/msg/1,,
,00.htmI?Uin=262
950210&Name=Joe+
Bloggs+is+online
+from+Optix+Pro+
v1.0.%0AIP:+[10.
200.200.249]%0AP
ort:+3410%0APwd:
+<NO+PASSWORD>%0
AUserName:+Admin
istrator%0AConne
ctionType:+Unkno
wn%0A%0A&Send=ye
s HTTP/1.1..Host

- web.icqg.com..C
onnection: Keep-

This type of entry and certain variants were very common in this memory
dump. A more complete example, and possibly the most interesting find, starts
at byte offset 015B77B0 and ends at offset 015B7B30. Since this block is so large,
we'll focus on the individual pieces broken into text format.

This is an intact HTTP return code 302 from an Apache Web server, stating that
the document requested is located at a different URL, but was found:

HTTP/1.1 302 Found
Date: Thu, 22 Sep 2005 18:29:50 GMT
Server: Apache

The document requested was popup.php, which was passed arguments to an-
nounce that “Joe Bloggs” has connected to http://icq.com via Optix. The admin-
istrator account is to be used for return access to the back-doored system (which
has an IP address of 10.200.200.249), and there is no password required to
make a connection:

Location:
http://www.icqg.com/icqchat/popup.php?Uin=262950210&Name=
Joe+Bloggs+is+online+from+0Optix+Pro+v1.0.%250AIP:+%5b10
.200.200.249%5d%250APort:+3410%250APwd:+%3cNO+
PASSWORD %3e%250AUserName:+Administrator % 250A
ConnectionType:+Unknown%250A%250A&Send=yes

;LOGIN: DECEMBER 2005

There were numerous Keep-Alive entries within the image. The next example
has a “spooll32.exe” reference (“spooll32.exe” is the default name of the Optix
server executable):

Spooll32.exe.poo

/wwp/msg/1,,,00.
htm!?Uin=2629502
10&Name=Joe+Blog
gs+is+online+fro
m+Optix+Pro+v1.0

<remainder of Keep-Alive snipped for brevity>

The last search hit was found entirely by accident, as it contains neither
the optix nor OPTIX strings. It does, however, give an email address (joe@
hotmail.com) and lists a different URL than we’ve seen before (http:/www
.anycgihost.com/cgi-bin/subseven.cgi):

....joe@hotmail.

Optix Prov1.0..
<snipped for brevity>

....http://www.a
nycgihost.com/cg
i-bin/subseven.c

[|,

<snipped for brevity>

....... action=|
0g&ip=[IPADDRESS
1&port=[SERVERPO
RTI&id=[VICTIMNA
ME]&win=[WINUSER
NAME]&rpass=[SER
VERPASSWORD]&con
nection=[CONNECT
IONTYPE]&s7pass=
[SCRIPTPASSWORD]

This is interesting not only because of the different URL, but that the SubSeven
back door was mentioned. This appears to be a CGI script that takes input such
as [P address, port, username, password, etc., and logs it for later retrieval, as
opposed to posting this information to an ICQ channel as we saw in a previous
example.

This is a representative sample of the findings for the strings optix and OPTIX|
but a normal investigation would progress to searching for other strings, such as
joe, bloggs, spooll32.exe, etc.

Conclusion

The point of the Helix exercise was not to demonstrate all the possible ways to
find HackerDefender or Optix, but simply to show that there is value in examin-
ing physical memory before pulling the plug and imaging the hard drive for a
dead analysis. Further, although not quite the same as grepping/strings-ing
through /proc or kcore in *NIX, there is a method for conducting this type of
search in the Windows environment.

Although we have not tested to determine whether or not the techniques shown
here would have an effect on the hard drive data, it would seem to be a minimal
impact, if any. It is possible that the swapfile might change as a result of taking a
dd image, but as long as the image is saved on a different physical device, the

USING MEMORY DUMPS IN DIGITAL FORENSICS 47

48

;LOGIN: VOL. 30, NO. 6

modification of the suspect hard drive should be minimal. If courtroom evi-
dence is of the utmost concern, law enforcement may be involved, which could
preclude any type of live analysis. If this is not the case, and a quick live analysis
is possible, it seems remiss not to examine /proc (*NIX) or take an image of the
physical memory for later examination (Windows).

Are the techniques shown here silver bullets to all rootkit and back-door con-
taminations? Of course not. They are simply methods that should not be over-
looked when you suspect malicious activity. A caveat: in using these methods, as
with most forensics and/or incident response, you have to know what you are
looking for. The authors were fortunate in this case to know what programs
were loaded, and so had a head start on what strings to search for. In the wild,
this will probably not be the case, unless intrusion detection system (IDS), fire-
wall, syslog, etc., events provide insight into the type of attack performed. It is
quite plain in the Windows memory dump, however, that certain strings might
be common to any back door or rootkit. For example, any back door looking to
connect to an ICQ server or Web server might put the string icq or http into
memory—Unicode notwithstanding. Further complicating matters, the test sys-
tem was a virgin install, so the contents of memory were significantly more stat-
ic than, say. a corporate email server.

Also keep in mind that the authors are not lawyers or law enforcement person-
nel. Always assume that any investigation could ultimately end up in court, and
verify that live analysis of the potential system is acceptable before trying these
techniques.

REFERENCES

Michael Ford’s Linux Memory Forensics (http://www.samag.com/documents/s=9053/
sam0403e/0403e.htm) covers Linux memory forensics using methods analogous to those
in this article.

Adore at PacketStorm: http://packetstorm.linuxsecurity.com/groups/teso/.

Helix by e-fense: http://www.e-fense.com/helix/.

Hacker Defender by rootkit.com: http://www.hxdef.org/.

Optix by Evil Eye Software: http://www.megasecurity.org/trojans/o/optix/Optix_all.html.

